
A An Illustrating Example

Let us consider a Beta-Bernoulli MAB with T = 8 and three arms (K = 3) with the following priors:

θ1 ∼ Beta(3, 1), θ2 ∼ Beta(1, 1), θ3 ∼ Beta(1, 3), (23)

whereRa,n ∼ Bernoulli(θa) for each a ∈ {1, 2, 3} and n ∈ {1, 2, . . . , 8}. Given this prior belief, the
expected mean reward of each arm is µ̄1 = Eθ1∼Beta(3,1)[θ1] = 3

4 , µ̄2 = 1
2 , and µ̄3 = 1

4 , respectively.
As an illustrative example, we examine a particular instance where the true outcome ω is given as
follows:

Params θa
Rewards Ra,n

n = 1 2 3 4 5 6 7 8

Arm 1 (a = 1) 0.235 0 1 1 1 0 0 0 0
Arm 2 (a = 2) 0.443 1 0 0 1 1 1 1 0
Arm 3 (a = 3) 0.787 1 1 1 1 0 0 1 1

Table 2: An example of outcome in a Beta-Bernoulli MAB with K = 3 and T = 8.

If we consider only the priors, arm 1 is best since µ̄1 is largest among (µ̄1, µ̄2, µ̄3). If, however, we
have full information about the parameter values, arm 3 is best since θ3 is largest among (θ1, θ2, θ3).

A.1 Inner Problems Induced by Different Penalty Functions

No penalty. To clarify the role of penalties, we first consider the case of zero penalty (zt ≡ 0), which
was not discussed in §3. With zero penalty, the DM at any time earns the current realized reward
without adjustment. The clairvoyant DM, who is informed of the outcome ω, can find the best action
sequence for this particular outcome ω. Recall that Ra,n is defined to be the reward from the nth pull
of arm a, not the reward from arm a at time n, and so the DM is not allowed to skip any of the reward
realizations and the total reward does not depend on the order of pulls. As depicted in the table below,
the optimal solution is to pull arm 1 four times, arm 2 once, and arm 3 three times, which yields a
total reward of 7.

Payoffs under zero penalty Maximal payoff
n = 1 2 3 4 5 6 7 8

Arm 1 0 1 1 1 0 0 0 0
7Arm 2 1 0 0 1 1 1 1 0

Arm 3 1 1 1 1 0 0 1 1

TS penalty. Next, let us examine the penalty zTS
t (a1:t, ω) , rt(a1:t, ω)− µat(θat) under which the

DM earns θa whenever playing an arm a. The hindsight optimal action sequence is to pull arm 3
(the arm with the largest mean reward θa) eight times in a row and the DM can earn a total reward of
T × θ3 = 6.296 at most.

Payoffs under zTS
t Maximal payoff

n = 1 2 3 4 5 6 7 8
Arm 1 .235 .235 .235 .235 .235 .235 .235 .235

6.296Arm 2 .443 .443 .443 .443 .443 .443 .443 .443
Arm 3 .787 .787 .787 .787 .787 .787 .787 .787

IRS.FH penalty. When the penalties are given by zIRS.FH
t (a1:t, ω) , rt(a1:t, ω) − µ̂at,T−1(ω),

the DM earns µ̂a,T−1(ω) whenever playing an arm a. Recall that µ̂a,T−1(ω) is the Bayesian
estimate on mean reward of arm a after observing reward realizations Ra,1, . . . , Ra,T−1. In this
particular example, we have (µ̂1,T−1, µ̂2,T−1, µ̂3,T−1) =

(
6
11 ,

6
9 ,

6
11

)
and the maximal payoff is

T × µ̂2,T−1 = 5.333, which can be obtained by playing arm 2 throughout the entire time horizon.
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Payoffs under zIRS.FH
t Maximal payoff

n = 1 2 3 4 5 6 7 8
Arm 1 6/11 6/11 6/11 6/11 6/11 6/11 6/11 6/11

5.333Arm 2 6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
Arm 3 6/11 6/11 6/11 6/11 6/11 6/11 6/11 6/11

IRS.V-ZERO penalty. Finally, let us focus on zIRS.V-ZERO
t (a1:t, ω) , rt(a1:t, ω)−µ̂at,nt−1(a1:t−1,at)

under which the DM earns µ̂a,n−1(ω) from the nth pull of arm a. Since the payoff from an arm
changes over time as the Bayesian estimate evolves, playing only one arm is no longer optimal, unlike
in the previous two cases. It can be easily verified that the optimal allocation is to play arm 1 six
times and arm 2 two times, as visualized in the table below.

Payoffs under zIRS.V-ZERO
t Maximal payoff

n = 1 2 3 4 5 6 7 8
Arm 1 3/4 3/5 4/6 5/7 6/8 6/9 6/10 6/11

5.314Arm 2 1/2 2/3 2/4 2/5 3/6 4/7 5/8 6/9
Arm 3 1/4 2/5 3/6 4/7 5/8 5/9 5/10 6/11

IRS.V-EMAX and the ideal penalty. Regarding the penalty functions zIRS.V-EMAX
t and zideal

t , we
cannot visualize the optimal solution with a table since the total payoff depends on the detailed
sequence of pulls and not only the number of pulls. While omitting the visual proof of optimality,
we have that the action sequence a∗1:8 = (1, 2, 2, 1, 1, 1, 1, 1) achieves the maximal payoff of 5.806
under zIRS.V-EMAX

t , and a∗1:8 = (1, 1, 1, 1, 1, 1, 1, 1) achieves the maximal payoff of 6.063 under zideal
t .

In particular for zideal
t , the maximal payoff depends only on the prior belief y and the time horizon T ,

irrespective of the outcome3 ω.

We have so far illustrated how the different penalty functions induce the different inner problems
and the different best actions given the same outcome ω. The readers may notice from the above
examples that, as the penalty function becomes more complicated, the hindsight best action sequence
becomes less dependent on a particular realization of ω. Instead, it becomes more dependent on the
prior belief.

A.2 IRS Performance Bounds

The maximal payoffs above are calculated for a particular outcome given by Table 2. Recall that
the IRS performance bound W z is defined as the expected value of the maximal payoff where the
expectation is taken with respect to the randomness of outcome ω over its prior distribution I(T,y).
We can obtain this value by simulation, i.e., by solving a bunch of inner problems with respect to
the randomly generated outcomes ω(1), ω(2), . . . , ω(S) and taking the average of the maximal values.
For this particular Beta-Bernoulli MAB setting (T = 8 with given priors), we obtain the following
performance bounds:

W 0 W TS W IRS.FH W IRS.V-ZERO W IRS.V-EMAX W ideal = V ∗

6.805 6.429 6.279 6.111 6.075 6.063

We observe that the performance bounds are monotone, i.e., W 0 > W TS > W IRS.FH >
W IRS.V-ZERO > W IRS.V-EMAX > W ideal = V ∗, which is consistent with Theorem 2.

A.3 Illustration of the IRS Policy (IRS.V-Zero)

We illustrate how the policy πIRS.V-ZERO makes decisions sequentially when the true outcome ω is the
one specified in Table 2. At t = 1, it first synthesizes a future scenario based on the prior belief (i.e.,

3 For details, see the proof of the strong duality theorem in §C.1. While the maximal value does not depend
on ω, the optimal action sequence still depends on ω. More specifically, it is the sequence of actions that the
(non-anticipating) Bayesian optimal policy will take when ω is sequentially revealed.
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sampling ω̃1 ∼ I(8,y0)) and finds the best action sequence in the presence of penalties zIRS.V-ZERO
t

in the belief that the sampled outcome ω̃1 is the ground truth. The following table shows an example
in which πIRS.V-ZERO plays arm 1.

t = 1 Priors y0
Payoffs with respect to ω̃1 ∼ I(8,y0) Action

n = 1 2 3 4 5 6 7 8
Arm 1 Beta(3, 1) 3/4 4/5 5/6 6/7 7/8 7/9 8/10 9/11

a1 = 1Arm 2 Beta(1, 1) 1/2 1/3 1/4 1/5 1/6 1/7 2/8 3/9
Arm 3 Beta(1, 3) 1/4 1/5 1/6 1/7 1/8 1/9 1/10 2/11

As a result of the first action (a1 = 1), we observe that R1,1 = 0 (encoded in the true outcome ω)
and the associated belief is updated from Beta(3, 1) to Beta(3, 2) according to Bayes’ rule. In order
to make the next decision a2 at time t = 2, πIRS.V-ZERO simulates an outcome for the remaining time
horizon, i.e., ω̃2 ∼ I(7,y1), independently of the outcome ω̃1 used at t = 1. Again, πIRS.V-ZERO finds
the best action sequence for this new scenario and takes its first action.4 The table below shows an
instance of ω̃2 in which the policy will pull arm 2.

t = 2 Priors y1
Payoffs with respect to ω̃2 ∼ I(7,y1) Action

n = 1 2 3 4 5 6 7
Arm 1 Beta(3, 2) 3/5 4/6 4/7 4/8 4/9 5/10 5/11

a2 = 2Arm 2 Beta(1, 1) 1/2 2/3 3/4 3/5 4/6 4/7 5/8
Arm 3 Beta(1, 3) 1/4 1/5 1/6 1/7 1/8 1/9 1/10

We can update the prior of arm 2 as a new reward realization R2,1 = 1 is revealed. In the following
decision epochs t = 3, 4, . . ., the policy repeats the same decision-making procedure – (i) samples
ω̃t ∼ I(T − t+ 1,yt−1), (ii) solves the inner problem, and (iii) plays the best arm that the optimal
solution suggests – while updating the priors as the true reward realizations are revealed sequentially.

