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Abstract

Current deep neural networks (DNNs) can easily overfit to biased training data with
corrupted labels or class imbalance. Sample re-weighting strategy is commonly
used to alleviate this issue by designing a weighting function mapping from training
loss to sample weight, and then iterating between weight recalculating and classifier
updating. Current approaches, however, need manually pre-specify the weighting
function as well as its additional hyper-parameters. It makes them fairly hard to be
generally applied in practice due to the significant variation of proper weighting
schemes relying on the investigated problem and training data. To address this issue,
we propose a method capable of adaptively learning an explicit weighting function
directly from data. The weighting function is an MLP with one hidden layer,
constituting a universal approximator to almost any continuous functions, making
the method able to fit a wide range of weighting functions including those assumed
in conventional research. Guided by a small amount of unbiased meta-data, the
parameters of the weighting function can be finely updated simultaneously with
the learning process of the classifiers. Synthetic and real experiments substantiate
the capability of our method for achieving proper weighting functions in class
imbalance and noisy label cases, fully complying with the common settings in tra-
ditional methods, and more complicated scenarios beyond conventional cases. This
naturally leads to its better accuracy than other state-of-the-art methods. Source
code is available at https://github.com/xjtushujun/meta-weight-net.

1 Introduction

DNNs have recently obtained impressive good performance on various applications due to their
powerful capacity for modeling complex input patterns. However, DNNs can easily overfit to biased
training data1, like those containing corrupted labels [2] or with class imbalance[3], leading to

∗Corresponding author.
1We call the training data biased when they are generated from a joint sample-label distribution deviating

from the distribution of evaluation/test set[1].
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Figure 1: (a)-(b) weight functions set in focal loss and self-paced learning (SPL). (c) Meta-Weighting-
Net architecture. (d)-(f) Meta-Weighting-Net functions learned in class imbalance (imbalanced factor
100), noisy label (40% uniform noise), and real dataset, respectively, by our method.

their poor performance in generalization in such cases. This robust deep learning issue has been
theoretically illustrated in multiple literatures [4, 5, 6, 7, 8, 9].

In practice, however, such biased training data are commonly encountered. For instance, practically
collected training samples always contain corrupted labels [10, 11, 12, 13, 14, 15, 16, 17]. A typical
example is a dataset roughly collected from a crowdsourcing system [18] or search engines [19, 20],
which would possibly yield a large amount of noisy labels. Another popular type of biased training
data is those with class imbalance. Real-world datasets are usually depicted as skewed distributions,
with a long-tailed configuration. A few classes account for most of the data, while most classes are
under-represented. Effective learning with these biased training data, which is regarded to be biased
from evaluation/test ones, is thus an important while challenging issue in machine learning [1, 21].

Sample reweighting approach is a commonly used strategy against this robust learning issue. The main
methodology is to design a weighting function mapping from training loss to sample weight (with
hyper-parameters), and then iterates between calculating weights from current training loss values
and minimizing weighted training loss for classifier updating. There exist two entirely contradictive
ideas for constructing such a loss-weight mapping. One makes the function monotonically increasing
as depicted in Fig. 1(a), i.e., enforce the learning to more emphasize samples with larger loss values
since they are more like to be uncertain hard samples located on the classification boundary. Typical
methods of this category include AdaBoost [22, 23], hard negative mining [24] and focal loss [25].
This sample weighting manner is known to be necessary for class imbalance problems, since it can
prioritize the minority class with relatively higher training losses.

On the contrary, the other methodology sets the weighting function as monotonically decreasing, as
shown in Fig. 1(b), to take samples with smaller loss values as more important ones. The rationality
lies on that these samples are more likely to be high-confident ones with clean labels. Typical methods
include self-paced learning(SPL) [26], iterative reweighting [27, 17] and multiple variants [28, 29, 30].
This weighting strategy has been especially used in noisy label cases, since it inclines to suppress the
effects of samples with extremely large loss values, possibly with corrupted incorrect labels.

Although these sample reweighting methods help improve the robustness of a learning algorithm on
biased training samples, they still have evident deficiencies in practice. On the one hand, current
methods need to manually set a specific form of weighting function based on certain assumptions on
training data. This, however, tends to be infeasible when we know little knowledge underlying data
or the label conditions are too complicated, like the case that the training set is both imbalanced and
noisy. On the other hand, even when we specify certain weighting schemes, like focal loss [25] or
SPL [26], they inevitably involve hyper-parameters, like focusing parameter in the former and age
parameter in the latter, to be manually preset or tuned by cross-validation. This tends to further raise
their application difficulty and reduce their performance stability in real problems.

To alleviate the aforementioned issue, this paper presents an adaptive sample weighting strategy to
automatically learn an explicit weighting function from data. The main idea is to parameterize the
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weighting function as an MLP (multilayer perceptron) network with only one hidden layer (as shown
in Fig. 1(c)), called Meta-Weight-Net, which is theoretically a universal approximator for almost
any continuous function [31], and then use a small unbiased validation set (meta-data) to guide the
training of all its parameters. The explicit form of the weighting function can be finally attained
specifically suitable to the learning task.

In summary, this paper makes the following three-fold contributions:

1) We propose to automatically learn an explicit loss-weight function, parameterized by an MLP from
data in a meta-learning manner. Due to the universal approximation capability of this weight net, it
can finely fit a wide range of weighting functions including those used in conventional research.

2) Experiments verify that the weighting functions learned by our method highly comply with
manually preset weighting manners used in tradition in different training data biases, like class
imbalance and noisy label cases as shown in Fig. 1(d) and 1(e)), respectively. This shows that the
weighting scheme learned by the proposed method inclines to help reveal deeper understanding for
data bias insights, especially in complicated bias cases where the extracted weighting function is with
complex tendencies (as shown in Fig. 1(f)).

3) The insights of why the proposed method works can be well interpreted. Particularly, the updating
equation for Meta-Weight-Net parameters can be explained by that the sample weights of those
samples better complying with the meta-data knowledge will be improved, while those violating such
meta-knowledge will be suppressed. This tallies with our common sense on the problem: we should
reduce the influence of those highly biased ones, while emphasize those unbiased ones.

The paper is organized as follows. Section 2 presents the proposed meta-learning method as well
as the detailed algorithm and analysis of its convergence property. Section 3 discusses related work.
Section 4 demonstrates experimental results and the conclusion is finally made.

2 The Proposed Meta-Weight-Net Learning Method

2.1 The Meta-learning Objective

Consider a classification problem with the training set {xi, yi}Ni=1, where xi denotes the i-th sample,
yi ∈ {0, 1}c is the label vector over c classes, andN is the number of the entire training data. f(x,w)
denotes the classifier, and w denotes its parameters. In current applications, f(x,w) is always set as
a DNN. We thus also adopt DNN, and call it the classifier network for convenience in the following.

Generally, the optimal classifier parameter w∗ can be extracted by minimizing the loss 1
N

∑N
i=1

`(yi, f(xi,w)) calculated on the training set. For notation convenience, we denote that Ltraini (w) =
`(yi, f(xi,w)). In the presence of biased training data, sample re-weighting methods enhance the
robustness of training by imposing weight V(Ltraini (w); Θ) on the i-th sample loss, where V(`; Θ)
denotes the weight net, and Θ represents the parameters contained in it. The optimal parameter w is
calculated by minimizing the following weighted loss:

w∗(Θ) = arg min
w

Ltrain(w; Θ) ,
1

N

N∑
i=1

V(Ltraini (w); Θ)Ltraini (w). (1)

Meta-Weight-Net: Our method aims to automatically learn the hyper-parameters Θ in a meta-
learning manner. To this aim, we formulate V(Li(w); Θ) as a MLP network with only one hidden
layer containing 100 nodes, as shown in Fig. 1(c). We call this weight net as Meta-Weight-Net or
MW-Net for easy reference. Each hidden node is with ReLU activation function, and the output is
with the Sigmoid activation function, to guarantee the output located in the interval of [0, 1]. Albeit
simple, this net is known as a universal approximator for almost any continuous function [31], and
thus can fit a wide range of weighting functions including those used in conventional research.

