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A Proof of Theorem (1]

The full proof for Theorem [I)is presented in this section. Since o < f3, we have p < n hold for large

enough N. Then, the least square estimate Op is given by (X pX p) X 15X 0 and the prediction
error is given by

Error = Eguyl(y—2'0)% = Euyl@p(0p — 0p) + 2p.0p:)?]
= =2 (XpX ) X pX peOpe|? + | DE0p |,

where Xp € RP*P and Xp. € RIV-P)X(N=P) are the two diagonal matrices whose diagonal
elements are the first p and last N — p diagonal elements of X respectively. By our assumption on 6,
we have

]EQ[EI'I'OI'} = tr(X;cXp(X;Xp)ilzp(X;Xp) 1x7 ch) +tr(2pc)
Our next step is to apply Markov inequality to show (@). Note that X p. is independent of X p.
Hence, the expectation of Error given X p is the following:

E[Error | Xp] = tr(Zpe)- (tr(XpXp) 'Ep) +1)
tr(Tpe) - (tr(X pXp) ™) +1), (26)

where X p = X pX 2. (The expectation only conditions on X p; in particular, it averages over
X pe.) Further, the variance of Error given X p is the following: letting = ~ A/(0, I),

var(Error | X p)
= tr(Zh)var(z" X p(X p X p) ' 2p(XpXp) ' X5z | Xp)
2tr(7:) | X p(X p X p) ' Zp(XpXp) ' Xp|}
= 2tr(Z% ) tr((X p X p) ' Zp(Xp X p) ' 2p)
= 2tr(ZL ) tr((X pX p)72).
Hence, by Markov’s inequality and the fact that tr(X5.) < tr(Xpe)?2, we have

IN

Eo[Error] = E[Error | X p] - (1 +0, (tr((X;XP)—2)1/2 : (tr((X;XP)—l) + 1) 1)) .27

Our next step is to simplify (Z7). Note that X p is a standard Gaussian matrix. Hence, when o > 0,
from (2.104) and (2.105) of [[18]], we know

tr((XIT;Xp)1> 2, ﬁfa and ’?u((x}xp)z) s (ﬁf:)g.

When a = 0, i.e., p = o(n), from (2.110) and (2.111) of [18]], we know
2

o —1 . - -2 §
”m((X;XP) ) 2% 1 and ”tr((X,ZXp) ) ag
P P

Therefore, with Z6) and (Z7), we have for all o < 33,

Eg[Error] = E[Error|Xp]- |1+ O,

E[Error | X p] - (1 +Op <\/1N>>

P T ¥ -1 P, B
P (Spe) - tr<(XPXP) )+1 —>tr(2pc)-ﬁ_a. (28)

Our final step is to analyze tr (X p<). Note that fSHt Tt < 5 < , t7" dt. Hence, we have
N N
N* 1 N*
/ Tdt/N < — E - :N“_ltr(Epc) < / Tdt/N 29)
1t N it p

Therefore, we know tr (X pc) — N17# fi t=*dt as p — oo and thus (@) holds.

10
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B Proof of Theorem 2

B.1 Existence and positivity of m’.(0)

We already showed in Section [2.3| that m,,(0) is well-defined. We now show that m,(z) is well-
defined in a neighborhood of z = 0, which we can then use to establish the existence and positivity
of m/,(0). Note that, in fact, Lemma|[l]in Appendix shows that m, (z) is the Stieltjes transform
of a distribution, specifically the limiting distribution of the empirical eigenvalue distribution of X p.
This lemma, which is proved in Appendix [B.4] establishes the existence of the Stieltjes transform for
all z < 0. Here, we just give the arguments needed to show the existence of m/ (0).

Define
1

(m) Ly 1/00 at
Ze(m) := —— + = _—
m B Jo-r kt1/5(1+t-m)

Based on (6)), we can consider z,(m) to be the inverse of m,(z) wherever m,(z) exists. Then, note
that

dze(m) 1 1 /OO 12 dt
dm o om2 B Jpew kEFYR(L 4t om)2
Hence, we have
dz, 1 [ t?
wlm) > g gz 1 / dt.
dm < < B Ja-r ktHYE(m=1 4 1)2
Note that % f(;’fh Ktlﬂmzfn_urt)g dt is a increasing function of m with

! /OO r dt — 0 -0
= asm ;
B Ja—r ktIHE(m=1 4 1)2

! /OO r dt — ! >1 —
- = as m — oo.
B Ja—r ktIHE(mMm=1 4 1)2 B

Hence, there exists a constant m,. such that for all 0 < m < m,, the function z,,(m) is increasing on
the interval (0, m.) and decreasing on (m,, o). Furthermore, note that

1 [ 1

Evaluating this integral as m — 0% and as m — +oo shows that

-1 asm — 0T,

m-z.(m) — {1_

1
3 1>0 asm — +oo, (D

which in turn implies

—oco asm — 07"
K ’ 32
zn(m) = {O as m — +oo. (32)

Therefore, z,(m) is strictly increasing on z < 0. Further, for z € [0, z,,(m.)], there are two only
solutions of m satisfying (6). Therefore, since m,;(2) is defined to be the smallest positive solution
of (6), the mapping between z € (—o0, z,.(m.)] and m € (0, m.] defined by z,(m) and m,(z) is
continuous, one-to-one, and z,(m.) > 0. This shows that m,,(z) is well-defined and continuous at
z = 0. Then, by continuity of the defining expression, we conclude that m/,(0) exists.

