A Appendix

A.1 Proof of Theorem|[§|

In order to prove the theorem, we make use of the dual form of the restricted variational form of an
f-divergence:

Theorem 15 ([21], Theorem 3) Let f : R — (—00, 00| denote a convex function with property
f(1) = 0 and suppose H is a convex subset of F (X, R) with the property that for any h € H and
b € R, we have h + b € H. Then for any P,Q € Z(X) we have

sup (Bl (0)] ~ Eanol (b)) = int  {D/(P.@) + sup (Brlh(e)] - B h(e)]) |

The goal is now to set H = J{, however there are some conditions of the above that we require
Lemma 16 If c is a metric then H. is convex and closed under addition.

Proof Let f € 3. and consider define h = f + b for some b € R, we then have
[h(z) = h(y)| = [f(x) +b— fy) = bl

= [f(x) = f (W)
< c(x,y)
Consider some A € [0, 1] and set h(x) = A f(z) + (1 — A) - g(z) for some f, g € H.. We then have
[h(z) = h(y)l = [A- f(@) + (1= A)-g(z) = A- fy) = (1 =) - 9(y)|
=[A-(f(@) = F) + (1 =) - (9(z) — 9(y))
SA-[f(@) = Fl+ (1= A) - lg(z) — 9(y)]
<X-clz,y)+ 1 —=A)-c(z,y)
= c(z,y)
forall z,y € X. |

We require a lemma regarding the decomposibility of G for f-divergences.

Lemma 17 Let G : Z — X and let P, Q) be two distributions over Z. We have that

Dy (G#P,G#Q) < Dy (P,Q),

with equality if G is invertible. Furthermore, if f is differentiable then we have equality for a weaker

condition: forany z,z' € Z,G(z) = G(¢') = f’(%(z)) = f’(%(z’)).

Proof By writing the variational form from [15]] (Lemma 1), we have
Dy (G#P,G#Q) =  sup  {Esngup[h(@)] — Eoncuolf™(h(x))]}
heF (X,R)

= sup A{E..p[h(G(2))] — E.nqlf" (R(G(2)))]}
heZ (X,R)

= sup  {E.op[h(2)] — E.wo[f"(h(2))]}
heZ(X,R)oG

< sup A{E..p[h(2)] —E.wqlf"(h(2))]}
heZ(Z,R)

:Df(PvQ)7

where we used the fact that # (X, R) o G C .#(Z,R). If G is invertible then we applying the above
with G < G~!, P < G#P and Q + G#Q, we have

Dy(GT'#(G#P),G™'#(G#Q)) < D¢(G#P,G#Q),



which is just the reverse direction Dy (P, Q) < D¢(G#P, G#Q), and so equality holds. Suppose
now that f is differentiable then note that inequality holds when f'(dP/dQ) € % (X,R) o G (See
proof of Lemma 1 in [15])), which is equivalent to asking if there exists a function ¢y € .% (X, R)

such that
dP
proG=f ( dQ)

For any z € Z, we can construct ¢ to map G(z) to f (%) (z) and due to the condition in the
lemma, we can guarantee ¢y will indeed be a function and thus exists. |

We need a Lemma that will allow us to upper bound the Wasserstein distance.

Lemma 18 Forany E € .Z (X, 2#(2)), G € #(Z,X) and ¢ : X x X — R, we have

W,((G o E)#Px, Px) < /x E. i [e(z, G (2))]dPx ().

Proof We quote a reparametrization result from [6] Theorem 1 that if G is deterministic then the
Wasserstein distance can be reparametrized as

W (GH#(F#Px), Px) = inf /x E.qlo@, G(=))JdPx (x) (1)

QEF (X, P(2)):Q#Px=E4Px

< /x E.. ple(, G(2))|dPy (z).

We also need a Lemma regarding the relationship between W and WAE.

Lemma 19 Let f : R — (—o00, 00] be a convex function with f(1) = 0, then we have
Wenf(Px,G) < WAE. \.p, (Px,G).
Proof Consider the optimal encoder E* from the f-WAE objective. Let Q* = E*# Px. We then
have that
Went(Px,G) = Wo(Px,G#Q*) + X - Dy(Q*, Pz).