Meta learning process. The parameters contained in MW-Net can be optimized by using the meta
learning idea [32, 33, 34, 35]. Specifically, assume that we have a small amount unbiased meta-data
set (i.e., with clean labels and balanced data distribution) {x(meta)

i , y
(meta)
i }Mi=1, representing the

meta-knowledge of ground-truth sample-label distribution, where M is the number of meta-samples
and M � N . The optimal parameter Θ∗ can be obtained by minimizing the following meta-loss:
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Figure 2: Main flowchart of the proposed MW-Net Learning algorithm (steps 5-7 in Algorithm 1).

Θ∗ = arg min
Θ

Lmeta(w∗(Θ)) ,
1

M

M∑
i=1

Lmetai (w∗(Θ)), (2)

where Lmetai (w) = `
(
y

(meta)
i , f(x

(meta)
i ,w)

)
is calculated on meta-data.

2.2 The Meta-Weight-Net Learning Method

Calculating the optimal Θ∗ and w∗ require two nested loops of optimization. Here we adopt an
online strategy to update Θ and w through a single optimization loop, respectively, to guarantee the
efficiency of the algorithm.

Formulating learning manner of classifier network. As general network training tricks, we employ
SGD to optimize the training loss (1). Specifically, in each iteration of training, a mini-batch of
training samples {(xi, yi), 1 ≤ i ≤ n} is sampled, where n is the mini-batch size. Then the updating
equation of the classifier network parameter can be formulated by moving the current w(t) along the
descent direction of the objective loss in Eq. (1) on a mini-batch training data:

ŵ(t)(Θ) = w(t) − α 1

n
×

n∑
i=1

V(Ltraini (w(t)); Θ)∇wL
train
i (w)

∣∣∣
w(t)

, (3)

where α is the step size.

Algorithm 1 The MW-Net Learning Algorithm

Input: Training data D, meta-data set D̂, batch size n,m, max iterations T .
Output: Classifier network parameter w(T )

1: Initialize classifier network parameter w(0) and Meta-Weight-Net parameter Θ(0).
2: for t = 0 to T − 1 do
3: {x, y} ← SampleMiniBatch(D, n).
4: {x(meta), y(meta)} ← SampleMiniBatch(D̂,m).
5: Formulate the classifier learning function ŵ(t)(Θ) by Eq. (3).
6: Update Θ(t+1) by Eq. (9).
7: Update w(t+1) by Eq. (5).
8: end for

Updating parameters of Meta-Weight-Net: After receiving the feedback of the classifier network
parameter updating formulation ŵ(t)(Θ) 2from the Eq .(3), the parameter Θ of the Meta-Weight-Net
can then be readily updated guided by Eq. (2), i.e., moving the current parameter Θ(t) along the
objective gradient of Eq. (2) calculated on the meta-data:

Θ(t+1) = Θ(t) − β 1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t)(Θ))

∣∣∣
Θ(t)

, (4)

where β is the step size.

2Notice that Θ here is a variable instead of a quantity, which makes ŵt(Θ) a function of Θ and the gradient
in Eq. (9) be able to be computed.
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Updating parameters of classifier network: Then, the updated Θ(t+1) is employed to ameliorate
the parameter w of the classifier network, i.e.,

w(t+1) = w(t) − α 1

n
×

n∑
i=1

V(Ltraini (w(t)); Θ(t+1))∇wL
train
i (w)

∣∣∣
w(t)

. (5)

The MW-Net Learning algorithm can then be summarized in Algorithm 1, and Fig. 2 illustrates its
main implementation process (steps 5-7). All computations of gradients can be efficiently imple-
mented by automatic differentiation techniques and generalized to any deep learning architectures of
classifier network. The algorithm can be easily implemented using popular deep learning frameworks
like PyTorch [36]. It is easy to see that both the classifier network and the MW-Net gradually
ameliorate their parameters during the learning process based on their values calculated in the last
step, and the weights can thus be updated in a stable manner, as clearly shown in Fig. 6.

2.3 Analysis on the Weighting Scheme of Meta-Weight-Net

The computation of Eq. (9) by backpropagation can be rewritten as3:

Θ(t+1) = Θ(t) +
αβ

n

n∑
j=1

(
1

m

m∑
i=1

Gij

)
∂V(Ltrainj (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

, (6)

where Gij =
∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t)

∂Ltrainj (w)

∂w

∣∣∣
w(t)

. Neglecting the coefficient 1
m

∑m
i=1Gij , it is easy to

see that each term in the sum orients to the ascend gradient of the weight function V(Ltrainj (w(t)); Θ).
1
m

∑m
i=1Gij , the coefficient imposed on the j-th gradient term, represents the similarity between

the gradient of the j-th training sample computed on training loss and the average gradient of the
mini-batch meta data calculated on meta loss. That means if the learning gradient of a training sample
is similar to that of the meta samples, then it will be considered as beneficial for getting right results
and its weight tends to be more possibly increased. Conversely, the weight of the sample inclines to
be suppressed. This understanding is consistent with why well-known MAML works [37, 38, 39].

2.4 Convergence of the MW-Net Learning algorithm

Our algorithm involves optimization of two-level objectives, and therefore we show theoretically that
our method converges to the critical points of both the meta and training loss function under some
mild conditions in Theorem 1 and 2, respectively. The proof is listed in the supplementary material.
Theorem 1. Suppose the loss function ` is Lipschitz smooth with constant L, and V(·) is differential
with a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function
` have ρ-bounded gradients with respect to training/meta data. Let the learning rate αt satisfies αt =
min{1, kT }, for some k > 0, such that k

T < 1, and βt, 1 ≤ t ≤ N is a monotone descent sequence,

β1 = min{ 1
L ,

c
σ
√
T
} for some c > 0, such that σ

√
T
c ≥ L and

∑∞
t=1 βt ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞. Then

the proposed algorithm can achieve E[‖∇G(Θ(t))‖22] ≤ ε in O(1/ε2) steps. More specifically,

min
0≤t≤T

E[‖∇Lmeta(Θ(t))‖22] ≤ O(
C√
T

), (7)

where C is some constant independent of the convergence process, and σ is the variance of drawing
uniformly mini-batch sample at random.
Theorem 2. The condions in Theorem 1 hold, then we have:

lim
t→∞

E[‖∇Ltrain(w(t); Θ(t+1))‖22] = 0. (8)

3 Related Work

Sample Weighting Methods. The idea of reweighting examples can be dated back to dataset
resampling [40, 41] or instance re-weight [42], which pre-evaluates the sample weights as a pre-
processing step by using certain prior knowledge on the task or data. To make the sample weights fit

3Derivation can be found in supplementary materials.
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data more flexibly, more recent researchers focused on pre-designing a weighting function mapping
from training loss to sample weight, and dynamically ameliorate weights during training process
[43, 44]. There are mainly two manners to design the weighting function. One is to make it
monotonically increasing, specifically effective in class imbalance case. Typical methods include the
boosting algorithm (like AdaBoost [22]) and multiple of its variations [45], hard example mining
[24] and focal loss [25], which impose larger weights to ones with larger loss values. On the contrary,
another series of methods specify the weighting function as monotonically decreasing, especially used
in noisy label cases. For example, SPL [26] and its extensions [28, 29], iterative reweighting [27, 17]
and other recent work [46, 30], pay more focus on easy samples with smaller losses. The limitation
of these methods are that they all need to manually pre-specify the form of weighting function as
well as their hyper-parameters, raising their difficulty to be readily used in real applications.