The following table illustrates the last decision epoch. As there remains one time period only, the
policy πIRS.V-ZERO tries to maximize µ̂a,0(ω̃7) = µ̄a(y7), which is the expected mean reward given
the prior at that moment. Such a decision is totally myopic, but it is Bayesian optimal.

t = 8 Priors y7
Payoffs with respect to ω̃7 ∼ I(1,y7) Action

n = 1

Arm 1 Beta(6, 3) 6/9
a8 = 1Arm 2 Beta(2, 2) 2/4

Arm 3 Beta(1, 3) 1/4

4In case of IRS.V-ZERO, we select the arm with the largest pull allocation as a first action.
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B Algorithms in Detail

B.1 Implementation of IRS.V-ZERO

We provide a pseudo-code of πIRS.V-ZERO introduced in §3.3. The same logic can be directly used
to compute the performance bound W IRS.V-ZERO if the sampled outcome ω̃ is replaced with the true
outcome ω.

Algorithm 2: IRS.V-ZERO policy
Function IRS.V-Zero(T,y)

1 θ̃a ∼ Pa(ya), R̃a,n ∼ Ra(θ̃),∀n ∈ [T ],∀a ∈ [K]
2 for a = 1, . . . ,K do
3 ỹa,0 ← ya, S̃a,0 ← 0
4 for n = 1, . . . , T do
5 S̃a,n ← S̃a,n−1 + µ̄a(ỹa,n−1)

6 ỹa,n ← Ua(ỹa,n−1, R̃a,n)
end

end
7 M̃0,0 ← 0, M̃0,n ← −∞,∀n = 1, . . . , T
8 for a = 1, . . . ,K do
9 for n = 0, . . . , T do

10 M̃a,n ← max0≤m≤n{M̃a−1,n−m + S̃a,m}
11 Ãa,n ← argmax0≤m≤n{M̃a−1,n−m + S̃a,m}

end
end

12 m← T
13 for a = K, . . . , 1 do
14 ñ∗a ← Ãa,m
15 m← m− ñ∗a

end
16 return argmaxa ñ

∗
a

B.2 IRS.V-EMAX

Under perfect information relaxation, the DM perfectly knows not only (i) what she will earn at
future times but also (ii) how her belief will evolve as a result of her action sequence. The previous
algorithms focus on the former component by making the DM to adjust the future rewards by
conditioning (e.g., E[rt(at)|θ], E[rt(at)|µ̂1:K,T−1] and E[rt(at)|Ft−1]). IRS.V-EMAX also focuses
on the second component as well by charging an additional cost for using the information on her
future belief transitions.

To motivate this in detail, recall that the ideal penalty zideal
t (8) is

zideal
t (a1:t, ω) , rt(a1:t, ω)− E [rt(a1:t, ω) |Ft−1(a1:t−1, ω) ] (24)

+ V ∗ (T − t,yt(a1:t, ω))− E [V ∗ (T − t,yt(a1:t, ω))| Ft−1(a1:t−1, ω)] ,

where V ∗ (T − t,yt) measures the value of having a belief yt at a future time t+ 1. Note that, at
the moment the DM takes an action at, her next belief state yt = U(yt−1, at, rt) is not measurable
with respect to the natural filtration Ft−1 since the next observation rt is unknown. In DP terms,
the conditional expectation E [V ∗ (T − t,yt)| Ft−1] captures the expected value of (random) next
state given the current state. Accordingly, the gap between its realized value and its expected value,
V ∗ (T − t,yt) − E [V ∗ (T − t,yt)| Ft−1], measures the additional gain from knowing the next
belief state yt. In addition to the term rt − E [rt |Ft−1 ] (= zIRS.V-ZERO

t ), which measures the benefit
from knowing which action will incur a large immediate reward, the ideal penalty also penalizes the
long-term benefit from knowing which action will lead to a favorable belief state.

The penalty function zIRS.V-EMAX
t is obtained from zideal

t by replacing V ∗(T,y) with W TS(T,y),
which is rather tractable. The use of W TS(T,y) , Eθ∼P(y) [T ×maxa µa(θa)] leads to a simple
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expression for its conditional expectation: since θ|Ft−1 is distributed with P(yt−1), we have

E
[
W TS (T − t,yt)

∣∣Ft−1

]
= (T − t)× E

[
max
a

µa(θa)
∣∣∣Ft−1

]
(25)

= (T − t)× Eθ∼P(yt−1)

[
max
a

µa(θa)
]

(26)

= W TS (T − t,yt−1) . (27)

In the associated inner problem, the payoff that the DM earns at time t is

rt(a1:t)− zIRS.V-EMAX
t (a1:t) (28)

= µ̂at,nt−1(a1:t−1,at) −W
TS (T − t,yt(a1:t)) +W TS (T − t,yt−1(a1:t−1)) (29)

= µ̄at(yt−1(a1:t−1))−W TS (T − t,yt(a1:t)) +W TS (T − t,yt−1(a1:t−1)) , (30)

which is completely determined by the prior belief yt−1 and the posterior belief yt.

We further observe that, given ω, the future belief yt(a1:t, ω) depends only on how many times each
arm has been pulled, irrespective of the sequence of the pulls. For example, consider two action
sequences aA1:t = (1, 1, 2, 1, 2) and aB1:t = (2, 1, 1, 2, 1). Even though the order of observations would
differ, in both cases the agent would observe (R1,1, R1,2, R1,3) from arm 1 and (R2,1, R2,2) from arm
2 and end up with the same belief yt(aA1:t, ω) = yt(a

B
1:t, ω). We may conclude from this observation

that a belief state can be sufficiently parameterized with the pull counts n1:K = (n1, . . . , nK) instead
of action sequence a1:t, that is, with yt(n1:K) instead of yt(a1:t).

Based on the observation above, we use the notation of yt(n1:K , ω) to denote the belief as a function
of pull counts n1:K , (n1, . . . , nK) ∈ ZK . Given the pull counts n1:K , we define the payoff of
pulling an arm a one more time after pulling each arm n1, . . . , nK times: with t =

∑K
a=1 na,

rz(n1:K , a, ω) , µ̄a([yt(n1:K , ω)]a)−W TS (T − t− 1,yt+1(n1:K + ea, ω)) (31)

+W TS (T − t− 1,yt(n1:K , ω))

where ea ∈ NK0 is a basis vector such that ath component is one and the others are zero. Note that we
used the fact that E

[
W TS (T − t,yt)

∣∣Ft−1

]
= W TS (T − t,yt−1).

Consider a subproblem of (∗) such that maximizes the total payoff given the number of pulls n1:K

across arm: with t =
∑K
a=1 na,

M(n1:K , ω) , max
a1:t∈At

{
t∑

s=1

rs(a1:s, ω)− zIRS.V-EMAX
s (a1:s, ω) :

t∑
s=1

1{as = a} = na,∀a

}
.