Let 7 € II(Px, E#Q™) be the optimal coupling under the metric c. By the Gluing lemma [14]], one
can construct a triple (X, Y, Z) where (X,Y) ~m, Z ~ Q* and Y = G(Z) almost surely. Let 7/
be the distribution over (Y, Z) and consider the conditional distribution over Z given Y, associated
with B € Z(X, 2(2)). 'We have E#Px = @Q* and so we have

WAEC_’)\.Df(Px,G) < / EZNEﬂ,(y)[C(x,G(Z))]dPX+Df(E7r/#Px,Pz)
X

_ /x E..ple(z, G(2))ldPx + Dy (Q*, Py)

[ lelw)li' (@) + D@ P2)
Xx X

W,
=Wea

Finally, we need a lemma to justify reparametrizations.

Lemma 20 If G : Z — X is invertible then for any P’ € P(X) such that P’ < Pg, then there
existsan E € F (X, P(2)) such that P' = G#E#Px.



Proof From the assumption, we have Supp(P’) C Supp(Pg) C Im(G) and so by invertibility of G,
we can set Q = G~ '# P’ and construct a conditional distribution £ (between marginals ) and Py)
to get Q = E#Px, hence P’ = G#E+#Px. [ ]

We are now ready to prove the theorem. Set H = J{. (the set of 1-Lipschitz functions) and
note that Af is a convex function satisfying Af(1) = 0 and so substituting f + Af, we get that
Dyf(-,-) = AD¢(-, ). Hence, we have

GANys (Px; G5 3te) = 81D {Banpy [1(2)] = Banro [AF) (R(z))]}

= inf AD;(P', P (P, P
P’elrgl@(x){ (P, Pg) + We(P, x)}

inf AD (P, Pg) + W.(P',P
P,ey(;cr)lzp,«]gg{ (P Pg) (P, Px)}

inf )){)\Df((GOE)#Px,G#Pz)—|—WC((GOE)#P)(,P)()}

BeF (X, P (2%
(12)

()

< if AD;(E#Px, P (G o E)#Px, P

*Ee?(lorcl,y(z)){ 1 (E#Px, Pz) + We((G o E)#Px, Px)}

= ch)\'f(PX7 G)

< inf E. g lc(z, G(2))]dP AD;(E#Px,P

—Eeg{&{@(z)){/x B lc(z, G(2))]|dPx (z) + AD s (E#Px Z)}

= WAEC,)\-Df (PX, (;)7 (13)

where is an equality when G is invertible from Lemma 20| and (x) is = if G satisfies the
requirement of Lemma[I7] To prove the final inequality, note that if E* satisfies the condition of the
Theorem then

Wenf(Px,G) = Wo((Go E*)#Px,Px) + ADy(E*#Px, Pz)
= W.(GH#(E"#Px), Px)
= W.(Pg, Px). (14)
Next, notice that
WAEC,)\-Df (PXa G)

= Ee@(igg{@(z)) {/:x E. 5@ (c(z,G(2))]dPx (z) + ADs(E#Px, PZ)}

IN

inf E... g lc(z, P D;(E4Px, P
Eeg(w(g)ﬂ#&_&{ | Eevpolete GIdPx(a) + AD (B4 Px z>}
< .
S { [ Bt G(z))]dpx<m>}
— W.(Px, Pa) (15)
=W s(Px,G), (16)

where (15) follows from the reparametrized Wasserstein distance from [6] (Theorem 1), which we
used in || and the final step follows from . Combining WAE, x.p, (Px,G) < W r(Px,G)
with WAE. x.p, (Px,G) > WC’A.f(PX, G) (from yields equality and concludes the proof.

A.2 Proof of Theorem

We first prove a lemma that will apply to both cases. Recalling that for any metric space (X, ¢) and
P e Z(X) we define Ap . = diam.(supp(P)).

Lemma 21 Let (X, ¢) be a metric space. For any P € P(X), suppose Ap,. < 0o and let P denote
the empirical distribution after drawing n i.i.d samples for some n € N,. If s > d*(P), then we have

. Ap. [2. (1
IPMac, (P, P) < O(n~/*) + 713 ~ln <5>



Proof We appeal to McDiarmind’s Inequality and use a standard method, as shown in [32]], to bound
the quantity.