Meta Learning Methods. Inspired by meta-learning developments [47, 48, 49, 37, 50], recently
some methods were proposed to learn an adaptive weighting scheme from data to make the learning
more automatic and reliable. Typical methods along this line include FWL [51], learning to teach
[52, 32] and MentorNet [21] methods, whose weight functions are designed as a Bayesian function
approximator, a DNN with attention mechanism, a bidirectional LSTM network, respectively. Instead
of only taking loss values as inputs as classical methods, the weighting functions they used (i.e.,
the meta-learner), however, are with much more complex forms and required to input complicated
information (like sample features). This makes them not only hard to succeed good properties
possessed by traditional methods, but also to be easily reproduced by general users.

A closely related method, called L2RW [1], adopts a similar meta-learning mechanism compared
with ours. The major difference is that the weights are implicitly learned there, without an explicit
weighting function. This, however, might lead to unstable weighting behavior during training and
unavailability for generalization. In contrast, with the explicit yet simple Meta-Weight-Net, our
method can learn the weight in a more stable way, as shown in Fig. 6, and can be easily generalized
from a certain task to related other ones (see in the supplementary material).

Other Methods for Class Imbalance. Other methods for handling data imbalance include: [53, 54]
tries to transfer the knowledge learned from major classes to minor classes. The metric learning based
methods have also been developed to effectively exploit the tailed data to improve the generalization
ability, e.g., triple-header loss [55] and range loss [56].

Other Methods for Corrupted Labels. For handling noisy label issue, multiple methods have been
designed by correcting noisy labels to their true ones via a supplemental clean label inference step
[11, 14, 57, 13, 21, 1, 15]. For example, GLC [15] proposed a loss correction approach to mitigate
the effects of label noise on DNN classifiers. Other methods along this line include the Reed [58],
Co-training [16], D2L [59] and S-Model [12].

4 Experimental Results

To evaluate the capability of the proposed algorithm, we implement experiments on data sets with
class imbalance and noisy label issues, and real-world dataset with more complicated data bias.

4.1 Class Imbalance Experiments

We use Long-Tailed CIFAR dataset [60], that reduces the number of training samples per class
according to an exponential function n = niµ

i, where i is the class index, ni is the original number
of training images and µ ∈ (0, 1). The imbalance factor of a dataset is defined as the number of
training samples in the largest class divided by the smallest. We trained ResNet-32 [61] with softmax
cross-entropy loss by SGD with a momentum 0.9, a weight decay 5×10−4, an initial learning rate 0.1.
The learning rate of ResNet-32 is divided by 10 after 80 and 90 epoch (for a total 100 epochs), and
the learning rate of WN-Net is fixed as 10−3. We randomly selected 10 images per class in validation
set as the meta-data set. The compared methods include: 1) BaseModel, which uses a softmax
cross-entropy loss to train ResNet-32 on the training set; 2) Focal loss [25] and Class-Balanced
[60] represent the state-of-the-arts of the predefined sample reweighting techniques; 3) Fine-tuning,
fine-tune the result of BaseModel on the meta-data set; 4) L2RW [1], which leverages an additional
meta-dataset to adaptively assign weights on training samples.
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Table 1: Test accuracy (%) of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100, and the best and
the second best results are highlighted in bold and italic bold, respectively.

Dataset Name Long-Tailed CIFAR-10 Long-Tailed CIFAR-100
Imbalance 200 100 50 20 10 1 200 100 50 20 10 1
BaseModel 65.68 70.36 74.81 82.23 86.39 92.89 34.84 38.32 43.85 51.14 55.71 70.50
Focal Loss 65.29 70.38 76.71 82.76 86.66 93.03 35.62 38.41 44.32 51.95 55.78 70.52

Class-Balanced 68.89 74.57 79.27 84.36 87.49 92.89 36.23 39.60 45.32 52.59 57.99 70.50
Fine-tuning 66.08 71.33 77.42 83.37 86.42 93.23 38.22 41.83 46.40 52.11 57.44 70.72

L2RW 66.51 74.16 78.93 82.12 85.19 89.25 33.38 40.23 44.44 51.64 53.73 64.11
Ours 68.91 75.21 80.06 84.94 87.84 92.66 37.91 42.09 46.74 54.37 58.46 70.37

Table 2: Test accuracy comparison on CIFAR-10 and CIFAR-100 of WRN-28-10 with varying noise
rates under uniform noise. Mean accuracy (±std) over 5 repetitions are reported (‘—’ means the
method fails).

Datasets / Noise Rate BaseModel Reed-Hard S-Model Self-paced Focal Loss Co-teaching D2L Fine-tining MentorNet L2RW GLC Ours

CIFAR-10
0% 95.60±0.22 94.38±0.14 83.79±0.11 90.81±0.34 95.70±0.15 88.67±0.25 94.64±0.33 95.65±0.15 94.35±0.42 92.38±0.10 94.30±0.19 94.52±0.25

40% 68.07±1.23 81.26±0.51 79.58±0.33 86.41±0.29 75.96±1.31 74.81±0.34 85.60±0.13 80.47±0.25 87.33±0.22 86.92±0.19 88.28±0.03 89.27±0.28
60% 53.12±3.03 73.53±1.54 — 53.10±1.78 51.87±1.19 73.06±0.25 68.02±0.41 78.75±2.40 82.80±1.35 82.24±0.36 83.49±0.24 84.07±0.33

CIFAR-100
0% 79.95±1.26 64.45±1.02 52.86±0.99 59.79±0.46 81.04±0.24 61.80±0.25 66.17±1.42 80.88±0.21 73.26±1.23 72.99±0.58 73.75±0.51 78.76±0.24

40% 51.11±0.42 51.27±1.18 42.12±0.99 46.31±2.45 51.19±0.46 46.20±0.15 52.10±0.97 52.49±0.74 61.39±3.99 60.79±0.91 61.31±0.22 67.73±0.26
60% 30.92±0.33 26.95±0.98 — 19.08±0.57 27.70±3.77 35.67±1.25 41.11±0.30 38.16±0.38 36.87±1.47 48.15±0.34 50.81±1.00 58.75±0.11

Table 1 shows the classification accuracy of ResNet-32 on the test set and confusion matrices are
displayed in Fig. 3 (more details are listed in the supplementary material). It can be observed that:
1) Our algorithm evidently outperforms other competing methods on datasets with class imbalance,
showing its robustness in such data bias case; 2) When imbalance factor is 1, i.e., all classes are
with same numbers of samples, fine-tuning runs best, and our method still attains a comparable
performance; 3) When imbalance factor is 200 on long-tailed CIFAR-100, the smallest class has only
two samples. An extra fine-tuning achieves performance gain, while our method still perform well in
such extreme data bias.

To understand the weighing scheme of MW-Net, we depict the tendency curve of weight with respect
to loss by the learned MW-Net in Fig. 1(d), which complies with the classical optimal weighting
manner to such data bias. i.e., larger weights should be imposed on samples with relatively large
losses, which are more likely to be minority class sample.

4.2 Corrupted Label Experiment

We study two settings of corrupted labels on the training set: 1) Uniform noise. The label of each
sample is independently changed to a random class with probability p following the same setting
in [2]. 2) Flip noise. The label of each sample is independently flipped to similar classes with total
probability p. In our experiments, we randomly select two classes as similar classes with equal
probability. Two benchmark datasets are employed: CIFAR-10 and CIFAR-100 [62]. Both are
popularly used for evaluation of noisy labels [59, 16].1000 images with clean labels in validation set
are randomly selected as the meta-data set. We adopt a Wide ResNet-28-10 (WRN-28-10) [63] for
uniform noise and ResNet-32 [61] for flip noise as our classifier network models4.

The comparison methods include: BaseModel, referring to the similar classifier network utilized in
our method, while directly trained on the biased training data; the robust learning methods Reed [58],
S-Model [12] , SPL [26], Focal Loss [25], Co-teaching [16], D2L [59]; Fine-tuning, fine-tuning
the result of BaseModel on the meta-data with clean labels to further enhance its performance;
typical meta-learning methods MentorNet [21], L2RW [1], GLC [15]. We also trained the baseline
network only on 1000 meta-images. The performance are evidently worse than the proposed method
due to the neglecting of the knowledge underlying large amount of training samples. We thus have
not involved its results in comparison.