Next, we use the chain rule to calculate the value of m/, (0). From the definition of m, in (@), the
change-of-variable in (I2), and the definition of ¢,; in (I3)), we have

1 my(2)1/*5
5T Bama(2) R ~q,.€< a ,a) 53)

11
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for z in a neighborhood of z = 0. Also, from the analysis in Section 2.3 we have m,;(0) = (sfa)"
and g, (s, ) = 0. Then, taking the derivative with respect to z on both sides of (33)) and with the
chain rule, we have

L (1_1> Jm()'E (mW/a>
K Ba «

1 gk (s, @)
+ — .
Bam(z)1-1/x Js
Hence, plugging in z = 0 and solving for m/_(0) gives

Iﬂ;ﬁaz(mﬁ(O))Q_g/”

_ 9q,. (s,a0)
Os s=st

m,ﬁ(z)l/’i*l ,
e e (2)

m,.(0) =

Then, using the formula for the derivative of ¢,; in (I4), we have
1 + (S* )H
m!.(0) = kBm2(0) - = .
v O e e
Since (s})" < /(o — B) (recall the argument in Section [2.3|following Equation (T4)), it follows
that m/.(0) > 0.

(34)

B.2 Analysis of part 1

In this section, we will prove that
lenﬁ
¢ (2 I-TI ) 2, .
T P ( Xp) My (0)
(The existence and uniqueness of m» := m,(0) is proved in the beginning of Section ) Let
>p=N"%pand X p = N*/2X p, then we have, for all x> 0,

(35)

1 /- 2N
tr(Ep(I—HXP)) - ;ﬁ(ntr(zp)—nm«@px; (XPX;) Xp)>
2 (La(s)) - e (Se (Xnke 4 nd) X0X
= N Er( P) ﬁr P( PP ,un) pAP |+ €,
n 1 = 1 -7 2 -1

where ¢, , is given by

1 ~ o T 3 -1 o1 1 - T (o =T\ ! -

€, = —tr(Sp (XPXp + nuI) X, Xp) - —tr(SpX, (XPXP) Xp).

n n

Since n/N* — N'7% 3, the claim in (33) is implied by
-1
1 - 1 o7 ¢ 1
,U/'Etr <2P (nXPXP—’—/’LI) >+6/14n = m‘i_op(l)

Hence, our task is reduced to finding a suitable positive sequence (i, )r>1 such that the following
hold:

op(1), (37)

| €in
and

1 S R -\,
n—tr| X - XX nd .
fin - r( P <n pXp+ > > - mn(0) (38)

With foresight, we shall assume that

1t < min {\/1N O(N—H)} .

12
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B.2.1 Proof of Equation
Let us first show (37). Towards this end, we bound |¢,,, | as follows:

1 ~ =T =z -1+ o T = -\ ! -
M 1, T /e =T\l = ST -1 5.
< SISlet (Xp (XpXp) Xp— (XpXp+pnd) XpXp
n in

N* n
S o N () < NE (39)
n i:lAi*fun HHHAAO

<

where )\; is the i-th eigenvalue of %X pX ; and m,,(z) is the Stieltjes transform of the empirical
eigenvalue distribution of %X X Inequality (i) holds because

T < -1\ ! < ST S S
X5 (XPXP) Xp— (XPXp n unnI) X Xp

is positive semi-definite. Hence, the proof of (37) only require us to lower bound min,();) and the
following lemma will help us complete this task.

Lemma 1. Suppose the empirical eigenvalue distribution of the diagonal matrix H converges to
a limiting distribution H with probability density function f},. Assume that the support of f, is a
subset of the interval |1, 00) for some positive constant 1. Let X € R"*P be a standard Gaussian
matrix and suppose p/n — v > 1. Let m,,(z) be the Stieltjes transform of the empirical eigenvalue
distribution F,, of %X HX'. Then F, converges to a limit F whose Stieltjes transform, denoted by

m(z), satisfies
-1
B © tfu(t) dt .
m(z) = - (Z’Y/m 1—|—tm(z)> ;. Vz € supp(F)“. (40)

Further, there exists a constant c. > 0 such that the minimum eigenvalue of %XHXT is lower-
bounded by c. in probability. Finally, for any increasing sequence z, — 0~, we have

Mn(zn) = m(0) and m! (z,) = m/(0). 41)

The proof of Lemma [I]is shown in Appendix Hence to apply Lemmal(I] we need the empirical
distribution of the eigenvalues of the covariance matrix 3 p converges to a limiting distribution and
thus we need to scale 3 p properly. The following lemma confirms that the correct scaling is p".

Lemma 2. Let S = {i}p, <i<p, with 0 < p1 < po < N. Suppose 5 — oy and B — s
with 0 < a3 < ag < 1. Then, the empirical eigenvalue distribution of N*"Xg converges to a
(non-random) distribution F with probability density function f given by

1 1
s R ey, a1 >0
— {se[a2 X ]}’ 1
R «
fls) = 4 Moz ) (42)
—_1-1
TR s =0
P {s€lay *,00)} o

The proof of Lemma[2]is shown in Appendix [B.5] Using Lemma|[I] Lemma[2] and (39), we see that
since p,, = o(IN "), we have

€, | = op(1),
which establishes Equation (37).
B.2.2 Proof of Equation (38)
Our next goal is to prove (38)), i.e.,
Hn & P 1
—tr(XpS,) —
n 1(2pSn) m,;(0)
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where

_ 1 -1 - -1
S, = (X,ZXP + unI) :

n
The same result has been proved in Lemma 2.2 of [11] with additional assumption that the empirical
eigenvalue distribution of 3 converges to a limiting distribution with bounded support. However,

this assumption does not hold in our case. We employ a similar proof strategy with more involved
arguments based on leave-one-out estimates [[19].

