
– Supplementary Material –
How to Initialize your Network?

Robust Initialization for WeightNorm & ResNets

Devansh Arpit∗†, Víctor Campos∗‡, Yoshua Bengio§
†Salesforce Research, ‡Barcelona Supercomputing Center,

§Montréal Institute for Learning Algorithms, Université de Montréal, CIFAR Senior Fellow
devansharpit@gmail.com, victor.campos@bsc.es

∗Equal contribution. Work done while Víctor Campos was an intern at Salesforce Research.

Preprint. Under review.

A Experimental setup

A.1 Details about Figure 1 (top)

We use a weight normalized 20 layer MLP with 1000 randomly generated input samples in R500.
We test three initialization strategies. (1) He initialization [3] for the weight matrices and the gain
parameter g for all layers are initialized to 1. (2) Proposed initialization, where weights are initialized
to be orthogonal and gains are set as

√
2nl−1/nl. (3) Proposed initialization, where weights are

initialized using He initialization and gains are set as
√

2nl−1/nl. In all cases biases are set to 0.
At initialization itself, we forward propagate the 1000 randomly generated input samples, measure
the norm of hidden activations, and compute the mean and standard deviation of the ratio of norm
of hidden activation to the norm of the input. This is shown in Figure 1 (top left). In Figure 1 (top
right), we similarly record the norm of hidden activation gradient by backpropagating 1000 random
error vectors, and measure the ratio of the norm of hidden activation gradient to the norm of the error
vector. We find that the proposed initialization preserves norm in both directions while vanilla He
initialization fails. This shows the importance of proper initialization of the γ parameter of weight
normalization.

A.2 Details about Figure 1 (bottom)

We use a weight normalized ResNet with 40 residual blocks with 1000 randomly generated input
samples in R500. The network architecture is exactly as described in Eq. 6, with a residual block
composed of two fully connected (FC) layers, i.e. FC1→ ReLU→ FC2. The weight normalization
layers are inserted after FC layers. We test three initialization strategies. (1) He initialization [3] for
all the weight matrices, and gain parameter g = 1. (2) Proposed initialization where weights are ini-
tialized to be orthogonal and gains are set as

√
2 · fan-in/fan-out for FC1 and

√
fan-in/(40 · fan-out)

for FC2. (3) Proposed initialization where weights are initialized using He initialization and gains are
set same as in the previous case. In all cases biases are set to 0. At initialization itself, we forward
propagate the 1000 randomly generated input samples, measure the norm of hidden activations hb
and compute the mean and standard deviation of the ratio of norm of hidden activation to the norm of
the input x. This is shown in Figure 1 (bottom left). In Figure 1 (bottom right), we similarly record
the norm of hidden activation gradient by backpropagating 1000 random error vectors and measure
the ratio of the norm of hidden activation gradient ∂`

∂hb to the norm of the error vector ∂`
∂hB . We find

that the proposed initialization preserves norm in both directions while vanilla He initialization fails.
This shows the importance of proper initialization of the g parameter of weight normalization.

Table 1: Hyperparameters for MNIST experiments. Values between brackets were used in the grid
search. Learning rate of 0.00001 was considered for depths 100 and 200 only.

Parameter Value
Data split 10% of the original train is set aside for validation purposes
Number of hidden layers {2, 5, 10, 20, 100, 200}
Size of hidden layers {512, 1024}
Number of epochs 150
Initial learning rate {0.1, 0.01, 0.001, 0.0001, 0.00001∗}
Learning rate schedule Decreased by 10× at epochs 50 and 100
Batch size 128
Weight decay 0.0001
Optimizer SGD with momentum = 0.9

B Reinforcement Learning experiments

Despite its tremendous success in supervised learning applications, Batch Normalization [4] is seldom
used in reinforcement learning (RL), as the online nature of some of the methods and the strong
correlation between consecutive batches hinder its performance. These properties suggest the need

2

Table 2: Hyperparameters for CNN experiments on CIFAR-10. Values between brackets were used
in the grid search. Learning rate of 0.001 was considered for depth 100 only.