All the baseline networks were trained using SGD with a momentum 0.9, a weight decay 5× 10−4

and an initial learning rate 0.1. The learning rate of classifier network is divided by 10 after 36 epoch
and 38 epoch (for a total of 40 epoches) in uniform noise, and after 40 epoch and 50 epoch (for a

4We have tried different classifier network architectures as classifier networks under each noise setting to
show our algorithm is suitable to different deep learning architectures. We show this effect in Fig.4, verifying
the consistently good performance of our method in two classifier network settings.
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Figure 4: Performance comparison for different
classifier networks (WRN-28-10 and ResNet32)
under CIFAR flip noise.

Table 3: Test accuracy comparison on CIFAR-10 and CIFAR-100 of ResNet-32 with varying noise
rates under flip noise.

Datasets / Noise Rate BaseModel Reed-Hard S-Model Self-paced Focal Loss Co-teaching D2L Fine-tining MentorNet L2RW GLC Ours

CIFAR-10
0% 92.89±0.32 92.31±0.25 83.61±0.13 88.52±0.21 93.03±0.16 89.87±0.10 92.02±0.14 93.23±0.23 92.13±0.30 89.25±0.37 91.02±0.20 92.04±0.15

20% 76.83±2.30 88.28±0.36 79.25±0.30 87.03±0.34 86.45±0.19 82.83±0.85 87.66±0.40 82.47±3.64 86.36±0.31 87.86±0.36 89.68±0.33 90.33±0.61
40% 70.77±2.31 81.06±0.76 75.73±0.32 81.63±0.52 80.45±0.97 75.41±0.21 83.89±0.46 74.07±1.56 81.76±0.28 85.66±0.51 88.92±0.24 87.54±0.23

CIFAR-100
0% 70.50±0.12 69.02±0.32 51.46±0.20 67.55±0.27 70.02±0.53 63.31±0.05 68.11±0.26 70.72±0.22 70.24±0.21 64.11±1.09 65.42±0.23 70.11±0.33

20% 50.86±0.27 60.27±0.76 45.45±0.25 63.63±0.30 61.87±0.30 54.13±0.55 63.48±0.53 56.98±0.50 61.97±0.47 57.47±1.16 63.07±0.53 64.22±0.28
40% 43.01±1.16 50.40±1.01 43.81±0.15 53.51±0.53 54.13±0.40 44.85±0.81 51.83±0.33 46.37±0.25 52.66±0.56 50.98±1.55 62.22±0.62 58.64±0.47

total of 60 epoches) in flip noise. The learning rate of WN-Net is fixed as 10−3. We repeated the
experiments 5 times with different random seeds for network initialization and label noise generation.

We report the accuracy averaged over 5 repetitions for each series of experiments and each competing
method in Tables 2 and 3. It can be observed that our method gets the best performance across
almost all datasets and all noise rates, except the second for 40% Flip noise. At 0% noise cases
(unbiased ones), our method performs only slightly worse than the BaseModel. For other corrupted
label cases, the superiority of our method is evident. Besides, it can be seen that the performance
gaps between ours and all other competing methods increase as the noise rate is increased from 40%
to 60% under uniform noise. Even with 60% label noise, our method can still obtain a relatively
high classification accuracy, and attains more than 15% accuracy gain compared with the second best
result for CIFAR100 dataset, which indicates the robustness of our methods in such cases.

Fig. 4 shows the performance comparison between WRN-28-10 and ResNet32 under fixed flip noise
setting. We can observe that the performance gains for our method and BaseModel between two
networks takes the almost same value. It implies that the performance improvement of our method is
not dependent on the selection of the classifier network architectures.

As shown in Fig. 1(e), the shape of the learned weight function depicts as monotonic decreasing,
complying with the traditional optimal setting to this bias condition, i.e., imposing smaller weights on
samples with relatively large losses to suppress the effect of corrupted labels. Furthermore, we plot
the weight distribution of clean and noisy training samples in Fig. 5. It can be seen that almost all
large weights belongs to clean samples, and the noisy samples’s weights are smaller than that of clean
samples, which implies that the trained Meta-Weight-Net can distinguish clean and noisy images.

Fig. 6 plots the weight variation along with training epoches under 40% noise on CIFAR10 dataset
of our method and L2RW. y-axis denotes the differences of weights calculated between adjacent
epoches, and x-axis denotes the number of epoches. Ten noisy samples are randomly chosen to
compute their mean curve, surrounded by the region illustrating the standard deviations calculated on
these samples in the corresponding epoch. It is seen that the weight by our method is continuously
changed, gradually stable along iterations, and finally converges. As a comparison, the weight during
the learning process of L2RW fluctuates relatively more wildly. This could explain the consistently
better performance of our method as compared with this competing method.

4.3 Experiments on Clothing1M

To verify the effectiveness of the proposed method on real-world data, we conduct experiments on
the Clothing1M dataset [64], containing 1 million images of clothing obtained from online shopping
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Table 4: Classification accuracy (%) of all competing methods on the Clothing1M test set.

# Method Accuracy # Method Accuracy

1 Cross Entropy 68.94 5 Joint Optimization [66] 72.23
2 Bootstrapping [58] 69.12 6 LCCN [67] 73.07
3 Forward [65] 69.84 7 MLNT [68] 73.47
4 S-adaptation [12] 70.36 8 Ours 73.72

websites that are with 14 categories, e.g., T-shirt, Shirt, Knitwear. The labels are generated by using
surrounding texts of the images provided by the sellers, and therefore contain many errors. We use
the 7k clean data as the meta dataset. Following the previous works [65, 66], we used ResNet-50
pre-trained on ImageNet. For preprocessing, we resize the image to 256 × 256, crop the middle
224× 224 as input, and perform normalization. We used SGD with a momentum 0.9, a weight decay
10−3, and an initial learning rate 0.01, and batch size 32. The learning rate of ResNet-50 is divided
by 10 after 5 epoch (for a total 10 epoch), and the learning rate of WN-Net is fixed as 10−3.

The results are summarized in Table. 4. which shows that the proposed method achieves the best
performance. Fig. 1(f) plots the tendency curve of the learned MW-Net function, which reveals
abundant data insights. Specifically, when the loss is with relatively small values, the weighting
function inclines to increase with loss, meaning that it tends to more emphasize hard margin samples
with informative knowledge for classification; while when the loss gradually changes large, the
weighting function begins to monotonically decrease, implying that it tends to suppress noise labels
samples with relatively large loss values. Such complicated essence cannot be finely delivered by
conventional weight functions.

5 Conclusion

We have proposed a novel meta-learning method for adaptively extracting sample weights to guarantee
robust deep learning in the presence of training data bias. Compared with current reweighting methods
that require to manually set the form of weight functions, the new method is able to yield a rational
one directly from data. The working principle of our algorithm can be well explained and the
procedure of our method can be easily reproduced ( Appendix A provide the Pytorch implement
of our algorithm (less than 30 lines of codes)), and the completed training code is avriable at
https://github.com/xjtushujun/meta-weight-net.). Our empirical results show that the
propose method can perform superior in general data bias cases, like class imbalance, corrupted
labels, and more complicated real cases. Besides, such an adaptive weight learning approach is
hopeful to be employed to other weight setting problems in machine learning, like ensemble methods
and multi-view learning.
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Appendix

A Pytorch codes of our algorithm

The following is the Pytorch codes of our algorithm (core code is less than 30 lines), and the completed
training code is avriable at https://github.com/xjtushujun/meta-weight-net.