(32)
Then, it should satisfy the Bellman equation

M(n1:K , ω) = max
a∈A:na≥1

{M(n1:K − ea, ω) + rz(n1:K − ea, a, ω)} . (33)

For all feasible counts n1:K ’s such that
∑K
a=1 na ≤ T , we can computeM(n1:K , ω)’s by sequentially

solving (33) in an appropriate order. After all, we can obtain the maximal value to original inner
problem (∗) by evaluating

max
n1:K∈NT

{M(n1:K , ω)} (34)

where NT , {(n1, . . . , nK) ∈ NK0 :
∑K
a=1 na = T}. The optimal action sequence a∗1:T can be

elicited by tracking M(n1:K , ω)’s backward.
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Algorithm 3: IRS.V-EMAX policy
Function IRS.V-EMax(T,y)

1 Sample an outcome ω̃ ∼ I(T,y)

2 ỹa,0 ← ya, ỹa,n ← Ua(ỹa,n−1, R̃a,n), ∀n ∈ [T ], ∀a ∈ [K]
3 for each n1:K ∈ N≤T do
4 Γ̃[n1:K ]← Eθ∼P(ỹ(n1:K)) [maxa µa(θa)]

end
5 for each n1:K ∈ N<T do
6 r̃z[n1:K , a]← µ̄a(ỹa,na−1) +

(
T −

∑K
a=1 na − 1

)
×
(

Γ̃[n1:K ]− Γ̃[n1:K + ea]
)
, ∀a

end
7 M̃ [0]← 0
8 for each n1:K ∈ N≤T \ {0} in order do
9 M̃ [n1:K ]← maxa:na>0

{
M̃ [n1:K − ea] + r̃z[n1:K − ea, a]

}
10 Ã[n1:K ]← argmaxa:na>0

{
M̃ [n1:K − ea] + r̃z[n1:K − ea, a]

}
end

11 m1:K ← argmaxn1:K∈NT

{
M̃ [n1:K ]

}
12 for t = T, . . . , 1 do
13 ã∗t ← Ã[m1:K ]
14 mã∗t

← mã∗t
− 1

end
15 return ã∗1

Here, ỹ(n1:K) , (ỹ1,n1 , . . . , ỹK,nK ), N≤T , {n1:K ∈ NK0 :
∑
a na ≤ T}, N<T , {n1:K ∈

NK0 :
∑
a na < T}, and in line 8, n1:K iterates over N≤T \ {0} in an order that

∑K
a=1 na is

non-decreasing.

Computing all M(n1:K , ω)’s requires O(KTK) operations since the number of possible belief
states is limited to |N≤T | = O(TK), However, another practical issue is the cost of computing
W TS(T,y) = T × Eθ∼P(y) [maxa µa(θa)] which has to be evaluated O(TK) times in total. There
is no simple closed form expression in general, and it should be evaluated with numerical integration
or sampling.

16



C Proofs for §3

Proposition 2 (Mean equivalence). If the penalty function zt is dual feasible, it does not penalize
any non-anticipating policy π ∈ ΠF in expectation, i.e.,

Eπω∼I(y)

[
T∑
t=1

rt(a
π
1:t, ω)− zt(aπ1:t, ω)

]
= Eπω∼I(y)

[
T∑
t=1

rt(a
π
1:t, ω)

]
≡ V (π, T,y). (35)

Proof. We define an appending operator ⊕ that concatenates an element into a vector such that
a1:t ≡ a1:t−1 ⊕ at. When π ∈ ΠF and zt is dual feasible and ω is omitted for brevity, we have

E

[
T∑
t=1

rt(a
π
1:t)− zt(aπ1:t)

]
= E

[
T∑
t=1

rt(a
π
1:t)− E [zt(a

π
1:t)| Ft−1]

]
(36)

= E

[
T∑
t=1

rt(a
π
1:t)− E

[∑
a∈A

zt(a
π
1:t−1 ⊕ a) · 1{aπt = a}

∣∣∣∣∣Ft−1

]]
(37)

= E

 T∑
t=1

rt(aπ1:t)−
∑
a∈A

E
[
zt(a

π
1:t−1 ⊕ a)

∣∣Ft−1

]︸ ︷︷ ︸
=0

·1{aπt = a}




(38)

= E

[
T∑
t=1

rt(a
π
1:t)

]
. (39)

�

C.1 Proof of Theorem 1

Weak duality. Define Gt , Ft ∪ σ(ω) and consider a relaxed policy space ΠG ,
{π : aπt is Gt−1-measurable, ∀t}. Then, we have

V ∗(T,y) , sup
π∈ΠF

E

[
T∑
t=1

rt(a
π
1:t)

]
Prop 2
= sup

π∈ΠF

E

[
T∑
t=1

rt(a
π
1:t)− zt(aπ1:t)

]
(40)

≤ sup
π∈ΠG

E

[
T∑
t=1

rt(a
π
1:t)− zt(aπ1:t)

]
= E

[
max

a1:T∈AT

T∑
t=1

rt(a1:t)− zt(a1:t)

]
(41)

= W z(T,y), (42)

where the inequality holds since ΠF ⊆ ΠG. �

Strong duality. Fix T and y. Let V in
t (a1:t−1, ω) and Qin

t (a1:t−1, a, ω) be, respectively, the value
function and the state-action value (Q-value) function that are associated with the inner problem
(∗) given a particular outcome ω under the ideal penalty (8). With V in

T+1 ≡ 0, we have the Bellman
equation for the inner problem:

Qin
t (a1:t−1, a, ω) , rt(a1:t−1 ⊕ a, ω)− zideal

t (a1:t−1 ⊕ a, ω) + V in
t+1(a1:t−1 ⊕ a, ω), (43)

V in
t (a1:t−1, ω) = max

a∈A

{
Qin
t (a1:t−1, a, ω)

}
. (44)

We argue by induction to show that

V in
t (a1:t−1, ω) = V ∗(T − t+ 1,yt−1(a1:t−1, ω)), (45)

Qin
t (a1:t−1, a, ω) = Q∗(T − t+ 1,yt−1(a1:t−1, ω), a), (46)

for all a1:t−1 ∈ At−1, a ∈ A and t ∈ [T + 1].
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As a terminal case, when t = T + 1, the claim holds trivially, since V in
T+1(a1:T , ω) = 0 =

V ∗(0,yT (a1:T , ω)). Now assume that the claim holds for t + 1: V in
t+1(a1:t, ω) = V ∗(T −

t,yt(a1:t, ω)) for all a1:t ∈ At. For any a1:t−1 ∈ At−1 and a ∈ A, then,

Qin
t (a1:t−1, a, ω) = rt(a1:t−1 ⊕ a, ω)− zideal

t (a1:t−1 ⊕ a, ω) + V in
t+1(a1:t−1 ⊕ a, ω) (47)

= E [rt(a1:t−1 ⊕ a, ω) + V ∗ (T − t,yt(a1:t−1 ⊕ a, ω))| Ft−1(a1:t−1, ω)] (48)

−V ∗ (T − t,yt(a1:t−1 ⊕ a, ω)) + V in
t+1(a1:t−1 ⊕ a, ω)︸ ︷︷ ︸

=0

(49)

= E [rt(a1:t−1 ⊕ a, ω) + V ∗ (T − t,yt(a1:t−1 ⊕ a, ω))| Ft−1(a1:t−1, ω)] (50)
= Er∼Ra(Pa([yt−1(a1:t−1,ω)]a)) [r + V ∗ (T − t,U(yt−1(a1:t−1, ω), a, r))] (51)

= Q∗(T − t,yt−1(a1:t−1, ω), a), (52)

where the last equality follows from the original Bellman equation (3). Consequently,

V in
t (a1:t−1, ω) = max

a∈A

{
Qin
t (a1:t−1, a, ω)

}
(53)

= max
a∈A
{Q∗(T − t,yt−1(a1:t−1, ω), a)} (54)

= V ∗(T − t,yt−1(a1:t−1, ω)). (55)

Therefore the claim holds for all t = 1, . . . , T . In particular for t = 1, we have

V in
1 (∅, ω) = V ∗(T,y), Qin

1 (∅, a, ω) = Q∗(T,y, a), ∀ω. (56)

Note that the maximal value of the inner problem does not depend on ω, which is deterministic with
respect to the randomness of ω. As its expected value, W ideal(T,y) = V ∗(T,y). �

C.2 Proof of Remark 1

We proceed on the proof of strong duality. The policy πideal solves the same inner problem with
respect to a randomly sampled outcome ω̃. When the remaining time is T and the current belief is y,
it takes an action with the largest Q-value: together with (56), it yields

aπ
ideal

= argmax
a

Qin
1 (∅, a, ω̃) = argmax

a
Q∗(T,y, a). (57)

Therefore, at each moment, no matter what ω̃ is chosen, the policy πideal always takes the same
action that Bayesian optimal policy would take. Although there might be some ambiguity regarding
tie-breaking in argmax, it does not affect the expected performance. Therefore, V (πideal, T,y) =
V ∗(T,y). �

C.3 Proof of Remark 2

First observe that E [rt(a1:t, ω)| Ft−1] = µ̂at,nt−1(a1:t−1,at)(ω). Also note that