Let &; be the i-th row of X p. Then using the identity

O 1 e _
i=

we have
L 1 o o
E;azzsnw, = ﬁtr Z;.S'na:lasz
=t (8u(8, ~ D))
= tr(I—an'n). (43)
Foreachi =1,...,n, define

\i 1o7 s 1 -t -1
5= (X}Xp ~ Saal + un1> - (Snl _ n*lgb@;) .
n n

By the Sherman-Morrison formula, we have

SN\ = \i
~ i 1 S zx’S
S, = S; = n T $z~\in ) (44)
"1+ izls
Hence, with (43)), we have
n n “N\i . .+ =\t
- 1 = 1 i 1 S zxS -
0= B,) = @8 = Y@ (&) - PntE O g
n i=1 n =1 " 1 + %i: n T
1 ¢ & 8)'% " 1
= 72 ; n~\Zz‘ =n- i
TS+ &[S, i1+ ia] S, @

n

1 1
" e+ “7:58:52 z;

Note that |17, (—pn) — mp (0)] < mig&g) where ); is the ith eigenvalue of %pr(;. By Lemma ,

we have
My (—pn) = mn(0) + Op(pin) > my(0). (46)
Therefore, the LHS of (@3] converges to m,;(0) in probability. Then we just need to show the RHS of

(@3] converges to
-1
(L2 (205, )
n

JAVERE En tr (ilpgn) - Mli’TS'}lziz — Hn,
n n

in probability. Let

3
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then note that

1

(22 0(208)) =t

n

- (‘thr(ggpgn)>l_1z 1

n T\
i=1 Hn + %.’1}1 S, Z;

_ iy A
M e (868,) < i (£08,) - A1>
< sup |A;]

We claim that
Mn ~ ~ - .
Tl tr (Ejpsn) = ("‘)p(l),

InN
sup [A;] = Oy <\/JV>

(Proposition [T|and Proposition [2]below). Then with {6)), we have
-1

(’j; br (2Psn)> 2 e (0).
This in turn implies Equation (38) as desired.

B.2.3 Supporting propositions

Proposition 1.
Ml tr (ips’n) = @p(l)

Proof. Note that

”—"tr(SPSn) Y “—"tr(Sn) = Mtr((;X;XP-FMnI)l)

—~
=

n n n

(ii) _ _
D g pon | a-8
no py B

> 0,

where inequality (i) holds due to the fact that Spisa diagonal matrix with diagonal elements lower

T —1
bounded by 1, and inequality (ii) holds due to the fact that ( X ;X p+ punI ) has atleastp — n

1
n

number of eigenvalues ;%n Hence, we have £~ tr(XpS,) = Q,(1). To show B tr <§p§n> =

O, (1) as well, let us introduce S,, = 2;/25712;/2’ then we have

B (£980) = £t (80) < a2 )80l
n n n

Therefore, as p/n — «/f3, we just need to upper bound ||.S}, ||2. To do this, we use the following

lemma.

Lemma 3. Let ¥ € RP*P be a diagonal matrix. Let X € R™*P be a standard Gaussian matrix
with p > n. Suppose & — v > 1 asn,p — oc. Suppose the Gth smallest diagonal element of
3 can be lower bounded by a constant v with probability 1 — 6. Then the minimum eigenvalue of
%XTX + p32 is lower bounded by

min (¢, cap)
with probability 1 — cn? - exp(—c'n) — d for some positive constants ¢y, cz, ¢, ¢’ > 0 that only depend
on .
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The proof of Lemma 3]is shown in Appendix [B.6] Note that
-1
- 1+ < ~—1

S v w1l/2. . . . Sl
where Xp=XpXp / is a standard Gaussian matrix. Further, the 5 smallest eigenvalue of X is

(2p) which converges to a constant ( =)". Hence, by Lemmal we know 1S+ |2 is upper bounded

by O ( —) and thus, £ tr (E S, ) Op(1). This completes the proof of Proposmon O
Proposition 2.
In N
sup|A;| = O, | —= | .
Z_p | | p < \/N)

1/2 1/2

Proof. Let us introduce §" = S\lEP and &; = X5 ' &;. Then,
-1
i 1 _
5, = ( XpXp- LT, +Mn§3pl> ; (47)

where &; is the ith row of X p. Further, we have
A; = “—”t (Sn) — @iTS\ Ty — .

, we can decompose AZ into three parts.

a= (B - L (s))) + (2w (s)) - 2arsie:) -

Intuitively, the first part should be small since S,, and S’;Z only differ at one sample. For the second

part, since x; is independent of S’,\:, the law of large numbers implies that it should be small as well.
Finally, we have y,, — 0. We now make these arguments rigorous. By Lemma [3|again, we have

_ u 1
s (118, max 1831 ) < 0p (). @)

Then, we can show that the difference between “7" tr (S’n) and “7" tr (S’,\j) is small. Note that, by
the Sherman-Morrison formula,

2
Vi e\ 7 (§\) z.
n Fa n =\2 n S 7 S 1an ( n) ¢
sup Bn g (Sn) _ By (57\1> = sup B iy Lf\ln = sup - —————
i | T n i | T n+x] S, x; i M on4+2/S) %,
T+ (a\i)? \i
1 Hn®; (Sn) ; n 1\ 78 z 1
<sup - —————— < sup'u~0p()~w_0p<).
in zTSVa, i fn/ &1 8, & "

Then we want to show the difference between £ tr (S’}f) and £z S>L Z; is small. Note that Z,

is a standard Gaussian vector and it is independent of Sx. Hence, the expectation of £z [ S’,\fici is
given by £ tr (S’ 7\12) Further, by standard x? tail bounds [10], we have

7 _ n =\ 2 n =\7 _
P(max Hn 278\, ‘Ltr(s;) > ZHnP e 4 e2y)8Y ||> < P (49)
n n n
Choose € = 1‘\’%”, we know

- TS\ T; — %tr (S’X)

sup |—
1

=0, <IHN>. (50)

VN
-0 (55)
O

Hence, we have

|A|<sup‘tr (Sn) — AZI (S\1>

—&-sup‘“ TS',\lii:i Hn (S\l)
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B.3 Analysis of part 2

In this section, we will prove that

m,.(0) ! -2 1—
u . thedt N7,
o | o)

We apply a proof similar to that of Theorem [I]in Appendix [A] The conditional expectation of part 2
given X p is

part2 5 N1=%.