def norm_func(v_lambda):
norm_c = torch.sum(v_lambda)
if norm_c != 0:

v_lambda_norm = v_lambda / norm_c
else:

v_lambda_norm = v_lambda
return v_lambda_norm

optimizer_a = torch.optim.SGD(model.params (), args.lr, momentum=args.
momentum , nesterov=args.nesterov ,
weight_decay=args.weight_decay)

optimizer_c = torch.optim.SGD(vnet.params (), 1e-3, momentum=args.
momentum , nesterov=args.nesterov ,
weight_decay=args.weight_decay)

for iters in range(num_iters):
adjust_learning_rate(optimizer_a , iters + 1)
model.train()
data , target = next(iter(train_loader))
data , target = data.to(device), target.to(device)
meta_model.load_state_dict(model.state_dict ())
y_f_hat = meta_model(data)
cost = F.cross_entropy(y_f_hat , target_var , reduce=False)
cost_v = torch.reshape(cost , (len(cost), 1))
v_lambda = vnet(cost_v.data)
v_lambda_norm = norm_func(v_lambda)
l_f_meta = torch.sum(cost_v * v_lambda_norm)
meta_model.zero_grad ()
grads = torch.autograd.grad(l_f_meta ,( meta_model.params ()),

create_graph=True)
meta_model.update_params(lr_inner=meta_lr ,source_params=grads)

data_meta ,target_meta = next(iter(train_meta_loader))
data_meta ,target_meta = data_meta.to(device),target_meta.to(device)
y_g_hat = meta_model(data_meta)
l_g_meta = F.cross_entropy(y_g_hat , target_meta)
optimizer_c.zero_grad ()
l_g_meta.backward ()
optimizer_c.step()

y_f = model(data)
cost_w = F.cross_entropy(y_f , target , reduce=False)
cost_v = torch.reshape(cost_w , (len(cost_w), 1))
with torch.no_grad ():

w_new = vnet(cost_v)
w_v = norm_func(w_new)
l_f = torch.sum(cost_v * w_v)
optimizer_a.zero_grad ()
l_f.backward ()
optimizer_a.step()
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B Derivation of the Weighting Scheme in Meta-Weight-Net

Recall the update equation of the parameters of Meta-Weight-Net as follows:

Θ(t+1) = Θ(t) − β 1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t)(Θ))

∣∣∣
Θ(t)

. (9)

The computation of Eq. (9) in the paper by backpropagation can be understood by the following
derivation:

1
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ŵ(t)

n∑
j=1

∂Ltrainj (w)

∂w

∣∣∣
w(t)

∂V(Ltrainj (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

=
−α
n

n∑
j=1

(
1

m

m∑
i=1

∂Lmetai (ŵ)
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Let
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, (11)

by substituting Eq. (10) into Eq. (9), we can get:

Θ(t+1) = Θ(t) +
αβ

n
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1
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Gij
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C Convergence Proof of Our Method

This section provides the proofs for Theorems 1 and 2 in the paper.

Suppose that we have a small amount of meta (validation) dataset withM samples {(x(m)
i , y

(m)
i ), 1 ≤

i ≤M} with clean labels, and the overall meta loss is,

Lmeta(w∗(Θ)) =
1

M

M∑
i=1

Lmetai (w∗(Θ)), (13)

where w∗ is the parameter of the classifier network, and Θ is the parameter of the Meta-Weight-Net.
Let’s suppose we have another N training data, {(xi, yi), 1 ≤ i ≤ N}, where M � N , and the
overall training loss is,

Ltrain(w; Θ) =
1

N

N∑
i=1

V(Ltraini (w); Θ)Ltraini (w). (14)

Lemma 1. Suppose the meta loss function is Lipschitz smooth with constant L, and V(·) is differential
with a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function
` have ρ-bounded gradients with respect to training/meta data. Then the gradient of Θ with respect
to meta loss is Lipschitz continuous.

Proof. The gradient of Θ with respect to meta loss can be written as:

∇ΘL
meta
i (ŵ(t)(Θ))

∣∣∣
Θ(t)

=
−α
n

n∑
j=1

(
∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t)

∂Ltrainj (w)

∂w

∣∣∣
w(t)

)
∂V(Ltrainj (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

. (15)
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Let Vj(Θ) = V(Ltrainj (w(t)); Θ) and Gij being defined in Eq.(11). Taking gradient of Θ in both sides of
Eq.(15), we have

∇2
Θ2L

meta
i (ŵ(t)(Θ))

∣∣∣
Θ(t)

=
−α
n

n∑
j=1

[
∂

∂Θ
(Gij)

∣∣∣
Θ(t)

∂Vj(Θ)

∂Θ

∣∣∣
Θ(t)

+ (Gij)
∂2Vj(Θ)

∂Θ2

∣∣∣
Θ(t)

]
.

For the first term in the right hand side, we have that∥∥∥∥ ∂

∂Θ
(Gij)

∣∣∣
Θ(t)

∂Vj(Θ)

∂Θ

∣∣∣
Θ(t)

∥∥∥∥ ≤ δ ∥∥∥∥ ∂

∂ŵ

(
∂Lmetai (ŵ)

∂Θ

∣∣∣
Θ(t)

)∣∣∣T
ŵ(t)

∂Ltrainj (w)

∂w

∣∣∣
w(t)

∥∥∥∥
= δ

∥∥∥∥∥ ∂

∂ŵ

(
∂Lmetai (ŵ)

∂ŵ

∣∣∣
ŵ(t)

−α
n

n∑
k=1

∂Ltraink (w)

∂w

∣∣∣
w(t)

∂Vk(Θ)

∂Θ

∣∣∣
Θ(t)

)∣∣∣T
ŵ(t)

∂Ltrainj (w)

∂w

∣∣∣
w(t)

∥∥∥∥∥
= δ

∥∥∥∥∥
(
∂2Lmetai (ŵ)

∂ŵ2

∣∣∣
ŵ(t)

−α
n

n∑
k=1

∂Ltraink (w)

∂w

∣∣∣
w(t)

∂Vk(Θ)

∂Θ

∣∣∣
Θ(t)

)∣∣∣T
ŵ(t)

∂Ltrainj (w)

∂w

∥∥∥∥∥ ≤ αLρ2δ2, (16)

since
∥∥∥ ∂2Lmetai (ŵ)

∂ŵ2

∣∣∣
ŵ(t)

∥∥∥ ≤ L,

∥∥∥∥ ∂Ltrainj (w)

∂w

∣∣∣
w(t)

∥∥∥∥ ≤ ρ,
∥∥∥ ∂Vj(Θ)

∂Θ

∣∣∣
Θ(t)

∥∥∥ ≤ δ. And for the second term we

have ∥∥∥∥(Gij)
∂2Vj(Θ)

∂Θ2

∣∣∣
Θ(t)

∥∥∥∥ =

∥∥∥∥∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t)

∂Ltrainj (w)

∂w

∣∣∣
w(t)

∂2Vj(Θ)

∂Θ2

∣∣∣
Θ(t)

∥∥∥∥ ≤ Bρ2, (17)

since
∥∥∥∥∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t)

∥∥∥∥≤ρ, ∥∥∥∂2Vj(Θ)

∂Θ2

∣∣∣
Θ(t)

∥∥∥≤B. Combining the above two inequalities Eq.(16) (17), we have

∥∥∥∇2
Θ2L

meta
i (ŵ(t)(Θ))

∣∣∣
Θ(t)

∥∥∥ ≤ αρ2(αLδ2 + B). (18)

Define LV = αρ2(αLδ2 + B), based on Lagrange mean value theorem, we have:

‖∇Lmeta(ŵ(t)(Θ1))−∇Lmeta(ŵ(t)(Θ2))‖ ≤ LV ‖Θ1 −Θ2‖, for all Θ1,Θ2, (19)

where∇Lmeta(ŵ(t)(Θ1)) = ∇ΘL
meta
i (ŵ(t)(Θ))

∣∣
Θ1

.