Parameter Value
Data split 10% of the original train is set aside for validation purposes

Architecture

2× [Conv2D 3× 3/2, 512]
(N− 2)× [Conv2D 3× 3/1, 512]
Global Average Pooling
10-d Linear, softmax

Number of hidden layers (N) {5, 25, 100}
Number of epochs 500
Initial learning rate {0.01, 0.001∗}
Learning rate schedule Decreased by 10× at epoch 166
Batch size 100
Weight decay {0.001, 0.0001}
Optimizer SGD without momentum

Group name Output size Block type

conv1 32×32 [Conv2D 3×3, 16×k]

conv2 32×32 N×

[
Conv2D 3×3, 16×k

ReLU
Conv2D 3×3, 16×k

]

conv3 16×16 N×

[
Conv2D 3×3, 32×k

ReLU
Conv2D 3×3, 32×k

]

conv4 8×8 N×

[
Conv2D 3×3, 64×k

ReLU
Conv2D 3×3, 64×k

]
out 1×1 [average pooling, 10-d fc, softmax]

weight	layer

weight	layer

ReLU

Figure 1: Left: Architecture of Wide Residual Networks considered in this work. Downsampling
is performed through strided convolutions by the first layers in groups conv3 and conv4. Right:
Structure of a residual block. Note that there is no non-linearity after residual conections, unlike [3].

for normalization techniques like Weight Normalization [6], which are able to accelerate and stabilize
training of neural networks without relying on minibatch statistics.

We consider the Asynchronous Advantage Actor Critic (A3C) algorithm [5], which maintains a policy
and a value function estimate which are updated asynchronously by different workers collecting
experience in parallel. Updates are estimated based on n-step returns from each worker, resulting in
highly correlated batches of n samples, whose impact is mitigated through the asynchronous nature
of updates. This setup is not well suited for Batch Normalization and, to the best of our knowledge,
no prior work has successfully applied it to this type of algorithm.

We evaluate agents using Atari environments in the Arcade Learning Environment [1]. Our initial
experiments with the deep residual architecture introduced by Espeholt et al. [2] show that adding
Weight Normalization improves convergence speed and robustness to hyperparameter configurations
across different environments. However, we did not observe important differences between initializa-
tion schemes for these weight normalized models. Despite being significantly deeper than previous
architectures used in RL, this model is still relatively shallow for supervised learning standards,
and we observed in our computer vision experiments that performance differences arise for deeper
architectures or high learning rates. The latter is known to cause catastrophic performance degradation
in deep RL due to excessively large policy updates [7], so we opt for building a much deeper residual
network with 100 layers. Collecting experience with such a deep policy is a very slow process even
when using GPU workers. Given this computational burden, we use hyperparameters tuned in initial

3

Table 3: Hyperparameters for WRN experiments on CIFAR-10. Values between brackets were used
in the grid search. Learning rates smaller than 10−5 were considered for N = 1666 (10,000 layers)
only.

Parameter Value
Data split 10% of the original train is set aside for validation purposes
WRN’s N (residual blocks per stage) {1, 16, 166, 1666}
WRN’s k (width factor) 1
Number of epochs 1
Initial learning rate {7 · 10−1, 3 · 10−1, 1 · 10−1, . . . , 10−5, . . . , 10−7∗}
Batch size 128
Weight decay 0.0005
Optimizer SGD with momentum = 0.9

experiments for the deep network introduced by Espeholt et al. [2], and report initial results in one of
the simplest environments2 in Figure 2.

0 1M 2M 3M 4M 5M 6M 7M
Timesteps

21

10

0

10

21

Re
wa

rd

PongNoFrameskip-v4

No WN WN (proposed) WN (PyTorch default)

Figure 2: Learning progress in Pong. Shading shows maximum and minimum over 3 random seeds,
while dark lines indicate the mean. Weight normalization with the proposed initialization improves
convergence speed and reduces variance across seeds. These results highlight the importance of
initialization in weight normalized networks, as using the default initialization in PyTorch prevents
training to start.

We observe that the weight normalized policy with the proposed initialization manages to solve the
task much faster than the un-normalized architecture. Perhaps surprisingly, the weight normalized
policy with the sub-optimal initialization is not able to solve the environment in the given timestep
budget, and it performs even worse than the un-normalized policy. These results highlight the
importance of proper initialization even when using normalization techniques.

The deep network architecture considered in this experiment is excessively complex for the considered
task, which can be solved with much smaller networks. However, with the development of ever
complex environments [9] and distributed learning algorithms that can take advantage of massive
computational resources [2], recent results have shown that RL can benefit from techniques that have
found success in the supervised learning community, such as deeper residual networks [8, 2]. The
aforementioned findings suggest that RL applications could benefit from techniques that help training
very deep networks robustly in the future.

2Collecting 7M timesteps of experience took approximately 10h on a single GPU shared by 6 workers. Even
though this amount of experience is enough to solve Pong, A3C usually needs many more interactions to learn
competitive policies in more complex environments.