Efpart2 | Xp] = tr(zpc)-<tr(2pX}(XpX})‘2Xp)+1). (51)

(This expectation only conditions on X p; in particular, it averages over X pc.) The variance of part
2 given X p is

- 12

var (part2 | Xp) < 2-tr (Th) - [(XpXF) T XpEeXG (XpX5)

F
2
— 9.t (2?,6) tr ((EPX,B (XPX},)‘zxp) ) (52)
Let
b= tr (EPX}, (XpXp)" Xp) .
Then by Markov’s inequality, we have
N —

By (29), we have

Hence, we just need to show

(54)

as this will imply

part2 5 N17%.

as required.

To prove (54), let us first rescale X to 3 and introduce the positive sequence (i, ),>1 just like what
we did for part 1, and with foresight, we pick the sequence such that

tn = o(N7F).

Then we have

-~ - - -2 .
v+l = tr <2PX; (XPX;) Xp> +1

—1 —1
1 - (1o o T &
= tr<2p<X;XP+MnI> (X;Xp> <XPXP+MnI> >+e; +1
n n
1, /(& = n (e =
= ftr(EPSn)fitr(EPSi)+l+e;,
n n n
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We shall prove the following:
€, = op(l), (55)

and

%tr (8r8.) ~ P2 (2580) +1 (56)

which suffices to establish (54).

B.3.1 Proof of Equation (53)

To bound e}, |, note that
e 2 Lsa (o Lxo(txex)) Lx
€ — r{ — — —
pnl = ISP N R Y

1ot AR 1ot -t
—tr ((nx;xp+un1) (nX;XP) <nX;Xp+unI) )

N* " n 25\1 n n
< NN @A) oNr. Hn (57)
= (Nt pn)? N min; (A7)

where S\i is the ¢-th eigenvalue of %X pj( ; and inequality (i) holds due to the fact that
S\ 7?1 - lor e B A U 1or e -1

is positive semi-definite. By Lemma 1} Lemma 2] and (57), since i, = o(N "), we have
= op(1).

€|
B.3.2 Proof of Equation (56)
‘We now prove
1 . Q Hn S &2 P, m, (O)
ﬁ tr (ZPS”) — ? tr (ZPS”) +1 = m

Towards this goal, we employ a strategy similar to the proof of (38). Using the identity S " g pnd =
LS @@, we have

I m 22 1 =2 .
= E xS, z;, = —tr E S,z;z;
n n

i=1 '

With ([@4)), we have

P =2 I~ 2.
tr(Sn—unSn) = fZ:ciTSn:Bi
i3
i vi o\
n NP =
. l Zﬁj-r S\z _ l Sn waZS’n #.
Con ! "oon 1.7\~ !
i=1 1+2z, 5,

(58)



451 Note that L tr (S’n - ungi) = mp(—pin) — nml, (—pn). With @3)) and (38), we have

N2
o L& (s\> &
, 1 n 7 n

452 Hence, we have

1
"(—py) = = 59
mn( H ) TLZ i 2 ( )
i=1 (Mn + L2z ]S, a:1>
453 Note that
2u
My, (—pin) — My, (0)] < ———,
(=) = O] <
454  where 5\1, el ;\n are the eigenvalues of %)N( pf( ;. Therefore, by Lemma we have
m;z(_:“n) = m;(o)"’OP(Nn) 5 m;(O)
455 From (38)), Proposition[I] and Proposition[2] we know that
2
Pn -+ 5\i - 1
<un+ a8, m) 2 P 0. (60)
456 We claim that
1 - . - .
“tr (zpsn—unzpsi) = 0,(1), 61)
n

1.+ 2\ ~\i 2\ _ 1 - = - =2 In N

“&l (8~ (S i o= ot (Sp8 - mEp8) 40y (S ) @2

n:fcz(nu(n)x (2 pnXEpS, | + 0y ~ (62)
457 (Proposition [3]and Proposition ] below). So, we obtain from (39)

2
177 (8~ (8Y) ) 2 S S
1+ nLi (Sn Hn <Sn) ) Ly b 1+ %tr (EPS’I’L - /’LnEPSfL)

1

— RS

n 4 “\i 2 1/m,(0)2 ’
=1 <Nn+ #élizsl 53@) / R( )

3

!’

mn(_ﬂn) =

458 1.e.,

T S BN

as9  This suffices to prove (36) as required.
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B.3.3 Supporting propositions

Proposition 3.
1 - . ~ .
Ztr (zpsn —ﬂnzpsi) = 0,(1).
n

Proof. Recall that
-1
. 1+ .
7= (X;Xp+unzpl> ,
n

where X p = pr];l/z is a standard Gaussian matrix. Let 2 X ;X p = UAU " be the singular
value decomposition of %X ;X p, where UU " = I and A is a diagonal matrix with

Al,l > A2,2 > > An,n > An+1,n+1 == Ap,p =0.
Hence, we have
. /1 _
s25,80° 808 s, (nX;XP> S,
- _ — -~ _ —1
_ (A + unUTﬁplU) A (A n unUTﬁplU) .