Theorem 1. Suppose the loss function ` is Lipschitz smooth with constant L, and V(·) is differential
with a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function
` have ρ-bounded gradients with respect to training/meta data. Let the learning rate αt satisfies αt =
min{1, kT }, for some k > 0, such that k

T < 1, and βt, 1 ≤ t ≤ N is a monotone descent sequence,

β1 = min{ 1
L ,

c
σ
√
T
} for some c > 0, such that σ

√
T
c ≥ L and

∑∞
t=1 βt ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞. Then

Meta-Weight-Net can achieve E[‖∇Lmeta(ŵ(t)(Θ(t)))‖22] ≤ ε in O(1/ε2) steps. More specifically,

min
0≤t≤T

E[‖∇Lmeta(ŵ(t)(Θ(t)))‖22] ≤ O(
C√
T

), (20)

where C is some constant independent of the convergence process, σ is the variance of drawing
uniformly mini-batch sample at random.

Proof. The update of Θ in each iteration is as follows:

Θ(t+1) = Θ(t) − β 1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t)(Θ))

∣∣∣
Θ(t)

. (21)

This can be written as:

Θ(t+1) = Θ(t) − βt∇Lmeta(ŵ(t)(Θ(t)))
∣∣
Ξt
. (22)

Since the mini-batch Ξt is drawn uniformly from the entire data set, we can rewrite the update
equationp as:

Θ(t+1) = Θ(t) − βt[∇Lmeta(ŵ(t)(Θ(t))) + ξ(t)], (23)

15



where ξ(t) = ∇Lmeta(ŵ(t)(Θ(t)))
∣∣
Ξt
− ∇Lmeta(ŵ(t)(Θ(t))). Note that ξ(t) are i.i.d random

variable with finite variance, since Ξt are drawn i.i.d with a finite number of samples. Furthermore,
E[ξ(t)] = 0, since samples are drawn uniformly at random. Observe that

Lmeta(ŵ
(t+1)

(Θ
(t+1)

))− Lmeta(ŵ
(t)

(Θ
(t)

))

=
{
Lmeta(ŵ

(t+1)
(Θ

(t+1)
))− Lmeta(ŵ

(t)
(Θ

(t+1)
))
}

+
{
Lmeta(ŵ

(t)
(Θ

(t+1)
))− Lmeta(ŵ

(t)
(Θ

(t)
))
}
. (24)

By Lipschitz smoothness of meta loss function, we have

Lmeta(ŵ
(t+1)

(Θ
(t+1)

))− Lmeta(ŵ
(t)

(Θ
(t+1)

))

≤ 〈∇Lmeta(ŵ
(t)

(Θ
(t+1)

)), ŵ
(t+1)

(Θ
(t+1)

)− ŵ
(t)

(Θ
(t+1)

)〉 +
L

2
‖ŵ(t+1)

(Θ
(t+1)

)− ŵ
(t)

(Θ
(t+1)

)‖22

Since ŵ(t+1)(Θ(t+1))− ŵ(t)(Θ(t+1)) = −αt 1
n

∑n
i=1 V(Ltraini (w(t+1)); Θ(t+1))∇wL

train
i (w)

∣∣∣
w(t+1)

according to
Eq.(3),(5), we have

‖Lmeta(ŵ(t+1)(Θ(t+1)))− Lmeta(ŵ(t)(Θ(t+1)))‖ ≤ αtρ2 +
Lα2

t

2
ρ2 = αtρ

2(1 +
αtL

2
) (25)

Since
∥∥∥∂Ltrainj (w)

∂w

∣∣∣
w(t)

∥∥∥ ≤ ρ,
∥∥∥∥∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t)

∥∥∥∥≤ρ.

By Lipschitz continuity of∇Lmeta(ŵ(t)(Θ)) according to Lemma 1, we can obtain the following:

Lmeta(ŵ
(t)

(Θ
(t+1)

))− Lmeta(ŵ
(t)

(Θ
(t)

)) ≤ 〈∇Lmeta(ŵ
(t)

(Θ
(t)

)),Θ
(t+1) − Θ

(t)〉 +
L

2
‖Θ(t+1) − Θ

(t)‖22

= 〈∇Lmeta(ŵ
(t)

(Θ
(t)

)),−βt[∇Lmeta(ŵ
(t)

(Θ
(t)

)) + ξ
(t)

]〉 +
Lβ2
t

2
‖∇Lmeta(ŵ

(t)
(Θ

(t)
)) + ξ

(t)‖22

= −(βt −
Lβ2
t

2
)‖∇Lmeta(ŵ

(t)
(Θ

(t)
))‖22 +

Lβ2
t

2
‖ξ(t)‖22 − (βt − Lβ2

t )〈∇Lmeta(ŵ
(t)

(Θ
(t)

)), ξ
(t)〉.

Thus Eq.(35) satifies

Lmeta(ŵ
(t+1)

(Θ
(t+1)

))− Lmeta(ŵ
(t)

(Θ
(t)

)) ≤ αtρ2
(1 +

αtL

2
)− (βt −

Lβ2
t

2
)

‖∇Lmeta(ŵ
(t)

(Θ
(t)

))‖22 +
Lβ2
t

2
‖ξ(t)‖22 − (βt − Lβ2

t )〈∇Lmeta(ŵ
(t)

(Θ
(t)

)), ξ
(t)〉. (26)

Rearranging the terms, we can obtain

(βt −
Lβ2
t

2
)‖∇Lmeta(ŵ

(t)
(Θ

(t)
))‖22 ≤ αtρ

2
(1 +

αtL

2
) + Lmeta(ŵ

(t)
(Θ

(t)
))− Lmeta(ŵ

(t+1)
(Θ

(t+1)
))

+
Lβ2
t

2
‖ξ(t)‖22 − (βt − Lβ2

t )〈∇Lmeta(ŵ
(t)

(Θ
(t)

)), ξ
(t)〉. (27)

Summing up the above inequalities and rearranging the terms, we can obtain

∑T

t=1
(βt −

Lβ2
t

2
)‖∇Lmeta(ŵ

(t)
(Θ

(t)
))‖22 ≤ L

meta
(ŵ

(1)
)(Θ

(1)
)− Lmeta(ŵ

(T+1)
(Θ

(T+1)
))

+

T∑
t=1

αtρ
2
(1 +

αtL

2
)−

T∑
t=1

(βt−Lβ2
t )〈∇Lmeta(ŵ(t)

(Θ
(t)

)),ξ
(t)〉+

L

2

T∑
t=1

β
2
t ‖ξ

(t)‖22

≤ Lmeta(ŵ(1)
(Θ

(1)
))+

T∑
t=1

αtρ
2
(1 +

αtL

2
)−

T∑
t=1

(βt−Lβ2
t )〈∇Lmeta(ŵ

(t)
(Θ

(t)
)),ξ

(t)〉+
L

2

T∑
t=1

β
2
t ‖ξ

(t)‖22, (28)

Taking expectations with respect to ξ(N) on both sides of Eq. 28, we can then obtain:

T∑
t=1

(βt −
Lβ2
t

2
)E
ξ(N)‖∇L

meta
(ŵ

(t)
(Θ

(t)
))‖22 ≤ L

meta
(ŵ

(1)
(Θ

(1)
))+

T∑
t=1

αtρ
2
(1 +

αtL

2
) +

Lσ2

2

T∑
t=1

β
2
t , (29)
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since Eξ(N)〈∇Lmeta(Θ(t)), ξ(t)〉 = 0 and E[‖ξ(t)‖22] ≤ σ2, where σ2 is the variance of ξ(t).
Furthermore, we can deduce that

min
t
E[‖∇Lmeta(ŵ(t)(Θ(t)))‖22] ≤

∑T
t=1(βt − Lβ2

t

2 )Eξ(N)‖∇Lmeta(ŵ(t)(Θ(t)))‖22∑T
t=1(βt − Lβ2

t

2 )

≤ 1∑T
t=1(2βt − Lβ2

t )

[
2Lmeta(ŵ(1)(Θ(1)))+

T∑
t=1

αtρ
2(2 + αtL) + Lσ2

T∑
t=1

β2
t

]

≤ 1∑T
t=1 2βt

[
2Lmeta(ŵ(1)(Θ(1)))+

T∑
t=1

αtρ
2(2 + αtL) + Lσ2

T∑
t=1

β2
t

]

≤ 1

2Tβ1

[
2Lmeta(ŵ(1)(Θ(1)))+ α1ρ

2T (2 + L) + Lσ2Tβ2
1

]
=
Lmeta(ŵ(1)(Θ(1)))

T

1

β1
+
α1ρ

2(2 + L)

β1
+
LTσ2

2
β1

=
Lmeta(ŵ(1)(Θ(1)))

T
max{L, σ

√
T

c
}+ min{1, k

T
}max{L, σ

√
T

c
}ρ2(2 + L) + Lσ2 c

σ
√
T

≤ σLmeta(ŵ(1)(Θ(1))

c
√
T

+
kσρ2(2 + L)

c
√
T

+
Lσc√
T

= O(
1√
T

). (30)

Therefore, we can conclude that our algorithm can always achieve min0≤t≤T E[‖∇Lmeta(Θ(t))‖22] ≤
O( 1√

T
) in T steps, and this finishes our proof of Theorem 1.