E [E (rt(a1:t, ω)|θ)| Ft−1] = E [µat(θat)| Ft−1] = µ̂at,nt−1(a1:t−1,at)(ω), (58)

and

E [E (rt(a1:t, ω)|µ̂1:K,T−1(ω))| Ft−1] = E [ µ̂at,T−1(ω)| Ft−1] = µ̂at,nt−1(a1:t−1,at)(ω). (59)

Therefore, E
[
zTS
t |Ft−1

]
= E [rt| Ft−1] − E [E(rt|θ)| Ft−1] = 0, and E

[
zIRS.FH
t |Ft−1

]
=

E [rt| Ft−1] − E [E(rt|µ̂1:K,T−1)| Ft−1] = 0. The other penalty functions have a form of
zt = Xt − E [Xt|Ft−1] for some Xt. Therefore, E [zt| Ft−1] = E [Xt − E(Xt|Ft−1)| Ft−1] =
E [Xt −Xt| Ft−1] = 0. �
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D Proofs for §4

D.1 Notes on Regularity

Proposition 3. If E|Ra,n| <∞ for all a,

E|µa(θa)| <∞ and W TS(T,y) <∞. (60)

Proof. By Jensen’s inequality,

E|µa(θa)| = E [|E (Ra,n|θa)|] ≤ E [E ( |Ra,n|| θa)] = E|Ra,n| <∞. (61)

Consequently,

E
[
max
a

µa(θa)
]
≤ E

[
K∑
a=1

|µa(θa)|

]
=

K∑
a=1

E|µa(θa)| <∞. (62)

�

Proposition 4. If E|Ra,n| <∞,

lim
n→∞

µ̂a,n(ω) = lim
n→∞

1

n

n∑
i=1

Ra,i = µa(θa) almost surely, (63)

where µ̂a,n(ω) , E [µa(θa)|Ra,1, . . . , Ra,n].

Proof. Fix a and letHn , σ (Ra,1, . . . , Ra,n). First note that, by the strong law of large numbers,
limn→∞

1
n

∑n
i=1Ra,i = µa(θa) almost surely. Therefore, µa(θa) is measurable with respect to

H∞ ,
⋃
nHn. Also note that µ̂a,n = E (µa(θa)|Hn) is a Doob martingale adapted to Hn. By

Levy’s upward theorem, since µa(θa) ∈ L1 by Proposition 3, µ̂a,n converges to E (µa(θa)|H∞) =
µa(θa) almost surely as n→∞. �

D.2 Proof of Proposition 1

Asymptotic behavior of IRS.FH. Let ω̃ be the sampled outcome used by IRS.FH(T,y). By Propo-
sition 4, we have limn→∞ µ̂a,n(ω̃) = µa(θ̃a) for almost all ω̃. This, together with the assumption
that µi(θi) 6= µj(θj) for i 6= j, since argmaxa µa(θ̃a) is uniquely defined for almost all ω̃, yields

argmax
a

µa(θ̃a) = argmax
a

lim
n→∞

µ̂a,n(ω̃) = lim
n→∞

argmax
a

µ̂a,n(ω̃) a.s. (64)

Since almost-sure convergence guarantees convergence in distribution, for any a,

lim
T→∞

P [IRS.FH(T,y) = a] = lim
T→∞

P
[
argmax

a′
µ̂a′,T−1(ω̃) = a

]
(65)

= P
[
argmax

a′
µa′(θ̃a′) = a

]
(66)

= P [TS(y) = a] . (67)

Note that we are not particularly assuming that IRS.FH(T,y) and TS(y) share the randomness.
The sampled parameters used in TS(y) are not necessarily the ones used in IRS.FH(T,y), but their
distributions are identical since they are drawn from the same prior. �

Asymptotic behavior of IRS.V-ZERO. Let a◦T (ω̃) , IRS.V-ZERO(T,y) in which ω̃ is used, and
let aTS(ω̃) , argmaxa µa(θ̃a). As above, it suffices to show that limT→∞ a◦T (ω̃) = aTS(ω̃) for
almost all ω̃. We now fix ω̃ and omit it from the proof for brevity.

Define
∆ , min

a 6=aTS

∣∣∣µaTS (θ̃aTS )− µa(θ̃a)
∣∣∣ and M , sup

a∈A,n≥0
|µ̂a,n| . (68)
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We have 0 < ∆ < 2M < ∞ almost surely since µi(θ̃i) 6= µj(θ̃j) for i 6= j and limn→∞ µ̂a,n =

µa(θ̃a) <∞ almost surely for all a. In addition, there exists N ∈ N such that∣∣∣µ̂a,n − µa(θ̃a)
∣∣∣ < ∆

4
, ∀n ≥ N, ∀a ∈ A. (69)

For such N , we have

inf
n≥N

µ̂aTS,n ≥ sup
n≥N

µ̂a,n +
∆

2
, ∀a 6= aTS. (70)

Note that aTS, ∆, M , and N are determined only by ω̃, independently of T .

To argue by contradiction, suppose that a◦T 6= aTS for some large T such that T ≥ 2N + 8MN
∆ + 2.

Define the optimal allocation to the inner problem of IRS.V-ZERO for such T :

n◦1:K , argmax
n1:K∈NT

{
K∑
a=1

na∑
s=1

µ̂a,s−1

}
, (71)

where the ties are broken arbitrarily in argmax{}. Policy πIRS.V-ZERO’s selection rule,
a◦T = argmaxa n

◦(a), implies that n◦(a◦T ) ≥ bT2 c (> N ).

Case 1: If n◦(aTS) ≥ N , consider a deviation of n◦1:K that plays aTS one more time but plays a◦T one
less time: define n†1:K such that n†(aTS) = n◦(aTS) + 1, n†(a◦T ) = n◦(a◦T )− 1 and n†(a) = n◦(a)
for a /∈ {aTS, a◦T }. Then, since n◦(aTS) ≥ N and n◦(a◦T ) ≥ N ,

K∑
a=1

n†(a)∑
s=1

µ̂a,s−1 −
K∑
a=1

n◦(a)∑
s=1

µ̂a,s−1 = µ̂aTS,n◦(aTS) − µ̂a◦T ,n◦(a◦T )−1 ≥
∆

2
> 0, (72)

where the inequality follows from (70). The allocation n†1:K achieves a strictly better payoff than
n◦1:K , which contradicts the assumption that n◦1:K is an optimal allocation.

Case 2: If n◦(aTS) < N , consider a deviation n†1:K such that

n†(a) ,

 n◦(aTS) + (n◦(a◦T )−N) if a = aTS,
N if a = a◦T ,
n◦(a) otherwise.

(73)

By making this allocation, we have

K∑
a=1

n†(a)∑
s=1

µ̂a,s−1 −
K∑
a=1

n◦(a)∑
s=1

µ̂a,s−1 (74)

=

n◦(aTS)+(n◦(a◦T )−N)∑
s=n◦(aTS)+1

µ̂aTS,s−1 −
n◦(a◦T )∑
s=N+1

µ̂a◦T ,s−1 (75)

≥ −(N − n◦(aTS)) · 2M +

n◦(a◦T )∑
s=N+1

µ̂aTS,s−1 −
n◦(a◦T )∑
s=N+1

µ̂a◦T ,s−1 (76)

≥ −(N − n◦(aTS)) · 2M + (n◦(a◦T )−N) · ∆

2
(77)

≥ (n◦(a◦T )−N) · ∆

2
− 2NM. (78)

Since T ≥ 2N + 8MN
∆ + 2 and n◦(a◦T ) ≥ bT2 c, the last term is strictly positive, which means that

n†1:K is strictly better than n◦1:K , a contradiction.