Our next step is to bound the maximum eigenvalue of
-1

(A + M,LUTf:;lU)*1 A (A + unUTfJI_DlU>

Let ¢, be the smallest eigenvalue of f];l. Define Ay = A + %I and E;l = un(fll_gl — %"I)
Then A4 and 3 are two positive definite diagonal matrices. Intuitively, for j,, small enough,

(A+mUS5'0) A (A+nUE5'T) = AR

the latter having a maximum eigenvalue bounded by a constant. We now make this argument rigorous.
By the Sherman-Morrision formula, we have

(A+mUE:'U) s (as+Us;U)

-1
1 —1 —1 —1
A =AU (B +UTAGU) UAS

Hence, we know
—1

H (A + unUTS?U)_l A (A + unUTi;U)

< aaans]

—1 —1
1 —1 —1 —1 —1 —1
+2HA¢ U™ (S +UTA;'U)  UA'AAS'UT (34 +UTAS'U)  UA;

2

—1 -1
—1 —1 —1 —1 —1 —1
< 2faztan| <1+‘A¢ U™ (S¢+U'A;'U) UUT (S,+UTA'U) UA;
= of|aztAant| (14 (At (UE UT+A—1)72A—1
o Mg, ¢ ¢ " o |,
-1
= 2faztang?| (1+ (A¢ US,U” + A A¢>
2
-1
= 2|[ATAAL! , (1+ (I+A¢ US,UTA + A US,UT + (U2¢UT)2) A¢)
—1A A1
< afaztang .

20
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471 Note that Ay and A are both diagonal. Hence, we have

A 1
AT'AATYs = max < .
¢ ¢ 1<i< 2= A

<i<n (Ai,i + ¢n2p«n) n,n

a2 To lower bound A,, ,,, we use the following lemma.

473 Lemma 4 (Lemma 10 of [19). Let X € R™*P be a standard Gaussian random matrix, and let x;
474 be the i-th row of the matrix X. Let p = n/p > 1. There exist constants ¢,c’ > 0 such that for
475 large enough n, with probability at least 1 — ¢/ (p? + n?)e™°", the eigenvalues of%XTX and of

476 %(XTX —x;x]) foreach i =1,...,n are contained in the interval
.
(5 -min {0 =17V 1/} 05%).

477 Hence, by Lemma @ we have A, , > fmin((1 — /B/a)?, B/a) > 0 hold with probability
478 1 — c-n2exp(—c'n) for some absolute constants ¢, ¢’ > 0. Hence, we have

< 0p(1) (63)
2

_ 1 o+ o _
n *X X n

479  as required. O

Proposition 4.
2
1 ( z\i ~\i N 1 ~ = = =2 In N
“zr (8Y (S iz—t(ES’n—nES)O—.
nxz < n 2 ( n> )213 n r P 1% PPy + p(\/ﬁ

480 Proof. Itis clear that we just need to prove the following two arguments

1 g\ i) 1 o G\l - i) 2 InN
slip E;ELT <S>L — Hn (S>L> )ii_ntr (EPS>L — UnXp <S>L> > — Op <\I;N>

(64)
sup Ly (zps S (sn)z) Ly (ms}j S (s\)> _ o, (%) |
(65)
481 To show (64), we use a proof similar to that of (63). By Lemmald] we know
max 5 <iX;Xp - imaf) sV = 0,(). (66)
2

482 Note that

2 2
o[ =N = \i . a1/2 [ 2\ ~\i ~1/2_
z; (S; — [in (S}L) ):1:Z = :ciTEP/ (S}L — i <S>L) )213/ Z;

VS 1 Y
= z] (S,\f (nX;XP — n:cia:j> S,f) z;.

483 Furthermore, x; is a standard Gaussian vector, and it is independent of the matrix



484

485

486

487

488

489

490
491
492

Hence, we apply the same proof of (30) with (66) and Lemma 1 of [10]; this gives
1 172 [ =\i ~\i 2 1/2_ 1 ~1/2 [ =\i \é 1/2
sup 7*T2 (Sn — Ly (Sn> )EP T; — ntr Xp <Sn — Ly (S > >EP

Hence, (64) holds. Therefore, it remains to show (63)), which is equivalent to

1 ~ 115 . 1 i 1 i In N
sgp ntr<5n<nXpo)Sn>—tr<S\ ( XPXP—*.’I}Z )S\> = Op(jﬁ>.

(67)
By the Sherman-Morrison formula, we have
and therefore
— 1 — T o \z = v 1 — —T 7\i
tr| S, -XpXp|S,—S, XPXp—fa;,-:L'i S,
n n n
=\i 1 =\i =\i R S\i@iiﬁTg\i
= tr|S, <wlw2) Sy |—2-tr|S, (XPXP> "7*
i _ o \i “\i_ _+a\i
S xS 1+ S x;x' S
| 2o EE o (XITDXP) Sntiicn (68)
n+x/ S, & \" n+x]8S, x;

Let M; S\1<1X Xp—*.’l}zm )S\i.
from (68), we have

sup | L tr (sn (2x5%r) 8, - 8) (X300 - Loia) S)f)
n n n n

g

=\
2 bng.x] S, 1 1 1 2
= sup%—f- tr | M; 2 ! p % — T 3 f;Mﬁ}z—Fi rr 5
i |Han 7 Hn +p pn+ppy |0 (g +p)2 pan (pn =+ p)
A 0)2 = 200+ p) + 2T 2 bagzT8Y\ 1 1
— sup ((n + p) _ plp 2’)) ) B .Y P Oiaiad N ,;2 - Z&] Mz
i p2n(pin + p) n fin +p n (o +p)% n
T 2 \i T 1,_ 5
< sup< + ([ M|z - *Hw z{ Sy 2+ ————5 -~ IIMillfz)
i \n(pn +p)% " n(pn +p) n(pn +p)? 02
T 2 1 T 1
< sup + 1Ml A = lZill5 - 7+ g - —l|2lI3[1 D]z | - (69)
i (n(un +p)?  n(n+p) n' n(pn +p)2 n' 2

Our next step is to bound p, Ty sup; || &;]|2 and sup, || M; ||2 Since the &; are standard Gaussian
vectors, standard x? tail bounds [10] establish that sup; L{|x;||3 = O,(In N). Then, by @), we
know

2
/J/n i > 71
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498
499
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501
502

503

504

505

506

507

508

Using Proposition Proposmonl 2| and @) we also have p = ©,(1). Finally, by (63), we have

sup; || M ;|| = Op(1). Plug in these results in (69), we have
1 (0 (Toro Ve aiflore 1. 2\ au In* N
stl}p ﬁtr (Sn (nX;Xp) S, — S, (nX;Xp—n:cw )S ) = Op< ~ .
Hence (67) holds. O

B.4 Proof of Lemmalll

The first part of the lemma, Equation @), follows from Theorem 2.38 of [18]].