4

C Proofs

Theorem 1 Let v = ReLU
(√

2n
m · R̂u

)
, where u ∈ Rn and R̂ ∈ Rm×n. If Ri

i.i.d.∼ P where P

is any isotropic distribution in Rn, or alternatively R̂ is a randomly generated matrix with orthogonal
rows, then for any fixed vector u, E[‖v‖2] = Kn · ‖u‖2 where,

Kn =


2Sn−1

Sn
·
(

2
3 ·

4
5 . . .

n−2
n−1

)
if n is odd

2Sn−1

Sn
·
(

1
2 ·

3
4 . . .

n−2
n−1

)
· π2 otherwise

(1)

and Sn is the surface are of a unit n-dimensional sphere.

Proof: During the proof, take note of the distinction between the notations R̂i and Ri. Our goal is to
compute,

E[‖v‖2] = E[
m∑
i=1

v2i] (2)

=

m∑
i=1

E[v2i] (3)

Suppose the weights are randomly generated to be orthogonal with uniform probability over all
rotations. Due to the linearity of expectation, when taking the expectation of any unit vi over the
randomly generated orthogonal weight matrix, the expectation marginalizes over all the rows of
the weight matrix except the ith row. As a consequence, for each unit i, the expectation is over an
isotropic random variable since the orthogonal matrix is generated randomly with uniform probability
over all rotations. Therefore, we can equivalently write,

E[‖v‖2] = mE[v2i] (4)

Note that the above equality would trivially hold if all rows of the weight matrix were sampled i.i.d.
from an isotropic distribution. In other words, the above equality holds irrespective of the two choice
of distributions used for sampling the weight matrix.

We have,

E[v2i] = E[max(0,

√
2n

m
· R̂T

i u)
2] (5)

=

∫
Ri

p(Ri)max(0,

√
2n

m
· ‖u‖ cos θ)2 (6)

where p(Ri) denotes the probability distribution of the random variable Ri, and θ is the angle
between vectors R̂i and u. Hence θ is a function of R̂i. Since Ri is sampled from an isotropic
distribution, the direction and scale of Ri are independent. Thus,∫

p(Ri)max(0,

√
2n

m
· ‖u‖ cos θ)2 =

∫
Ri

p(‖Ri‖)
∫
R̂i

p(R̂i)max(0,

√
2n

m
· ‖u‖ cos θ)2 (7)

=

∫
R̂i

p(R̂i)max(0,

√
2n

m
· ‖u‖ cos θ)2 (8)

=
2n

m
· ‖u‖2

∫
R̂i

p(R̂i)max(0, cos θ)2 (9)

Since P is an isotropic distribution in Rn, the likelihood of all directions is uniform. It essentially
means that p(R̂i) can be seen as a uniform distribution over the surface area of a unit n-dimensional
sphere. We can therefore re-parameterize p(R̂i) in terms of θ by aggregating the density p(R̂i) over
all points on this n-dimensional sphere at a fixed angle θ from the vector u. This is similar to the
idea of Lebesgue integral. To achieve this, we note that all the points on the n-dimensional sphere at
a constant angle θ from u lie on an (n− 1)-dimensional sphere of radius sin θ. Thus the aggregate

5

density at an angle θ from u is the ratio of the surface area of the (n − 1)-dimensional sphere of
radius sin θ and the surface area of the unit (n)-dimensional sphere. Therefore,∫

R̂i

p(R̂i)max(0, cos θ)2 =

∫ π

0

Sn−1
Sn

· | sinn−1 θ| ·max(0, cos θ)2 (10)

=
Sn−1
Sn

∫ π/2

0

sinn−1 θ cos2 θ (11)

=
Sn−1
Sn

∫ π/2

0

sinn−1 θ(1− sin2 θ) (12)

=
Sn−1
Sn

∫ π/2

0

sinn−1 θ − sinn+1 θ (13)

Now we use a known result in existing literature that uses integration by parts to evaluate the integral
of exponentiated sine function, which states,∫

sinn θ = − 1

n
sinn−1 θ cos θ +

n− 1

n

∫
sinn−2 θ (14)

Since our integration is between the limits 0 and π/2, we find that the first term on the R.H.S. in the
above expression is 0. Recursively expanding the n− 2th power sine term, we can similarly eliminate
all such terms until we are left with the integral of sin θ or sin0 θ depending on whether n is odd or
even. For the case when n is odd, we get,∫ π/2