We’ve shown that for almost all ω̃, when T is large enough, the optimal allocation n◦1:K must allocate
more than a half of the pulls on the arm aTS = argmaxa µa(θ̃a). Therefore, limT→∞ a◦T (ω̃) =
aTS(ω̃) for almost all ω̃, which completes the proof.
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D.3 Proof of Theorem 2

D.3.1 Proof of “W TS(T,y) ≥W IRS.FH(T,y)”

Proof. It immediately follows from Jensen’s inequality: since max(. . .) is a convex function,

W TS(T,y) = T×E
[
max
a

µa(θa)
]
≥ T×E

[
max
a

E (µa(θa)| µ̂1:K,T−1)
]

= W IRS.FH(T,y). (79)

�

D.3.2 Proof of “W IRS.FH(T,y) ≥W IRS.V-ZERO(T,y)”

Lemma 1 (Variant of Jensen’s inequality). Suppose that ϕ : R 7→ R is an increasing (deterministic)
function. Then, for any real-valued random variable X such that E|X| <∞,

E [max {X + ϕ(X), 0}] ≥ E [max {E(X) + ϕ(X), 0}] . (80)

Proof. Define µ , E(X) and fx(t) , max{t+ ϕ(x), 0}. Since fx(·) is a convex function for each x ∈ R,

fx(t) ≥ fx(µ) + (t− µ) · f ′x(µ) = max{µ+ ϕ(x), 0}+ (t− µ) · 1{µ+ ϕ(x) ≥ 0}, ∀t, ∀x. (81)

By setting t = x, we get

max{x+ ϕ(x), 0} = fx(x) ≥ max{µ+ ϕ(x), 0}+ (x− µ) · 1{µ+ ϕ(x) ≥ 0}, ∀x. (82)

Note that, since 1{µ + ϕ(x) ≥ 0} is increasing in x, (i) for any x ≥ µ, (x − µ) ≥ 0 and 1{µ + ϕ(x)} ≥
1{µ+ ϕ(µ)}, and (ii) for any x < µ, (x− µ) < 0 and 1{µ+ ϕ(x)} ≤ 1{µ+ ϕ(µ)}. Therefore,

(x− µ) · 1{µ+ ϕ(x) ≥ 0} ≥ (x− µ) · 1{µ+ ϕ(µ) ≥ 0}, ∀x ∈ R. (83)

Combining this with (82), we get

max{x+ ϕ(x), 0} ≥ max{µ+ ϕ(x), 0}+ (x− µ) · 1{µ+ ϕ(µ) ≥ 0}, ∀x ∈ R. (84)

For random variable X , by taking expectation, we get

E [max{X + ϕ(X), 0}] ≥ E [max{µ+ ϕ(X), 0}+ (X − µ) · 1{µ+ ϕ(µ) ≥ 0}] (85)
≥ E [max{µ+ ϕ(X), 0}] + E(X − µ) · 1{µ+ ϕ(µ) ≥ 0} (86)
= E [max{µ+ ϕ(X), 0}] . (87)

�

Corollary 1. On a probability space (Ω,F ,P), let ϕ(x, ω) : R × Ω 7→ R be a function such that
(i) the mapping x 7→ ϕ(x, ω) is increasing for each ω ∈ Ω and (ii) for some sub-σ-field H ⊆ F ,
the mapping ω 7→ ϕ(x, ω) isH-measurable for each x ∈ R (i.e., ϕ(·, ω) is a deterministic function
conditioned onH). Then

E [max {X(ω) + ϕ(X(ω), ω), 0}] ≥ E [max {E(X|H)(ω) + ϕ(X(ω), ω), 0}] . (88)

Proof. Define
µ(ω) , E(X|H)(ω), I(ω) , 1{µ(ω) + ϕ(µ(ω), ω) ≥ 0}. (89)

By (84), we have

max{x+ϕ(x, ω), 0} ≥ max{µ(ω) +ϕ(x, ω), 0}+ (x−µ(ω)) · I(ω), ∀x ∈ R, for each ω ∈ Ω. (90)

Since µ(ω) and I(ω) areH-measurable,

E [max{X(ω) + ϕ(X(ω), ω), 0}] ≥ E [max{µ(ω) + ϕ(X(ω), ω), 0}+ (X(ω)− µ(ω)) · I(ω)] (91)
= E [E (max{µ(ω) + ϕ(X(ω), ω), 0}+ (X(ω)− µ(ω)) · I(ω)|H)]

(92)

= E [max{µ(ω) + ϕ(X(ω), ω), 0}] + E [E ( (X(ω)− µ(ω)) · I(ω)|H)]
(93)

= E [max{E (X|H) (ω) + ϕ(X(ω), ω), 0}] (94)

+ E

(E(X|H)(ω)− µ(ω))︸ ︷︷ ︸
=0

·I(ω)

 (95)

= E [max{E (X|H) (ω) + ϕ(X(ω), ω), 0}] . (96)

�
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Corollary 2. On a probability space (Ω,F ,P), let (C0, . . . , CT ) be H-measurable real-valued
random variables for some sub-σ-fieldH ⊆ F (i.e., Ci’s are constants conditioned onH). Then

E
[

max
0≤i≤T

{
(i− n)+ ×X + Ci

}]
≥ E

[
max

0≤i≤T

{
E (X|H) · 1{i ≥ n+ 1}+ (i− n− 1)+ ×X + Ci

}]
(97)

for any n = 0, 1, . . . , T .

Proof. When n = T , both sides become E [max0≤i≤T {Ci}], which makes the claim true. Fix n < T and
define

ϕ(x, ω) , max
n+1≤i≤T

{(i− n− 1)× x+ Ci(ω)} − max
0≤i≤n

{Ci(ω)} . (98)

Note that ϕ(x, ω) satisfies the conditions in Corollary 1. By Corollary 1,

E
[

max
0≤i≤T

{
(i− n)+ ×X + Ci

}]
(99)

= E
[
max

{
max

n+1≤i≤T
{(i− n)×X + Ci} , max

0≤i≤n
Ci

}]
(100)

= E
[
max

{
X + max

n+1≤i≤T
{(i− n− 1)×X + Ci} , max

0≤i≤n
Ci

}]
(101)

= E

max

X(ω) + max
n+1≤i≤T

{(i− n− 1)×X(ω) + Ci(ω)} − max
0≤i≤n

Ci(ω)︸ ︷︷ ︸
=ϕ(X(ω),ω)

, 0

+ max
0≤i≤n

Ci(ω)


(102)

≥ E
[
max

{
E (X|H) (ω) + max

n+1≤i≤T
{(i− n− 1)×X(ω) + Ci(ω)} − max

0≤i≤n
Ci(ω), 0

}
+ max

0≤i≤n
Ci(ω)

]
(103)

= E
[
max

{
max

n+1≤i≤T
{E (X|H) + (i− n− 1)×X + Ci} , max

0≤i≤n
Ci

}]
(104)

= E
[

max
0≤i≤T

{
E (X|H) · 1{i ≥ n+ 1}+ (i− n− 1)+ ×X + Ci

}]
. (105)

�

Proof of “W IRS.FH(T,y) ≥W IRS.V-ZERO(T,y).” Define

NT ,

{
n1:K ∈ NK0 :

K∑
a=1

na = T

}
and Sa(na) ,

na∑
i=1

µ̂a,i−1. (106)

What we want to show is

W IRS.FH ≡ E
[
T ×max

a
{µ̂a,T−1}

]
= E

[
max

n1:K∈NT

{
K∑
a=1

na × µ̂a,T−1

}]
(107)

≥ E

[
max

n1:K∈NT

{
K∑
a=1

Sa(na)

}]
≡W IRS.V-ZERO. (108)

Further define

Uk,n , E

[
max

n1:K∈NT

{(
k−1∑
a=1

Sa(na)

)
+
(
Sk(nk ∧ n) + (nk − n)+ × µ̂a,T−1

)
+

(
K∑

a=k+1

na × µ̂a,T−1

)}]
,

(109)
where a ∧ b , min(a, b). Observe that W IRS.FH = U1,0, W IRS.V-ZERO = UK,T , and Uk+1,0 = Uk,T . Therefore,
it suffices to show that

Uk,n ≥ Uk,n+1, ∀k = 1, . . . ,K, ∀n = 0, . . . , T − 1. (110)

Fix k and n. Define a sub-σ-field

H , σ ({Ra,s}a=k,1≤s≤n ∪ {Ra,s}a6=k,1≤s≤T−1) . (111)
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For each i = 0, . . . , T , define

Ci , max

{(
k−1∑
a=1

Sa(na)

)
+ Sk(i ∧ n) +

(
K∑

a=k+1

na × µ̂a,T−1

)
: n1:K ∈ NT , nk = i

}
. (112)

Note that Ci’s areH-measurable and

Uk,n = E
[

max
0≤i≤T

{
(i− n)+ × µ̂k,T−1 + Ci

}]
. (113)

With X , µ̂a,T−1,

Uk,n = E
[

max
0≤i≤T

{
(i− n)+ ×X + Ci

}]
(114)

Corollary 2
≥ E

[
max

0≤i≤T

{
E (X|H) · 1{i ≥ n+ 1}+ (i− n− 1)+ ×X + Ci

}]
(115)

(a)
= E

[
max

0≤i≤T

{
µ̂k,n · 1{i ≥ n+ 1}+ (i− n− 1)+ × µ̂a,T−1 + Ci

}]
(116)

(b)
= Uk,n+1. (117)

Equation (a) holds since E (X|H) = E (µ̂k,T−1|H) = E (µ̂k,T−1|Rk,1, . . . , Rk,n) = µ̂a,n, and equation
(b) holds since Sk(i ∧ n) + µ̂k,n · 1{i ≥ n + 1} =

∑n
s=1 µ̂k,s−1 · 1{i ≥ s} + µ̂k,n · 1{i ≥ n + 1} =∑n+1

s=1 µ̂k,s−1 · 1{i ≥ s} = Sk(i ∧ (n+ 1)). �

D.4 Proof of Theorem 3

As in §C.1, we define the Q-values of the inner problem given a particular outcome ω, a penalty
function zt(·), a time horizon T , and a prior belief y.