Theorem 22 (McDiarmind’s Inequality) Ler X1, ..., X, be n independent random variables and
consider a function ® : X" — R such that there exists constants ¢; > 0 (fori =1,...,n) with
sup | P(x1,. .., x0) — P21, i, T T, )] S G

. ’
L1yee3Tn,Ty

Then for any t > 0, we have

—2t?
Pr [@(Xl, . ,Xn) —E [(I)(X17 [N ,Xn)] 2 t] S exXp (2:7,62)
i=1"1

Let F = H, then let
®(S) = IPMy¢_ (P, P).

Noting that
1
“D(I‘l, . ,.’I,‘n) — (I)(J?l, ey i1, 33;, 331'_;,_1, . ,an)l S ﬁ |f($l) — f(.]?;)‘
1
< - claal)
S AP,c

)

n
where the first inequality follows as each f is 1-Lipschitz and the second follows from the fact
that each x,2’ € supp(P). This allows us to set ¢; = A/n forall i = 1,...,n. Now applying

McDiarmind’s inequality with ¢ = Ap /2 2 - In ( ) yields (for a sample S ~ P")

Pr

B(S) — ED(S) > A;’C nln(i)]gé

Pr

2

B(S) — ED(S) < Ape nlnG)]zl—a,

and thus

Ap. |2 (1
< i/ ZIn (=),
B(5) <ED(S) + —% [~ In (5)

Noting that E®(S) = E[W.(P, P)] (from Lemma , we appeal to a case of Theorem 1 in [30] where
p = 1, which tells us that if s > d*(P) then E[W,(P, P)] = O(n~'/#). Since this is the requirement
in the lemma, the proof concludes. |
We will make use of this lemma for both Px and P and use A for both cases since A > Ap, . and
A > Ap, .. For the general case of any f, let (abusing notation) G = GAN\f(Px,G; ;) and G

denote the empirical counterpart with n samples, and let h', h? € 3. denote their witness functions.
We then have

G-G
= sup {Eznpy[M(2)] = Bonps [(Af)"(R(2))]} — sup {Ewsx [h(z)] szNPG[(Af)*(h(x))]}
heXH, hedH,

= Eoopy [0 (2)] — Eonpo (M) (0 (2)] — B, _p [12(2)] + By [(MF)* (B (2))]
< Bomy [0 (2)] = B, p, [0 @)] + Bamiin [ (B @))] = Eamog [(M)* (B (2))]
= Eopy [0} (2)] ~ E, _p, [1}(2)]

< swp {Eonry [h(@)] ~ B, p, [0(@)]}

heXH .
= IPMgy,(Px, Px)

< 1/sx g —
O(n )+ 5 nln<5>7



where the last step is an application of Lemma Applying Theorem E we get G < Wy
and rearrangement of the above shows the first bound. For the case of f(z) = |z — 1|, note that
if F C Z(X,R) is such that —F = F, then IPMy is a pseudo-metric and satisfies the triangle
inequality, which allows us to have

IPMy(Px, Pg) < IPMy(Px, Px) + IPMy(Px, Pg)
< IPMg(Px, Px) + IPMg(Pg, Pg) + IPM4(Px, Pg). (17)
Next, we set ' = J 5, and noting that F. x C I, we have
IPMy7,_, (Px, Pg) < IPMg,_, (Px, Px) + IPMs_, (Pg, Pe) + IPMy_, (Px, Pg)
< IPMy, (Px, Px) + IPMyc (Pg, Pg) + IPMgc (Px, Pg)

. [2 (2
< IPMgc, (Px, Pg) + O(n~Y*x 4+ n~1/%6) £ A ﬁln <5>, (18)

where the final inequality is an application of Lemma [21] like before. However since we use
McDiarmind’s inequality twice, we set § <— /2 and use union bound to have the above inequality
with probability 1 — §. The final step is to note that when f(x) = | — 1] then for any A > 0,

r <\
oo x> A

Af)"(z) =

and so we have

GANxf(Px, G;He) = sup {Eonpy [A(2)] = Eanpg [(AF)" (h(2))]}

heXH,.