0

sinn θ =

(
2

3
· 4
5
. . .

n− 1

n

)∫ π/2

0

sin θ (15)

= −
(
2

3
· 4
5
. . .

n− 1

n

)
cos θ|π/20 (16)

=

(
2

3
· 4
5
. . .

n− 1

n

)
(17)

For the case when n is even, we similarly get,∫ π/2

0

sinn θ =

(
1

2
· 3
4
· 5
6
. . .

n− 1

n

)∫ π/2

0

sin0 θ (18)

=

(
1

2
· 3
4
· 5
6
. . .

n− 1

n

)∫ π/2

0

1 (19)

=

(
1

2
· 3
4
· 5
6
. . .

n− 1

n

)
· π
2

(20)

Thus, ∫ π/2

0

sinn−1 θ − sinn+1 θ =


1
n ·
(

2
3 ·

4
5 . . .

n−2
n−1

)
if n is odd

1
n ·
(

1
2 ·

3
4 . . .

n−2
n−1

)
· π2 otherwise

(21)

Define,

Kn =


2Sn−1

Sn
·
(

2
3 ·

4
5 . . .

n−2
n−1

)
if n is odd

2Sn−1

Sn
·
(

1
2 ·

3
4 . . .

n−2
n−1

)
· π2 otherwise

(22)

Then, ∫
R̂i

p(R̂i)max(0, cos θ)2 =
0.5Kn

n
(23)

6

Thus,

E[‖v‖2] = mE[v2i] (24)

= m · 2n
m
· ‖u‖2 · 0.5Kn

n
(25)

= Kn · ‖u‖2 (26)

which proves the claim. �

Lemma 1 If network weights are sampled i.i.d. from a Gaussian distribution with mean 0 and biases
are 0 at initialization, then conditioned on hl−1, each dimension of 1(al) follows an i.i.d. Bernoulli
distribution with probability 0.5 at initialization.

Proof: Note that al := Wlhl−1 at initialization (biases are 0) and Wl are sampled i.i.d. from a
random distribution with mean 0. Therefore, each dimension ali is simply a weighted sum of i.i.d.
zero mean Gaussian, which is also a 0 mean Gaussian random variable.

To prove the claim, note that the indicator operator applied on a random variable with 0 mean
and symmetric distribution will have equal probability mass on both sides of 0, which is the same
as a Bernoulli distributed random variable with probability 0.5. Finally, each dimension of al is
i.i.d. simply because all the elements of Wl are sampled i.i.d., and hence each dimension of al is a
weighted sum of a different set of i.i.d. random variables. �

Theorem 2 Let v =
√
2 ·
(
R̂Tu

)
� z, where u ∈ Rm, R ∈ Rm×n and z ∈ Rn. If each Ri

i.i.d.∼ P

where P is any isotropic distribution in Rn or alternatively R̂ is a randomly generated matrix with
orthogonal rows and zi

i.i.d.∼ Bernoulli(0.5), then for any fixed vector u, E[‖v‖2] = ‖u‖2.

Proof: Our goal is to compute,

E[‖v‖2] = 2 · E[‖(
n∑
i=1

R̂iui)� z‖2] (27)

= 2 · E[
m∑
j=1

(

n∑
i=1

R̂ijui)
2 · z2j] (28)

= 2 · E[z2j] · E[
m∑
j=1

(

n∑
i=1

R̂ijui)
2] (29)

= E[‖(
n∑
i=1

R̂iui)‖2] (30)

= E[
n∑
i=1

u2i ‖R̂i‖2 +
∑
i6=j

uiuj · R̂T
i R̂j] (31)

= ‖u‖2 +
∑
i6=j

uiuj · E[R̂T
i R̂j] (32)

= ‖u‖2 +
∑
i6=j

uiuj · E[cosφ] (33)

where φ is the angle between R̂i and R̂j . For orthogonal matrix R̂ cosφ is always 0, while for R̂

such that each Ri
i.i.d.∼ P where P is any isotropic distribution, E[cosφ] = 0. Thus for both cases3

we have that,

E[‖v‖2] = ‖u‖2 (34)

which proves the claim. �
3This also suggests that orthogonal initialization is strictly better than Gaussian initialization since the result

holds without the dependence on expectation in contrast to the Gaussian case.