Qz,int (a1:t−1, a, ω;T,y) = rt(a1:t−1 ⊕ a, ω)− zt(a1:t−1 ⊕ a, ω;T,y) (118)

+ V z,int+1 (a1:t−1 ⊕ a, ω;T,y),

V z,int (a1:t−1, ω;T,y) = max
a∈A

{
Qz,int (a1:t−1, a, ω;T,y)

}
, (119)

with V z,inT+1(·, ω;T,y) ≡ 0. Additionally define the total payoff of an action sequence and the
hindsight best action under penalties:

Sz(a1:T , ω;T,y) ,
T∑
t=1

rt(a1:t, ω)− zt(a1:t, ω;T,y), (120)

az,∗t (a1:t−1, ω;T,y) , argmax
a∈A

{
Qz,int (a1:t−1, a, ω;T,y)

}
. (121)

We have V z,in1 (∅, ω;T,y) = maxa1:T∈AT Sz(a1:T , ω;T,y).
Proposition 5 (Suboptimality decomposition). Given a non-anticipating policy π ∈ ΠF and a
dual-feasible penalty function zt,

W z(T,y)− V (π, T,y) = E
[
max
a1:T

{Sz(a1:T , ω;T,y)} − Sz(aπ1:T , ω;T,y)

]
(122)

= E

[
T∑
t=1

max
a

{
Qz,int (aπ1:t−1, a, ω;T,y)

}
−Qz,int (aπ1:t−1, a

π
t , ω;T,y)

]
,

(123)

where the expectation is taken with respect to the randomness of outcome ω and the randomness of
policy π.

Proof. The first equality immediately follows from the definition of W z and mean equivalence
(Proposition 2). Now fix ω, T , and y. Consider the (pathwise) suboptimality of the action sequence
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aπ1:T compared to the clairvoyant optimal solution. It can be decomposed into the instantaneous
suboptimalty incurred by the individual action at each time:

max
a1:T

{Sz(a1:T )} − Sz(aπ1:T ) =

T∑
t=1

max
a

{
Qz,int (a1:t−1, a)

}
−Qz,int (aπ1:t−1, a

π
t ). (124)

By taking expectation, we obtain the second equality. �

Define a shift operatorMt : At × Ω 7→ Ω,

Mt(a1:t, ω) , (Ra,na : ∀na > nt(a1:t, a),∀a ∈ A) . (125)

The shifted outcomeMt−1(a1:t−1, ω) encodes the remaining reward realizations after taking a1:t−1.

Remark 4 (Recursive structure of remaining uncertainties). Conditioned on Ft−1(a1:t−1, ω;T,y),
the remaining uncertainties are sufficiently described by yt−1(a1:t−1, ω;y), i.e.,

Mt−1(a1:t−1, ω)| Ft−1(a1:t−1, ω;T,y) ∼ I(yt−1(a1:t−1, ω;y)). (126)

Remark 5 (Recursive structure of IRS penalties). Each of penalty functions (8)–(12) has the following
form:

zt(a1:t, ω;T,y) = ϕz(Mt−1(a1:t−1, ω), T − t+ 1,yt−1(a1:t−1, ω;y)), (127)

for some function ϕz : Ω× N× Y 7→ R, i.e., the penalty at each time is completely determined by
the remaining rewardsMt−1(a1:t−1, ω), the remaining time horizon T − t+ 1, and the prior belief
yt−1(a1:t−1, ω) at that moment.

Remark 4 immediately follows from Bayes’ rule, and Remark 5 can be easily verified. We observe
the recursive structure of the sequential inner problems that the DM solves throughout the decision-
making process, which can be characterized by the following property.

Proposition 6 (Generalized posterior sampling). For each of penalty functions (8)–(12), the IRS
policy πz is randomized in such a way that it takes an action a with the probability that the action a
is indeed the best action az,∗t at that moment, i.e.,

P
[
aπ

z

t = a
∣∣∣Ft−1

]
= P

[
az,∗t = a

∣∣Ft−1

]
, ∀a, ∀t. (128)

The source of uncertainty in the LHS is the randomness of the policy (embedded in ω̃) and that in the
RHS is the randomness of nature (embedded in ω). We let az,∗t abbreviate az,∗t (aπ

z

1:t−1, ω;T,y) as
defined in (121) and Ft−1 abbreviate Ft−1(aπ

z

1:t−1, ω;T,y). Here we assume that the tie-breaking
rule in argmax of (121) is identical to the one used when πz solves the inner problem.

Proof. Fix t, a1:t−1 and ω. First, az,∗t is the best action that maximizes the payoff in the remaining periods:

az,∗t (a1:t−1, ω;T,y) = argmax
a′t

{
max
a′
t+1:T

T∑
s=t

rs(a1:t−1 ⊕ a′t:s, ω)− zs(a1:t−1 ⊕ a′t:s, ω;T,y)

}
. (129)

By Remark 5, for any s ∈ [t, T ],

zs(a1:t−1 ⊕ a′t:s, ω;T,y) (130)

= ϕz(Ms−1(a1:t−1 ⊕ a′t:s−1, ω), T − s+ 1,ys−1(a1:t−1 ⊕ a′t:s−1, ω;y)) (131)

= ϕz(Ms−t(a
′
t:s−1,Mt−1(a1:t−1, ω)), (T − t+ 1)− (s− t),ys−t(a′t:s−1,Mt−1(a1:t−1, ω);yt−1(a1:t−1, ω;y))

(132)

= zs−t+1(a′t:s;Mt−1(a1:t−1, ω), T − t+ 1,yt−1(a1:t−1, ω;y)). (133)

For rewards, similarly, we have rs(a1:t−1 ⊕ a′t:s, ω) = rs−t+1(a′t:s,Mt−1(a1:t−1, ω)). Therefore, (130) is
reformulated as

az,∗t = argmax
a′t

{
max
a′
t+1:T

T∑
s=t

rs−t+1(a′t:s,Mt−1(a1:t−1, ω))− zs−t+1(a′t:s,Mt−1(a1:t−1, ω), T − t+ 1,yt−1(a1:t−1, ω;y))

}
.

(134)
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Next, consider the IRS policy’s action aπ
z

t . It internally solves an instance of the inner problem with the sampled
outcome ω̃ ∼ I(yt−1(a1:t−1, ω;y)), the remaining horizon T − t+ 1, and the prior belief yt−1(a1:t−1, ω;y):

aπ
z

t = argmax
a′1

{
max

a′
2:T−t+1

T−t+1∑
s=1

rs(a
′
1:s, ω̃)− zs(a′1:s, ω̃, T − t+ 1,yt−1(a1:t−1, ω;y))

}
. (135)

Comparing (134) and (135), we observe that they have the identical functional forms, except that
Mt−1(a1:t−1, ω) is replaced with ω̃. Since Mt−1(a1:t−1, ω)|Ft−1 ∼ I(yt−1(a1:t−1, ω;y)) (Remark 4)
and ω̃ ∼ I(yt−1(a1:t−1, ω;y)), it follows that

P [az,∗t (Mt−1(a1:t−1, ω)) = a| Ft−1] = P
[
aπ

z

t (ω̃) = a
∣∣∣Ft−1

]
. (136)

�

Proof sketch of Theorem 3. For each of penalty functions zTS
t , zIRS.FH

t , and zIRS.V-ZERO
t , we construct

a confidence interval process {(La,t, Ua,t)}a∈A,t∈[T ] such that each of the (La,t, Ua,t)’s satisfies the
following conditions: (i) it is Ft−1-measurable and (ii) it regulates the suboptimality of action a at
time t; more specifically, (ii) means that the following holds with a high probability 1− δ:

Qz,int (a1:t−1, a
z,∗
t )−Qz,int (a1:t−1, at) ≤ Uaz,∗t ,t − Lat,t, ∀at ∈ A. (∗∗)

By Proposition 5,

W z(T,y)− V (πz, T,y) (137)

= E

[
T∑
t=1

Qz,int (aπ1:t−1, a
z,∗
t )−Qz,int (aπ1:t−1, a

π
t )

]
(138)

≤ E

[
T∑
t=1

C · Pt−1[(∗∗) fails] + Et−1

[
Qz,int (aπ1:t−1, a

z,∗
t )−Qz,int (aπ1:t−1, a

π
t )
∣∣∣ (∗∗) holds

]]
(139)

≤ E

[
T∑
t=1

Cδ + Et−1

[
Uaz,∗t ,t − Laπt ,t

]]
(140)

= TCδ + E

[
T∑
t=1

Uaπt ,t − Laπt ,t

]
, (141)

where C is an almost-sure upper bound on instantaneous suboptimality, Pt−1[·] , P[·|Ft−1], and
Et−1[·] , E[·|Ft−1]. The last equality follows from

Et−1

[
Uaz,∗t ,t

]
=

K∑
a=1

Ua,t×Pt−1

[
az,∗t = a

]
=

K∑
a=1

Ua,t×Pt−1 [aπt = a] = Et−1

[
Uaπt ,t

]
, (142)

by the predictability of Ua,t with respect to F and Proposition 6. Note that (141) accumulates
Uaπt ,t − Laπt ,t over t = 1, . . . , T , each of which is the length of the confidence interval of the action
aπt taken by the policy at each time. We will show that, whenever the policy plays an arm a, the
confidence interval of that arm shrinks, and therefore the cumulative suboptimality cannot grow too
fast.