=  sup {Ez~py[h(2)] — Exnps [h(2)]}
REHo:|h|<A

= sup {Eoopy[(z)] — Eonps[h(2)]}
heTF.

= IPMy_, (Px, Pg).

By Theorem (8] we have IPM;C,X(PX,Pg) = GAN,;(Px,G;H.) < Weas(Px,G) where
GAN, f(PX, G; H.) is the objective with Py and Pg. Putting this together with ti we get

GAN\);(Px,G;H.) =TPMg,_, (Px, Pg)

< IPMgy¢, (Px, Pg) + O(n~Y*) + A 21 C;)
n

= GAN)\f(Px, G; f}‘fc) + O(nfl/s) + A z In <§)
\ln
T 5 —I/SX —l/SG 2 2
<Wenf(Px,G)+O(n +n )+ A ﬁln 5 )

First, using Theorem and the fact that the f-GAN objective is a lower bound to D¢, we have that

A.3 Proof of Theorem

W..c.f(Px,G) = GAN;(Px, G, 3,.)
< Dy.

It is known that f'(dPx /dP¢g) is the maximizer of L(h) = E,~p, [h(z)] — Ex~p [f*(h(2))] (T3],
and so the proof concludes by showing that f'(dPx /dPq) € H~... Note that h € 3(,.. if and only
ifforall z,2’ € X,z # 2’

[(x) = h(a")] < 7 - 00 (0)
=7



and so the 1-Lipschitz functions are those that are bounded by their maximum and minimum value
by 7. For any x, 2" € X,z # 2’ we have
dPx
() @-r o)

() (el (G

<7,

*

and thus f'(dPx /dPg) € H,.c.

A.4 Proof of Theorem

First note that

WAE. s (P, Po) = | inf { /x E.po)le(z, G(2))|dPx () + A~ Dy (E#Px, Pz>}

{/x Eepiole(#, G<z>>]dpx<m>}

< inf
E€F (X, 2(2)):E#Px=Pz
= W.(Px, Pa),

where the last equality holds from [6]] Theorem 1. Thus we have the chain of inequalities for all A
and f : R — (—o0, 00] (convex with f(1) = 0)

GANAf(Px, G; IH:(\) S Wc,,\‘(Px, Pg) S WAEQ)\,f(Px, Pg) S WC(P)(, Pg).
‘We now show the opposite direction, which will conclude the proof.

Lemma 23 For any metric cand f : R — (—00, 00| convex function with f(1) = 0, if

A> N = sup (W.(P' Pg)/Ds(P, Pg)),
P e?(X)

then we have
GAN,;(Px,G;H.) > W.(Px, Pg)

Proof First noting that A > sup p/c g(x) (We(P', Pg)/ Dy (P, Pg)), forall P" € &(X), we have
)\Df(P', Pg) — W.(P',Pg) > 0.
LetZ = f)C,G' = Id, P; = Pg and noting that Gis invertible, we can apply Theoremto get

GAN,;(Px,G;H.) = We s (Px, G#P;)

= inf (E#Px, P AD¢(E#Px, P,
Eey%%?(x)){W( #Px,Px)+ ADs(E#Px, Pg)}

i (x)){Wc(PXaPG) — We(E#Px, Pg) + AD;(E#Px, Pg)}
> inf (Px, P

= Eeyég,w(x»{w( x: Pa)}

= W.(Px, Pa).

\Y,
5
=8

A.5 Proof of Theorem [14]

‘We have

Wers(Px,G)= | inf  {We(Px, (G o E)#Px) + \D;(E#Px, Pz)}
< inf P E)#P D (E#Px. P
_Eeﬂ<x,9(§r§):E#px:pz{Wc( x, (G o E)#Px) + ADs(E#FPx, Pz)}

{W,.(Px,(Go E)#Px)}

{WC(PX7PG)}

inf
E€F (X, P(2)):E#Px=Py

Eeﬂ(x,y(%);E#Px:Pz
= W.(Px, Pa).
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