7

Theorem 3 Let R({Fb(.)}B−1b=0 , θ, α) be a residual network with output fθ(.). Assume that each
residual block Fb(.) (∀b) is designed such that at initialization, ‖Fb(h)‖ = ‖h‖ for any input h to
the residual block, and < h, Fb(h) >≈ 0. If we set α = 1/

√
B, then,

‖fθ(x)‖2 ≈ c · ‖x‖2 (35)

where c ∈ [
√
2,
√
e].

Proof: Let x denote the input of the residual network. Consider the first hidden state h1 given by,

h1 := x+ αF1(x) (36)

Then the squared norm of h1 is given by,

‖h1‖2 = ‖x+ αF1(x)‖2 (37)

= ‖x‖2 + α2‖F1(x)‖2 + 2α < x, F1(x) > (38)

Since ‖F1(x)‖2 = ‖x‖2 and < x, F1(x) >≈ 0 due to our assumptions, we have,

‖h1‖2 ≈ ‖x‖2 · (1 + α2) (39)

Similarly,

h2 := h1 + αF2(h
1) (40)

Thus,

‖h2‖2 = ‖h1‖2 + α2‖F2(h
1)‖2 + 2α < h1, F2(h

1) > (41)

Then due to our assumptions we get,

‖h2‖2 ≈ ‖h1‖2 · (1 + α2) (42)

Thus we get,

‖h2‖2 ≈ ‖x‖2 · (1 + α2)2 (43)

Extending such inequalities to the Bth residual block, we get,

‖hB‖2 ≈ ‖x‖2 · (1 + α2)B (44)

Setting α = 1/
√
B, we get,

‖hB‖2 ≈ ‖x‖2 ·
(
1 +

1

B

)B
(45)

Note that the factor
(
1 + 1

B

)B → e as B →∞ due to the following well known result,

lim
B→∞

(
1 +

1

B

)B
= e (46)

Since B ∈ Z,
(
1 + 1

B

)B/2
lies in [

√
2,
√
e].

Thus we have proved the claim. �

Theorem 4 Let R({Fb(.)}B−1b=0 , θ, α) be a residual network with output fθ(.). Assume that each

residual block Fb(.) (∀b) is designed such that at initialization, ‖∂Fb(h
b)

∂hb u‖ = ‖u‖ for any fixed
input u of appropriate dimensions, and < ∂`

∂hb ,
∂Fb−1

∂hb−1 · ∂`∂hb
>≈ 0. If α = 1√

B
, then,

‖ ∂`
∂h1
‖ ≈ c · ‖ ∂`

∂hB
‖ (47)

where c ∈ [
√
2,
√
e].

Proof: Recall,

hb := x+ αFb(h
b−1) (48)

8

Therefore, taking derivative on both sides,
∂`

∂hb−1
= (I+ α · ∂Fb

∂hb−1
) · ∂`
∂hb

(49)

=
∂`

∂hb
+ α · ∂Fb

∂hb−1
· ∂`
∂hb

(50)

Taking norm on both sides,

‖ ∂`

∂hb−1
‖2 = ‖ ∂`

∂hb
‖2 + α2 · ‖ ∂Fb

∂hb−1
· ∂`

∂hb−1
‖2 + 2α· < ∂`

∂hb
,
∂Fb
∂hb−1

∂`

∂hb−1
> (51)

Due to our assumptions, we have,

‖ ∂`

∂hb−1
‖2 ≈ ‖ ∂`

∂hb
‖2 + α2 · ‖ ∂`

∂hb−1
‖2 (52)

= (1 + α2) · ‖ ∂`

∂hb−1
‖2 (53)

Applying this result to all B residual blocks we have that,

‖ ∂`
∂h1
‖2 ≈ (1 + α2)B · ‖ ∂`

∂hB
‖2 (54)

Setting α = 1/
√
B, we get,

‖ ∂`
∂h1
‖2 ≈ (1 + 1/B)B · ‖ ∂`

∂hB
‖2 (55)

Note that the factor
(
1 + 1

B

)B → e as B →∞ due to the following well known result,

lim
B→∞

(
1 +

1

B

)B
= e (56)

Since B ∈ Z,
(
1 + 1

B

)B/2
lies in [

√
2,
√
e].

Thus we have proved the claim. �

References
[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 2013.

[2] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable distributed
deep-rl with importance weighted actor-learner architectures. In ICML, 2018.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

[5] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

[6] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In NIPS, 2016.

[7] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

[8] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 2017.

[9] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft II: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

9

	Experimental setup
	Details about Figure 1 (top)
	Details about Figure 1 (bottom)

	Reinforcement Learning experiments
	Proofs