Some facts about the Beta-Bernoulli MAB. From now on, we restrict our attention to a Beta-
Bernoulli MAB in which θa ∼ Beta(αa, βa) and Ra,n ∼ Bernoulli(θa). Recall that after the DM
observes the first n reward realizations, the Bayesian updating yields

θa|(Ra,1, . . . , Ra,n) ∼ Beta

(
αa +

n∑
s=1

Ra,n, βa + n−
n∑
s=1

Ra,n

)
, µ̂a,n =

αa +
∑n
s=1Ra,s

αa + βa + n
.

(143)
Note that {µ̂a,n}n≥0 is a martingale that starts from µ̂a,0 = αa

αa+βa
and converges to limn→∞ µ̂a,n =

θa. Roughly speaking, the (unconditional) distribution of µ̂a,n, starting from a point mass αa
αa+βa

,
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diffuses toward Beta(αa, βa), which is the prior distribution5 of θa. In the following lemma, we
characterize the distribution of µ̂a,n more formally.

Lemma 2. The future Bayesian estimate µ̂a,n is n
4(αa+βa)(αa+βa+n) -sub-Gaussian, i.e.,

E [exp (λ(µ̂a,n − E[µ̂a,n]))] ≤ exp

(
λ2

2
× n

4(αa + βa)(αa + βa + n)

)
, ∀λ ∈ R. (144)

Proof. Since (i) E[µ̂a,n] = µ̂a,0 = αa
αa+βa

, (ii) Ra,n’s are i.i.d. conditioned on θa, (iii) Bernoulli(θa) is
1
4

-sub-Gaussian (for any θa), and (iv) Beta(α, β) is 1
4(α+β+1)

-sub-Gaussian [16], it follows that, for any λ ∈ R,

E [exp (λ(µ̂a,n − µ̂a,0))] (145)

= E

[
exp

(
λ

αa + βa + n
×

(
(αa +

n∑
s=1

Ra,s)− (αa + βa + n)µ̂a,0

))]
(146)

(i)
= E

[
exp

(
λ

αa + βa + n
×

(
n∑
s=1

(Ra,s − θa) + n · (θa − µ̂a,0)

))]
(147)

= E

[
E

{
exp

(
λ

αa + βa + n
×

n∑
s=1

(Ra,s − θa)

)∣∣∣∣∣ θa
}
× exp

(
λ

αa + βa + n
× n · (θa − µ̂a,0)

)]
(148)

(ii)
= E

[
E
{

exp

(
λ

αa + βa + n
× (Ra,1 − θa)

)∣∣∣∣ θa}n × exp

(
λ

αa + βa + n
× n · (θa − µ̂a,0)

)]
(149)

(iii)
≤ E

[{
exp

(
λ2

2(αa + βa + n)2
× 1

4

)}n
× exp

(
λ

αa + βa + n
× n · (θa − µ̂a,0)

)]
(150)

= exp

(
λ2

2
× n

4(αa + βa + n)2

)
× E

[
exp

(
λn

αa + βa + n
× (θa − µ̂a,0)

)]
(151)

(iv)
≤ exp

(
λ2

2
× n

4(αa + βa + n)2

)
× exp

(
λ2n2

2(αa + βa + n)2
× 1

4(αa + βa + 1)

)
(152)

≤ exp

(
λ2

2
× n

4(αa + βa + n)2

)
× exp

(
λ2n2

2(αa + βa + n)2
× 1

4(αa + βa)

)
(153)

= exp

(
λ2

2
× n(αa + βa) + n2

4(αa + βa + n)2(αa + βa)

)
= exp

(
λ2

2
× n

4(αa + βa + n)(αa + βa)

)
. (154)

�

(1) Suboptimality analysis of TS (20). Define

∆a,t ,

√
log T

nπt−1(a)
, Ua,t , min

{
µ̂a,nπt−1(a)

+ ∆a,t, 1
}
, La,t , max

{
µ̂a,nπt−1(a)

−∆a,t, 0
}
,

(155)
where nπt−1(a) , nt−1(aπ1:t−1, a) represents how many times the policy π has pulled an arm a before time t.
The confidence interval (La,t, Ua,t) constructs the high probability lower/upper bounds on µa(θa) (= θa) at time

t and it is Ft−1-measurable. Conditioned on Ft−1, µa(θa) is distributed with Beta(αa +
∑nπt−1(a)

s=1 Ra,s, βa +

nπt−1(a)−
∑nπt−1(a)

s=1 Ra,s), which is 1
4(αa+βa+n

π
t−1(a)+1)

-sub-Gaussian. By Chernoff’s inequality,

Pt−1 [µa(θa) ≥ Ua,t] = Pt−1

[
µa(θa)− µ̂a,nπt−1(a)

≥ ∆a,t

]
(156)

≤ exp

(
−

∆2
a,t

2×
(
4(αa + βa + nπt−1(a) + 1)

)−1

)
(157)

≤ exp

(
−2nπt−1(a)× log T

nπt−1(a)

)
=

1

T 2
. (158)

5 Conditioned on θa, {µ̂a,n}n≥0 is no longer a martingale and the distribution of µ̂a,n starts from a point
mass αa

αa+βa
, diffuses for a while, and ends up at a point mass θa. With the randomness of θa, {µ̂a,n}n≥0 is a

martingale and the distribution of µ̂a,n gets wider as n increases.
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Similarly, we have Pt−1 [µa(θa) ≤ La,t] ≤ 1
T2 . We define an event E in which (La,t, Ua,t) is indeed a valid

confidence interval for every arm a at every time t:

E , {µa(θa) ∈ (La,t, Ua,t) , ∀a, ∀t} . (159)
By the above concentration inequalities, the sequence of confidence intervals contains the true mean µa(θa)
with a very high probability:

P [Ec] ≤ E

[
K∑
a=1

T∑
t=1

Pt−1 [µa(θa) ≥ Ua,t] + Pt−1 [µa(θa) ≤ La,t]

]
≤ 2K

T
. (160)

With zTS
t , the Q-value of the inner problem is

Qz,int (a1:t−1, at) = µat(θat) + (T − t)× µa∗t (θa∗t ). (161)

Given the event E , in which µa(θa) ∈ (La,t, Ua,t) for all a, we have

Qz,int (a1:t−1, a
∗
t )−Qz,int (a1:t−1, at) = µa∗t (θa∗t )− µat(θat) ≤ Ua∗t ,t − Lat,t. (162)

As outlined earlier, the total suboptimality of πTS is limited by

W TS(T,y)−V (πTS, T,y) ≤ T×P [Ec]+E

[
T∑
t=1

Uaπt ,t − Laπt ,t

]
≤ 2K+E

[
K∑
a=1

T∑
t=1

min(1, 2∆a,t) · 1{aπt = a}

]
.

(163)
For each arm a = 1, . . . ,K,
T∑
t=1

min(1, 2∆a,t)·1{aπt = a} ≤ 1+

nπT (a)∑
n=2

2

√
log T

n− 1
≤ 1+2

√
log T×

∫ nπT (a)

x=0

dx√
x
≤ 1+4

√
log T×

√
nπT (a).