Lemma 2. (Lemma A.5 in [69]) Let (an)n≤1, (bn)n≤1 be two non-negative real sequences such
that the series

∑∞
i=1 an diverges, the series

∑∞
i=1 anbn converges, and there exists K > 0 such that

|bn+1 − bn| ≤ Kan. Then the sequences (bn)n≤1 converges to 0.

Theorem 2. Suppose the loss function ` is Lipschitz smooth with constant L, and V(·) is differential
with a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function
` have ρ-bounded gradients with respect to training/meta data. Let the learning rate αt satisfies αt =
min{1, kT }, for some k > 0, such that k

T < 1, and βt, 1 ≤ t ≤ N is a monotone descent sequence,

β1 = min{ 1
L ,

c
σ
√
T
} for some c > 0, such that σ

√
T
c ≥ L and

∑∞
t=1 βt ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞.Then

lim
t→∞

E[‖∇Ltrain(w(t); Θ(t+1))‖22] = 0. (31)

Proof. It is easy to conclude that αt satisfy
∑∞
t=0 αt =∞,

∑∞
t=0 α

2
t <∞. Recall the update of w

in each iteration as follows:

w(t+1) = w(t) − α 1

n

n∑
i=1

V(Ltraini (w(t)); Θ(t+1))∇wL
train
i (w)

∣∣∣
w(t)

. (32)

It can be written as:

w(t+1) = w(t) − αt∇Ltrain(w(t); Θ(t+1))|Ψt , (33)

where ∇Ltrain(w(t); Θ) = 1
n

∑n
i=1 V(Ltraini (w(t)); Θ)∇wL

train
i (w)

∣∣∣
w(t)

. Since the mini-batch
Ψt is drawn uniformly at random, we can rewrite the update equation as:

w(t+1) = w(t) − αt[∇Ltrain(w(t); Θ(t+1)) + ψ(t)], (34)

where ψ(t) = ∇Ltrain(w(t); Θ(t+1))|Ψt −∇Ltrain(w(t); Θ(t+1)). Note that ψ(t) is i.i.d. random
variable with finite variance, since Ψt are drawn i.i.d. with a finite number of samples. Furthermore,
E[ψ(t)] = 0, since samples are drawn uniformly at random, and E[‖ψ(t)‖22] ≤ σ2.
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The objective function Ltrain(w; Θ) defined in Eq. 14 can be easily checked to be Lipschitz-smooth
with constant L, and have ρ-bounded gradients with respect to training data. Observe that
Ltrain(w

(t+1)
; Θ

(t+2)
)− Ltrain(w

(t)
; Θ

(t+1)
)

=
{
Ltrain(w

(t+1)
; Θ

(t+2)
)− Ltrain(w

(t+1)
; Θ

(t+1)
)
}

+
{
Ltrain(w

(t+1)
; Θ

(t+1)
)− Ltrain(w

(t)
; Θ

(t+1)
)
}
. (35)

For the first term,
Ltrain(w

(t+1)
; Θ

(t+2)
)− Ltrain(w

(t+1)
; Θ

(t+1)
)

=
1

n

n∑
i=1

{
V(Ltraini (w

(t)
); Θ

(t+2)
)− V(Ltraini (w

(t)
); Θ

(t+1)
)
}
Ltraini (w

(t)
)

≤
1

n

n∑
i=1

{
〈
∂V(Ltraini (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

,Θ
(t+1) −Θ

(t)〉+
δ

2
‖Θ(t+1) −Θ

(t)‖22

}
Ltraini (w

(t)
)

=
1

n

n∑
i=1

{
〈
∂V(Ltraini (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

,−βt[∇Lmeta(ŵ
(t)

(Θ
(t)

)) + ξ
(t)

]〉+
δβ2
t

2
‖∇Lmeta(ŵ

(t)
(Θ

(t)
)) + ξ

(t)‖22

}
Ltraini (w

(t)
)

=
1

n

n∑
i=1

{
〈
∂V(Ltraini (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

,−βt[∇Lmeta(ŵ
(t)

(Θ
(t)

)) + ξ
(t)

]〉+
δβ2
t

2
‖∇Lmeta(ŵ

(t)
(Θ

(t)
)) + ξ

(t)‖22

}
Ltraini (w

(t)
)

=
1

n

n∑
i=1

{
〈
∂V(Ltraini (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

,−βt[∇Lmeta(ŵ
(t)

(Θ
(t)

)) + ξ
(t)

]〉+
δβ2
t

2
(‖∇Lmeta(ŵ

(t)
(Θ

(t)
))‖22 + ‖ξ(t)‖22+

2〈∇Lmeta(ŵ
(t)

(Θ
(t)

)), ξ
(t)〉)

}
L
train
i (w

(t)
) (36)

For the second term,
Ltrain(w

(t+1)
; Θ

(t+1)
)− Ltrain(w

(t)
; Θ

(t+1)
)

≤ 〈∇Ltrain(w
(t)

; Θ
(t+1)

),w
(t+1) −w

(t)〉+
L

2
‖w(t+1) −w

(t)‖22

= 〈∇Ltrain(w
(t)

; Θ
(t+1)

),−αt[∇Ltrain(w
(t)

; Θ
(t+1)

) + ψ
(t)

]〉+
Lα2

t

2
‖∇Ltrain(w

(t)
; Θ

(t+1)
) + ψ

(t)‖22

= −(αt −
Lα2

t

2
)‖∇Ltrain(w

(t)
; Θ

(t+1)
)‖22 +

Lα2
t

2
‖ψ(t)‖22 − (αt − Lα2

t )〈∇L
train

(w
(t)

; Θ
(t+1)

), ψ
(t)〉. (37)

Therefore, we have:

Ltrain(w
(t+1)

; Θ
(t+2)

)− Ltrain(w
(t)

; Θ
(t+1)

) ≤
1

n

n∑
i=1

{
〈
∂V(Ltraini (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

,−βt[∇Lmeta(ŵ
(t)

(Θ
(t)

)) + ξ
(t)

]〉+

+
δβ2
t

2
(‖∇Lmeta(ŵ

(t)
(Θ

(t)
))‖22 + ‖ξ(t)‖22 + 2〈∇Lmeta(ŵ

(t)
(Θ

(t)
)), ξ

(t)〉)
}
L
train
i (w

(t)
)

− (αt −
Lα2

t

2
)‖∇Ltrain(w

(t)
; Θ

(t+1)
)‖22 +

Lα2
t

2
‖ψ(t)‖22 − (αt − Lα2

t )〈∇L
train

(w
(t)

; Θ
(t+1)

), ψ
(t)〉. (38)

Taking expectation of both sides of (37) and since E[ξ(t)] = 0,E[ψ(t)] = 0, we have

E[Ltrain(w
(t+1)

; Θ
(t+2)

)]− E[Ltrain(w
(t)

; Θ
(t+1)

)] ≤ E
1

n

n∑
i=1

L
train
i (w

(t)
)

{
〈
∂V(Ltraini (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)