For the second part, to lower bound the minimum eigenvalue A, of %X HX T, we need to find the
support of F. From Section 4 of [16], we have

1 O #2f(t)dt
z € supp(F)¢ & m(z EBandi—v/ >0,
(F) (2) )2 T

1+tm(z))?

where B := {m :m # 0, —m~! € supp(H)}.

To show Amin > ce > 0 holds in probability for some small enough constant c., we just need to show
that for all 0 < z < ¢,

00 t2

ek fr(t)dt > 0. (70)

1
m(z) > 0 and m(z)Q_W/,,

Note that the equation (@0) defining m(z), i.e.,

-1
m(z) = — (zy/ tﬁL(t)dt) ,  Vz € supp(F)°

1

1+t-m(z)

is equivalent to

© g 1 .
z = 'y/m m-fh(t)dt—m, Vz € supp(F)

Let us consider the “inverse” of m(z) defined by the following equation:

> t 1
(m) = ’Y/m e -

Note that

inf > 1.
=

Hence, for all z < 1, if m(z) exists, we have m(z) > 0. Further, note that

dz(m) 1 i t2
am >0 &« m(z)2 V/m m.fh(t)dt>0
& ’y/m _1+t S fn(t)dt < 1.

Moreover, v f - frn(t) dt is a continuous increasing function of m with

(m_1+t)2

[ee) t2
n

oo t2
1
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528
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530
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Therefore, we know there exists a constant m,. such that for all 0 < m < m,, z(m) is a strictly
increasing function on m € (0, m,) and strictly decreasing function on m € [m., c0). Thus, the
conditions in (70) (with m in place of m(z)) are met for all 0 < m < m... Note that

1, asm — 0

oo t _
: = — ) dt—1
m - z(m) <7/771 1/m+t In(®) ) - {fy—1>07 asm — +00’

Therefore, we have z(m) — —oo as m — 0% and z(m) — 0% as m — oo. Then, by continuity
of the function z(m), we know for any non-positive value z, the mapping between z and m > 0
defined by is an one to one mapping. Moreover, since the function z(m) is increasing on
(0, m.) and decreasing on [m,., 00), there exists an unique m* such that z(m*) = 0 and z(m) is a
continuous and increasing function on [0, m*]. Hence, we have m* < m,. This implies m(z) is a
continuous increasing function on z < 0. Further, we can find a small enough constant € > 0 such
that m* + ¢ < m. and 0 < z(m*) < 1 (z is a function here). With ¢, := z(m* + €), we have that
forall 0 < z < ¢, the conditions in (70) are met. Hence Apin > ¢, > 0 holds in probability.
Finally, by the dominated convergence theorem, we have

lim m,(z) =m(z), as. and lim m,(z) =m/(z), as. for Vz <0.

n—oo n—oo

For an increasing sequence z,, — 0, note that for all ¢ > 0, we have [my, (z,) —my,(—€)| < %
holds in probability. Further, m,,(—€’) — m(—¢’) almost surely and m(—¢’) — m(0) as ¢ — 0.
Hence, for all ¢ > 0, we can choose a small enough ¢ > 0 such that

/

a,

P(|mn(zn) — mn(—e")| < g) —~ 1
P(|my (—€”) —m(—€")| < %/) - 1
m(=¢) =m(O)] < .

Hence, we have m,, (z,) = m/(0). Similarly, we have m/, (z,) = m/(0).

B.5 Proof of Lemmalf2]

Let 0;, be the random variable that follows the empirical eigenvalue distribution of N"Xg. Since
the minimum eigenvalue of N"Xg is ZX—H and its maximum eigenvalue is Then for all
2

N*® N*
te [E’ m}, we have

_N®
(p1+1)~-

1 P2
Bow>1) = g 2 logsy
i=1+p1

1 N
= mmax 0, m — D1
_ 1 N
= E 1517 —P1),

where the last inequality is due to the fact that

{NJ > {N(pﬁ—l)

Y N J = |;m+1] > p1.

Hence, as N — oo, we have

1

) — oK

1 1 1
max <0, ﬂ(m - Oél)) s t> s

P(o, >t) —

Hence, the probability density function for the limiting distribution of o, is indeed f(s) given by

@2).
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B.6 Proof of Lemma[3|

Without loss of generality, we assume that the diagonal elements of 32 are in a non-increasing order.
We condition on the event where the 7 smallest diagonal elements of 3 are lower-bounded by v. The
minimum eigenvalue of

1 _ -
S = (XTX + uz) ,
n
is given by

1

Omin(S) = min v’ <XTX +u2) v
llvll=1 n

Let v = (vy,vy) where v is the ﬁrst p — 5 number of components of v and w3 is the last 5 number

of components of v. If ||vy|* > 400 ———, then immediately, we have

Umin(S) > /1’”’01”2]/

> 14
= H3002

Otherwise, let X = (X1, X 5) where X is the first p — 2 columns of X and X is the last
columns of X . Then we have