(164)
By the Cauchy–Schwartz inequality and since

∑K
a=1 n

π
T (a) = T ,

K∑
a=1

(
1 + 4

√
log T ×

√
nπT (a)

)
≤ K + 4

√
log T ×

√√√√K

K∑
a=1

nπT (a) = K + 4
√

log T ×
√
KT. (165)

Combining all the results, we obtain

W TS(T,y)− V (πTS, T,y) ≤ 3K + 4
√

log T ×
√
KT. (166)

�

(2) Suboptimality analysis of IRS.FH (21). Note that zIRS.FH
t yields

Qz,int (a1:t−1, a
∗
t )−Qz,int (a1:t−1, at) = µ̂a∗t ,nπt−1(a

∗
t )+T−t − µ̂at,nπt−1(at)+T−t. (167)

When t = 1, µ̂a,nπt−1(a)+T−t coincides with µ̂a,T−1. We need to bound µ̂a∗t ,nπt−1(a
∗
t )+T−t instead of µa(θa).

Note that, conditioned on Ft−1, {µ̂a,nπt−1(a)+n
}n≥0 is a martingale whose distribution starts from a point mass

µ̂a,nπt−1(a)
and diffuses toward the prior distribution Beta(αa+

∑nπt−1(a)

s=1 Ra,s, βa+nπt−1(a)−
∑nπt−1(a)

s=1 Ra,s).
For any a and n ≥ 0, by Lemma 2, we have

Et−1

[
exp(λ(µ̂a,nπt−1(a)+n

− µ̂a,nπt−1(a)
))
]
≤ exp

(
λ2

2
× n

4(αa + βa + nπt−1(a))(αa + βa + nπt−1(a) + n)

)
(168)

≤ exp

(
λ2

2
× n

4nπt−1(a)(nπt−1(a) + n)

)
. (169)

With n = T − t, we can conclude that µ̂a∗t ,nπt−1(a
∗
t )+T−t is T−t

4nπt−1(a)(T−t+n
π
t−1(a))

-sub-Gaussian.

Define

∆a,t ,

√
T − t

nπt−1(a) + T − t ×
log T

nπt−1(a)
, Ua,t , min

{
µ̂a,nπt−1(a)

+ ∆a,t, 1
}
, La,t , max

{
µ̂a,nπt−1(a)

−∆a,t, 0
}
.

(170)
By Chernoff’s inequality,

Pt−1

[
µ̂a∗t ,nπt−1(a

∗
t )+T−t ≥ Ua,t

]
= Pt−1

[
µ̂a,T−1 − µ̂a,nπt−1(a)

≥ ∆a,t

]
(171)

≤ exp

− ∆2
a,t

2× T−t
4nπt−1(a)(T−t+n

π
t−1(a))

 = exp (−2 log T ) =
1

T 2
.

(172)
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Similarly, we can show that Pt−1

[
µ̂a∗t ,nπt−1(a

∗
t )+T−t ≤ La,t

]
≤ 1

T2 .

Analogously to the proof of TS, we can show that

W TS(T,y)− V (πTS, T,y) ≤ 2K + E

[
K∑
a=1

T∑
t=1

min(1, 2∆a,t) · 1{aπt = a}

]
. (173)

Since nπt−1(a) ≤ t, we have T−t
nπt−1(a)+T−t

=
(

1 +
nπt−1(a)

T−t

)−1

≤
(

1 +
nπt−1(a)

T−nπt−1(a)

)−1

= 1− nπt−1(a)

T
and

∆a,t ≤

√(
1−

nπt−1(a)

T

)
× log T

nπt−1(a)
=
√

log T×
√

1

nπt−1(a)
− 1

T
≤
√

log T×

(
1√

nπt−1(a)
−
√
nπt−1(a)

2T

)
.

(174)
Consequently, for each a,

T∑
t=1

min(1, 2∆a,t) · 1{aπt = a} ≤ 1 + 2
√

log T ×
nπT (a)∑
n=2

(
1√
n− 1

−
√
n− 1

2T

)
(175)

≤ 1 + 2
√

log T ×
∫ nπT (a)

x=0

(
1√
x
−
√
x

2T

)
(176)

= 1 + 2
√

log T ×
(

2
√
nπT (a)− (nπT (a))3/2

3T

)
. (177)

Note that, since x 7→ x3/2 is a convex function and
∑K
a=1 n

π
T (a) = T ,

K∑
a=1

(nπT (a))3/2 ≥
K∑
a=1

(
T

K

)3/2

=
√
T 3/K. (178)

By the Cauchy–Schwarz inequality, as in TS, we have
∑K
a=1

√
nπT (a) ≤

√
KT . As a result,

W TS(T,y)− V (πTS, T,y) ≤ 2K + E

[
K∑
a=1

1 + 2
√

log T ×
(

2
√
nπT (a)− (nπT (a))3/2

3T

)]
(179)

≤ 3K + 2
√

log T ×
(

2
√
KT − 1

3

√
T/K

)
. (180)

�

(3) Suboptimality analysis of IRS.V-ZERO (22). Consider an optimal allocation n∗ of the inner problem
of IRS.V-ZERO when the remaining time is T . For an arm a on which the optimal solution allocates at least
one pull, i.e., n∗(a) > 0, a policy does not incur suboptimality by pulling the arm a (the arms that n∗(a) > 0
are all optimal and their Q-values tie). A policy incurs suboptimality only when pulling an arm a such that
n∗(a) = 0, in which case we lose mina′:n∗(a′)>0{µ̂a′,n∗(a′)−1} − µ̂a,0 (we lose the last pull of one of the
optimal arms) where the term mina′:n∗(a′)>0{µ̂a′,n∗(a′)−1} is limited by max0≤n≤T−1 µ̂a∗,n for some a∗

such that n∗(a∗) > 0. Extending this argument, at a certain time t, when the remaining time is T − t+ 1, we
have

Qz,int (a1:t−1, a
∗
t )−Qz,int (a1:t−1, at) ≤ max

0≤n≤T−t

{
µ̂a∗t ,nπt−1(a

∗
t )+n

}
− µ̂at,nπt−1(at)

. (181)

We need to regulate max0≤n≤T−t

{
µ̂a∗t ,nπt−1(a

∗
t )+n

}
. As before, we define

∆a,t ,

√
T − t

nπt−1(a) + T − t ×
log T

nπt−1(a)
, Ua,t , min

{
µ̂a,nπt−1(a)

+ ∆a,t, 1
}
, La,t , µ̂a,nπt−1(a)

.

(182)
Note that we take La,t that are different from those in the previous case, but still Ft−1-measurable. Given
that {µ̂a,nπt−1(a)+n

− µ̂a,nπt−1(a)
}n≥0 is a martingale,

{
exp

(
λ(µ̂a,nπt−1(a)+n

− µ̂a,nπt−1(a)
)
)}

n≥0
is a non-

negative supermartingale due to the convexity of exp(·). By Doob’s maximal inequality and Lemma 2, for any
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λ ≥ 0,

Pt−1

[
max

0≤n≤T−t

{
µ̂a,nπt−1(a)+n

}
≥ Ua,t

]
= Pt−1

[
max

0≤n≤T−t

{
µ̂a,nπt−1(a)+n

− µ̂a,nπt−1(a)

}
≥ ∆a,t

]
(183)

≤ Pt−1

[
max

0≤n≤T−t

{
exp

(
λ(µ̂a,nπt−1(a)+n

− µ̂a,nπt−1(a)
)
)}
≥ exp (λ∆a,t)

]
(184)

≤
Et−1

[
exp

(
λ(µ̂a,nπt−1(a)+T−t − µ̂a,nπt−1(a)

)
)]

exp(λ∆a,t)
(185)

≤ exp

(
λ2

2
× T − t

4nπt−1(a)(nπt−1(a) + T − t) − λ∆a,t

)
. (186)

For λ that minimizes the RHS and ∆a,t that is defined above, we have

Pt−1

[
max

0≤n≤T−t

{
µ̂a,nπt−1(a)+n

}
≥ Ua,t

]
≤ exp

(
−2nπt−1(a)(nπt−1(a) + T − t)

T − t ×∆2
a,t

)
=

1

T 2
. (187)

Note that max0≤n≤T−t

{
µ̂a,nπt−1(a)+n

}
≥ La,t ≡ µ̂a,nπt−1(a)

by defintion. We have shown that

P
[
E ,

{
max

0≤n≤T−t

{
µ̂a,nπt−1(a)+n

}
∈ [La,t, Ua,t), ∀a,∀t

}]
≥ 1− K

T
. (188)

Therefore, using the facts derived for TS and IRS.FH, we obtain

W TS(T,y)− V (πTS, T,y) ≤ TP[Ec] + E

[
T∑
t=1

Uaπt ,t − Laπt ,t

]
(189)

≤ K + E

[
K∑
a=1

T∑
t=1

min(1,∆a,t)1{aπt = a}

]
(190)

≤ 2K +
√

log T ×
(

2
√
KT − 1

3

√
T/K

)
. (191)
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