,−βt[∇Lmeta(ŵ
(t)

(Θ
(t)

))]〉+

+
δβ2
t

2
(‖∇Lmeta(ŵ

(t)
(Θ

(t)
))‖22 + ‖ξ(t)‖22)

}
− αtE[‖∇Ltrain(w

(t)
; Θ

(t+1)
)‖22] +

Lα2
t

2

{
E[‖∇Ltrain(w

(t)
; Θ

(t+1)
)‖22] + E[‖ψ(t)‖22]

}
Summing up the above inequalities over t = 1, ...,∞ in both sides, we obtain
∞∑
t=1

αtE[‖∇Ltrain(w(t)
;Θ

(t+1)
)‖22] +

∞∑
t=1

βtE
1

n

n∑
i=1

‖Ltraini (w
(t)

)‖‖
∂V(Ltraini (w(t)); Θ)

∂Θ

∣∣∣
Θ(t)
‖ · ‖∇Lmeta(ŵ

(t)
(Θ

(t)
))‖

≤
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t=1

Lα2
t

2

{
E[‖∇Ltrain(w(t)

;Θ
(t+1)

)‖22]+E[‖ψ(t)‖22]
}

+E[Ltrain(w(1)
; Θ

(2)
)]− lim
T→∞

E[Ltrain(w(t+1)
;Θ

(t+2)
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+
∞∑
t=1
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t

2

{
1

n
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i=1
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(t)

)‖(E‖∇Lmeta(ŵ
(t)

(Θ
(t)

))‖22 + E‖ξ(t)‖22

}

≤
∞∑
t=1

Lα2
t

2
{ρ2

+σ
2}+E[Ltr(w(1)

;Θ
(2)

)] +
∞∑
t=1

δβ2
t

2

{
M(ρ

2
+ σ

2
)
}
≤∞.

The last inequality holds since
∑∞
t=0 α

2
t <∞,

∑∞
t=0 β

2
t <∞, and 1

n

∑n
i=1 ‖Ltraini (w(t))‖ ≤M

for limited number of samples’ loss is bounded. Thus we have
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(39)
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Since
∞∑
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1

n
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which implies that
∑∞
t=1 αtE[‖∇Ltrain(w(t); Θ(t+1))‖22] < ∞. By Lemma 2, to substantiate

limt→∞ E[∇Ltrain(w(t); Θ(t+1))‖22] = 0, since
∑∞
t=0 αt =∞, it only needs to prove:∣∣∣E[∇Ltrain(w(t+1); Θ(t+2))‖22]− E[∇Ltrain(w(t); Θ(t+1))‖22]

∣∣∣ ≤ Cαk, (41)

for some constant C. Based on the inequality:

|(‖a‖+ ‖b‖)(‖a‖ − ‖b‖)| ≤ ‖a+ b‖‖a− b‖, (42)
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According to the above inequality, we can conclude that our algorithm can achieve

lim
t→∞

E[‖∇Ltrain(w(t); Θ(t+1))‖22] = 0. (44)

The proof is completed.

D Experimentalp Details on Meta-Weight-Net

To match the original training step size, in our experiment, we can consider normalizing the weights
of all examples in a training batch so that they sum up to one. In other words, we choose to have a
hard constraint within the set ‖V(`; Θ)‖1 = 1, and the normalized weight

η
(t)
i =

V(t)(Li; Θ)∑
j V(t)(Lj ; Θ) + δ(

∑
i V(t)(Lj ; Θ))

, (45)

where the function of δ(·) is to prevent the degeneration case when all V(t)(Lj ; Θ) in a mini-batch
are zeros, i.e. δ(a) = τ . τ denotes a constant grater than 0, if a = 0; and equal to 0 otherwise. With
batch normalization, we effectively cancel the learning rate of Meta-Weight-Net, and it works well
with a fixed learning rate.

E MLP architecture of Meta-Weight-Net

We actually have tried different MLP architecture settings in experiments. The right table depicts
some representative results under 6 different structures, with different depths and widths. It can be
seen that varying MLP settings have unsubstantial effects to the final result. We thus prefer to use the
simple and shallow one.
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Table 5: Test accuracy on CIFAR-10 and CIFAR-100 of different MW-Nets.

architcture Imbalance (factor 100) Uniform noise (40%) Flip noise (40%)
CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR100

1-50-1 73.50 41.87 89.01 67.63 87.38 57.83
1-100-1 75.21 42.09 89.27 67.73 87.54 58.64
1-200-1 74.70 41.72 89.58 67.84 87.74 58.41

1-100-100-1 75.01 41.97 89.09 66.48 87.28 57.39
1-10-10-1 74.71 41.94 89.10 66.53 87.58 57.11

1-10-10-10-1 74.96 42.31 88.82 66.67 87.36 57.29
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(c) CIFAR-100 40% noise
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Figure 7: Training and test accuracy changing curves in uniform noise cases of CIFAR-10 and
CIFAR-100 datasets. Solid and dotted curves denote the test and training accuracies, respectively.
Our method and L2RW are less prone to overfit label noises, while our method can converge faster
at around 40 epoch as shown in Fig. 7(a). We thus terminate our method in 40 epoch in other
experiments.

F Complexity Analysis of The Proposed Algorithm

Our Meta-PGC algorithm can be roughly regarded as that requires an extra full forward and backward
passes of the network on training data (step 5 in algorithm) and an extra full forward and backward
passes of the network of meta data (step 6 in algorithm) in the presence of the normal classifier
network’ parameters update (step 7 in algorithm). Therefore compared to regular training, our method
needs approximately 3 × training time in each iteration. It is suggest to let batch size of meta data
less than or equal to batch size of training data, which avoids GPU memory increase and speeds up
the learning process.

G Robustness Towards Label Noise Overfitting Issue

Fig. 7 plots the tendency curves of the mini-batch training accuracy calculated on noisy training set in
experiments, as well as those calculated simultaneously on clean test data during learning iterations.
From the figure, we can easily find that the BaseModel can easily overfit to the noisy labels contained
in the training set, whose test accuracy quickly degrades after the first learning rate decays. While our
method and L2RW are less prone to such overfitting issue, and they retain the similar test accuracy
until termination. Especially, throughout all our experiments, we find that our method can converge
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significantly faster than the BaseModel and L2RW methods1, as clearly shown in Fig.7, and get the
peak performance at around 40 epochs, as compared with 120 epochs required for the other two
methods, as shown in Fig. 7(a). We thus only report our results at 40 epochs in the figure for other
experiments.

1Since our method is inspired by L2RW [1], we compare this method, as well as the BaseModel, for better
illustration. The uniform noise experiment setting is the same as L2RW [1], and thus the iteration steps of
BaseModel and L2RW follows the original setting.
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H Confusion Matrices for Class Imbalance and Corrupted Labels

We demonstrate confusion matrices of Baseline and our algorithm on long-tailed CIFAR-10 dataset
for class imbalance and corrupted labels experiments, as shown in Fig. 2-4.
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Figure 8: Confusion matrices on long-tailed CIFAR-10 with imbalance factors ranging from 1 to 200.
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Figure 9: Confusion matrices on CIFAR-10 dataset with varying noise rates under uniform noise.
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Figure 10: Confusion matrices on CIFAR-10 dataset with varying noise rates under flip noise.
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I Convergence Verification for The Training loss and Meta Loss

To validate the convergence results obtained in Theorem 1 and 2 in the paper, we plot the changing
tendency curves of training and meta losses with the number of epochs in our experiments, as shown
in Fig. 11 - 13. The convergence tendency can be easily observed in the figures, substantiating the
properness of the theoretical results in two theorems.
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Figure 11: Training and meta loss tendency curves on long-tailed CIFAR with imbalance factors
ranging from 1 to 200.
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Figure 12: Training and meta loss tendency curves on CIFAR dataset with varying noise rates under
uniform noise.
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Figure 13: Training and meta loss tendency curves on CIFAR dataset with varying noise rates under
flip noise.
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