. 1 - 1. - 1 - _
Omin(S) > min *||X21’2||2+5||X1U1||2—25||X11’1||'|\X2”2||

llvll=1,llvi][2<

4oow

2
1 - 1<
= min 7||X2’l)2|| — ||X1’Ul|)
loll=1, [01]|2< 15 (\/ﬁ Vn

Note that Xz isan x 2 standard Gaussian matrix and therefore the minimum eigenvalue of L X X5
can be lower bounded away from 0. Further X; is an x (p — %) standard Gaussian matrix w1th
p—

2 e 1 as p,n — oo. Hence the maximum eigenvalue of 1 X X1 can be upper bounded. In
fact from LemmaI(Lemma 10 of [19])), we have with probablhty 1 — cn2exp(—c'n), we have

1 2 1 2
and ax —|| X v[]? < 992
o H— H 20" > o5 H = H 1|

Hence, we have

v

1 - 1 -
min — | X 20| = —=|| X 1v1]|
oll=1llv1 ]2 < g5ty VT vn

1 1 1
> /1= -3 s—

5 40072 20y

V399 3
— 100 20

This completes the proof of this lemma.

Omin (S)

C Analysis under polynomial eigenvalue decay with noise o > 0

In this section, we consider analogues of Theorem [[}Theorem [3] that permit noisy independent
observations
yi=x;0+w;, i=1,...,n

where w = (w1, ..., wy) ~ N(0,0%1I), where we allow a2 > 0.

Theorem 5. Assume A.1 with constant k and A.2 with constants o and (3.

(i) We have for all o < 3,

1
Eo g[Error] 2 <N1”/ t" dt+02> '3 p Rula,0), Va< p.  (71)
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When k > 1, the minimum of R, («, o) is achieved at o = 0 and the minimum risk is given
by
min R.(a,0) = o2 72
min R,.(a0) )
When k < 1, we have nearly the same results as in Theorem i.e., the minimum of R (c, o)

is achieved at o* which is the unique solution of the equation h,,(a)) = 0 on (0, ), where
hy () is given by

1
he(a) = g—/ "2 dt — 1 — 0Ly (73)
The minimum risk is therefore given by
min R.(a,0) = NF b . (74)
a<f (Oz*)N

(ii) We have for all o > J3,

1 /
0
Eo g[Error] & N1 b + Nl‘”/ t=rdt + o? m;x(0) = Rela,a). (75)
’ o mZ(0)
(iii) When k > 1, the minimum risk for all « < 1 and oo # p is achieved at o = 0, i.e.,

p = o(n). When r < 1, let o* be the minimizer of Ry (c, o) over the interval [0, 3). Then
limsupy Ri(1,0)/Re(a*,0) < 1.

The proof of (i) can be easily derived from (28). The proof of (ii) can be easily derived as well from
@) and @) For the proof of (iii), note that when « < 1, the dominant part of the risk is the same
as the noiseless case, so (iii) follows from the arguments in Theorem@ When x > 1, the dominant
part of the risk is the noise, and therefore from @), we have

, . AU+ (s1)")
2l Reloo0) 2 0 B o)y

Further, for NV large enough

> 0% = R.(0,0).

. . 5 2 2
> _
Irgn Ri(a,0) — m<1% ; o 0° = Rk(0,0)

This proves (iii) in the case k > 1.

D Proof of Theorem 4

D.1 Proof of Part (i)

Since p < n holds almost surely as N — oo, by excluding an additional zero probability event p > n,
we can apply the same calculation in Section [2.2] and conclude that the following equation holds
under our new settings, i.e.,

B
B—a(v)

Hence, to show (]Z[), we just need to characterize tr (3 pc). By Assumption B.1, we have

E. g[Error] LN (tr (Zpe) +02>

N
N v
tr(Bpe) = [ D07 lieyor<ny —>a-5 tf(t)dt.

i=1 n
Hence, we have

o N v 2 g
E. g[Error] — (CN '5/77 tf(t)dt+o ) W



577 Hence, (22)) holds. Then our next step is to find the optimal v* in (v, 00) when o = 0. Define
[Xtft)dt
gr(v) =
B—0o [ f(t)dt

578 To minimize E,, g[Error], we just need to minimize gs(v) over v € (1, 00) (supp(f). To do this,
579 we analyze the first derivative of g¢(v). Note that

dos(v) _ _ wfr) M) [0
dv B=0a [ f(t)at (5_”;" f(t)dt>2
— fo(oy) - (VﬂwY/ ft) dt*‘;/ tf(t) dt)
(ﬁ —5 [ f(t) dt) g "
_ f) shy(v), Vve (Vb,oo)ﬂsupp(f)-
(8- 17 r)at)
ss0 Therefore, the sign of dgé%(”) is the same as the sign of iy (v) on v € (1, 00) [ supp(f). Further,

581 note that
dhy(v)
dv

= Bfé/oof(t)dt >0, Vv € (,00)( |supp(f)-

ss2 Hence hy(v) is a strictly increasing function of v in (v, 00) () supp(f). Further, note that

vy
lim hy(v) = —6/ tf(t) < 0.
V—lp m

563 Hence, by continuity of hs(v), either equation h¢(v) = 0 admits an unique solution denoted by
s84 v on (1, 00) (| supp(f) or hy(v) < 0holds for all v € (v, 00) () supp( f). Hence, the minimum
sss  risk is achieved at v = v* if v* exists. Otherwise, it is achieved at any v € R |J{+oo} such that
586 f;o f(s)ds = 0. Hence, if v* exists, the value of the minimum risk given by

. N B v N "
Ew,G[EI‘I"OI‘] — a . W . (5/771 tf(t) ds = a . ﬁV s

se7  where the last equation is due to the fact that hs(v*) = 0. Otherwise, the value of the minimum risk
588 given by
N oo
Eo p[Error] 2 —§ tf(t)de.
eN m

ss9 D.2 Proof of Part (ii)

se0 We apply the same strategy for the proof of Theorem[2] Since the proof is similar to the proof we
so1  have shown for Theorem 2]in Section [2.3]and Appendix [B] we only address a few differences here.

