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1 Clarifications of points in the main paper1

1.1 Estimation of the solid angle2

We faced the problem of no tractable formula for the solid angle, so we estimated it with sampling3

method. The estimated angle is an average of Bernoulli random variables with variance then bounded4

by 1
4N where N is the number of these Bernoulli variables. By taking N = 109, we reach an5

asymptotic confidence interval of length around 10−4.6

1.2 IQP formulation to our surrogate7

Our surrogate formulation for selecting a fixed set of samples that minimize the solid angle is:8

minimizeM
∑

i,j∈M

〈gi, gj〉
‖gi‖‖gj‖

(1)

s.t.M⊂ [0 . . t− 1]; |M| = M

We solve the surrogate minimization as an integer quadratic programming problem. We first normalize9

the gradients: G =
〈gi,gj〉
‖gi‖‖gj‖ and find a selection vector X that minimizes the following:10

minimize
X

1

2
XTGX

s.t. 1T .X = M

xi ∈ {0, 1} ∀xi ∈ X

where 1 is a vector of ones with the same length as X . Selected samples will correspond to values of11

1 in X .12

2 Additional Experiments13

2.1 Performance under blurry task boundary14

An interesting setting is the scenario where there are no clear task boundaries in the data stream,15

as we mentioned in the introduction, such situation can happen in practice. We start by blurring16

the task boundaries in disjoint Cifar10 benchmark. For each task in a dataset, we keep the majority17

of the examples while we randomly swap a small percentage of the examples with other tasks. A18

larger swap percentage corresponds to more blurry boundaries. A similar setting has been used in [1].19

We keep 90% of the data for each task, and introduce 10% of data from the other tasks. We make20

comparisons to the other studied selection methods. Since tasks are not disjoint, forgetting is not as21
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Figure 1: Greedy Sample Selection Ablation Study. Figures show test accuracy.

(a) Average test accuracy at the end of disjoint
MNIST for different values of n.
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(b) Average test accuracy at the end of disjoint
MNIST for different batch sizes.
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sever as complete disjoint tasks. Hence, we use a buffer of 500 samples and train on 1k samples per22

task which allows us to run our GSS-IQP more smoothly.23

Table 1 reports the accuracy of each task at the end of the sequence. Our both methods perform better24

than other selection strategies.

Method T1 T2 T3 T4 T5 Avg
Rand 0 3.45 9.85 54.67 78.76 29.0
GSS-IQP(ours) 9.38 11.33 17.05 30.84 79.53 29.6
GSS-Clust 2.43 16.75 9.09 20.71 77.98 25.0
FSS-Clust 2.95 05.09 6.06 38.16 78.14 26.0
GSS-Greedy(ours) 34.2 11.14 14.96 20.25 67.5 29.6

Table 1: Comparison of different selection strategies on disjoint Cifar10 with blurry task boundary.

25

2.2 Constrained Optimization Compared to Rehearsal26

By the end of the section ??, we have elaborated on the computational complexity of the constrained27

optimization with large buffers which renders infeasible. That’s mainly because at each learning step,28

gradients of each sample in the buffer needs to be estimated and then the new sample gradient need to29

be projected onto the feasible region determined by all the samples gradients. As an alternative, we per-30

form rehearsal on the buffer. Here, we want to compare the performance of the two update strategies,31

the constrained optimization GSS-IQP(Constrained) and the rehearsal GSS-IQP(Rehearsal).32

We consider disjoint MNIST benchmark and use 200 training samples per task. Table 2 reports33

the test accuracy on each task achieved by each strategy at the end of the training when using a34

buffer of size 100 while table 3 reports the accuracy with 200 buffer size. GSS-IQP(Constrained)35

improves over GSS-IQP(Rehearsal) with a margin of 3− 5% but requires a long time to train as36

it scales polynomialy with the number of samples in the buffer apart from the need to compute the37

gradient of each buffer sample at each training step. GSS-IQP(Rehearsal) with larger buffer is less38

computational and yields similar results, comparing GSS-IQP(Rehearsal) with a buffer of size 20039

(78.9%) and GSS-IQP(Constrained) with a buffer of size 100 (76.26%).40

2.3 Effect of n in Greedy Sample Selection41

In our Greedy Sample Selection (GSS-Greedy), for each newly received sample we compute a score42

indicating its similarity to samples already in the buffer (lines (5-7) in Algorithm ??). This is done by43

computing the cosine similarity of the new sample(s) gradient to n gradient vectors of samples drawn44

from the buffer. We study the effect of n on the performance of GSS-Greedy given Disjoint MNIST45

benchmark.46

Figure 1a shows the average test accuracy at the end of disjoint MNIST sequence for different values47

of n. Very small value of n tends to give a very noisy estimate of the new sample(s) similarity score48

2



Method T1 T2 T3 T4 T5 Avg
GSS-IQP(Constrained) 90.0 70.0 45.13 88.77 86.08 76.26
GSS-IQP(Rehearsal) 81.5 69.47 46.96 69.80 88.0 71.3

Table 2: Comparison between our GSS-IQP constrained and GSS-IQP rehearsal, buffer size 100.

Method T1 T2 T3 T4 T5 Avg
GSS-IQP(Constrained) 95.0 83.0 68.7 87.6 82.4 83.4
GSS-IQP(Rehearsal) 94.6 83.89 50.6 77.0 88.67 78.9

Table 3: Comparison between our GSS-IQP constrained and GSS-IQP rehearsal, buffer size 200.

and hence new samples are added more often to the buffer resulting in a more forgetting of previous49

tasks and a less average test accuracy, Avg.Acc. = 67.3 for n = 1. Increasing n tends to give a50

better estimation and as a result better average test accuarcies. However, large values of n lead to51

a high rejection rates as it only adds new samples that are very different from all samples in buffer.52

As such, first tasks will have more representative samples in the buffer than later tasks and average53

test accuracy slightly decreases. In all the experiments, we used n = 10 as a good trade-off between54

good score approximation and computational cost.55

2.4 Batch size effect.56

In this paper, we consider a never-ending stream of data that we aim at learning efficiently. In our57

experiments, we wanted to be as close as possible to the full online setting. Hence, we used a batch58

size of 10, as in GEM [2], which seems a good approximation. To test the effect of the batch size on59

the our continual learning performance, we run GSS-Greedy on disjoint MNIST benchmark with60

buffer size M = 300 considering different batch sizes.61

Figure 1b shows the average test accuracy at the end of the sequence for different batch sizes. In the62

online learning, only one pass over the training data of a given “task” is performed. Large batch sizes63

lead less parameter updates. As a result, the learning methods fails to achieve a good performance on64

the learned samples compared to the configuration with smaller batch size. Additionally, very small65

batch size means noisier parameter update estimation.66
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