592 From Section we should first show that equation ¢¢(s, ) = 0 admits an unique solution on
se3 (0, 00). Note that

9qs(s,v)/s _ 5/00 ZAGFV (76)

Os (s+1)?

so4 Hence, q¢(s,v)/s is a strictly increasing function of s on s € (0, 00). Further, since v < v, we have

lim 2(5:%) 6—5/Oof(t)dt:<0,

s—0 S

lim 2V B-0 >0. 77)

8—00 S

27



se5 Hence, by continuity of function ¢ (s,v)/s, we know gf(s,v)/s = 0 admits a unique solution
se6  denoted by s} on (0, 00).

so7  Note that with the same proof shown in Section[2.3] we have

Ewo[Error] = |tr (Zp (I— P&P)) +tr (XITJC (XpXIT))*1 Xp¥pXp (XPX;)*l ch) + tr (Xpe)

part 1 part 2

+o? <tr ((XpX7) "' XpEpXp (XpXp) ') + 1) .

part 3

ses  To calculate part 1, we employ the proof strategy shown in Appendix [B.2] with the following remarks.
s99  First, the expression for « is now given by

a(v) = /:O £(t) dt.

s00 Second, we should choose p,, = min(ﬁ, o(1/cy)) instead of p,, = min(ﬁ, o(N~")). Third,

s01 to directly apply Lemmal(l] we require 6 = 1 from Assumption B.1. Yet, since we restrict 3 < §

602 in Assumption B.2, it is straightforward to extend the results in Lemma [I]to handle the case where

603 & € (0,1) by following the proof presented in Appendix The results of Lemma [2]is directly
n

604 assumed by Assumption B.1. Finally to apply Lemma [3} we require 5 smallest eigenvalue of

605 (cyXp)~!islower bounded by a positive constant. This can be easily verified due to Assumption
s06 B.1 and the restriction on 3 < §. Hence, follow the proof in Appendix [B.2] with these remarks, we
607 can conclude that

N
part 1 5. b ,
ey my(0)

(78)

sos where m;(—p), the Stieltjes transform of the limiting spectral distribution of the matrix %X X T, is
609 given by

oo tf(t)
PR o) L e A
mp(=p) B [ fwar
610 which is equivalent to
1 1) o0 tf(t
I ) dt. (79)

mp(—n) B J, 14t-ms(—p)
s11 Therefore, we know m} = m +(0) > 0 1is the solution of the following equation

B8 [T tf(H) _ 1

612 Then s = ml should be the solution of equation ¢f(s,~) = 0. By uniqueness of %, we have
‘s

1
..
my

0 =

®
613 Sf—

s14  For part 2 and part 3, we employ the proof strategy shown in Appendix [B.3|with a few remarks. First,
615 note that due to Assumption B.1, we have
tr(cnESpe) = N-6 [ tf(t)dt and tr (c?VEQ ) — N6 [ 2f(t)dt.
m m
st6 Hence, we have the following analogue of (33):

part2 2 ﬁ.(s/ytf(t)dt'(1/;+1)+Op (m«w/Vtzf(t)dt>,
n eN "

N 1 1
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where ¢ =
mm(\/» o(1/cy)) instead of p,, = min(

cations, we can show that

and

1

ol

tr (EPXITD (XleTg)f2 Xp). Finally, to show (34), we should choose p, =
o(N—")

). Thus, with these remarks and modifi-

N v m’(0)
art2 B — é/t tydt - ———,
p o0 f(@) 2 (0)

/
0
part 3 LN mgi()
mf(o)

Hence, our last step is to characterize m/;(0) using the chain rule. Note that from and (80), we

1
e <mf<>

Hence, taking the derivative with respect to z on both sides and with the chain rule, we have

NEiON
=mim (ms(2))* )

have

Hence, we have

(0)

My

my

and

7(0)

fﬁ:

(aqf(s,y)
— 3 (ﬁ&/ﬂm

part

0qy(s,v)

Js

—1
dt) ,

where last equation is due to the fact that ¢ f(s}, v) =0and st > 0. Hence, we have

S tf(t)dt

2 B ﬁ;

B

il

*5/ tf dt>

tf t) dt

s+t

part3 5 3 <8f5/ tf dt)

This completes the proof of (ii) of the theorem.

D.3 Proof of Part (iii)

Suppose equation h () = 0 has a solution on (v, 00)

formula in 23) and 23)), we just need to show st = ni;

Hence, it is sufficient to show that ¢ (

hi(v) —qr(v) = 1/5/ v

Then since v* > v}, > 11, we have g7 (v*

If equation
formula in

<|h7_§]§

V sg € (0,00

< if ()

1

= 6V<

), if g¢(so) >0,
v*) > hy(v

(supp(f). Then by comparing the two

then s} < S0.
*) = 0. Note that Vv > 1,

dpﬁﬁ/mﬂﬂ&f6/2ﬂw&
m

4O g [~ g dt)H( st
m

) > hy(v”

v) = 0 does not have a solution on (v, 00
and (24)), we just need to show

. B
f - *
my

<0

29

)

/Wtfayﬂ> < 0.

=0.

oo

m

) (" supp(f), then by comparing the two

tf(t)dt,



635 which is true because, due to ¢ f(s}) = 0, we have

. o [THfQ@) /°°
= ) dt < ¢ tf(t)dt.
Bst s} /m o f(t)

m

636 Putting everything together completes the proof of part (iii).
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