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A AboundonV

We show that if each arm is positively correlated with at most () other arms, then V' in Assumption[2.2]
can be set to 1 + 2Q. For a set of arms A C [K] and i € A, let P(7) denote the set of arms in A that
are different from ¢ and positively correlated with it. Assume w.l.o.g. that j < ¢ = w; < w;. Then,

using Assumption [2.1]
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Thus, in this case Assumption[2.2]holds with V' = 1 + 2Q).

B Median-of-means estimation

In Section 2] we defined the median-of-means as the median of empirical means of several batches
of i.i.d. samples. More generally, one can consider the (g, £)-p-of-means estimate, for p € (0,1), in
which instead of the median, the estimator is set to a number such that a p fraction of the ¢ empirical
means are no larger than it and 1 — p fraction are no smaller than it. The (g, £)-MoM estimate is thus
also the (g, f)—f—of means estimate. LemmaEand its proof are similar to those provided in [2} 16]],
and are brought here for completeness. Lemma 1s obtained from Lemma [B.1|by setting p =
and a = 6. Lemma|[B.T]is used also in the proof of Lemma[5.7]in Appendix [C

Lemma B.1 (Median-of-Means). Ler p € (0, 5). Let X be a random variable with mean w and
variance 0 < oco. Let q, ! be integers, and let 1 be the (q, {)-p-of-means estimate of w from a sample
of q¢ i.i.d. draws of copies of X. Let a > 1/p. With a probability at least 1 — exp(—q - 2(p — 1/a)?),
|lw — | < \J/ac? /L.
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Proof. For j € [q], let @7 be the j’th empirical mean used for the estimator. By Chebychev’s

inequality, P[lw — | < y/ao?/¢] > 1 —1/a. For j € [q], letb; = [[Jlw — @] < \/ac?/l]. Then

E[b;] > 1 —1/a,and by,. .., b, are independent random variables. By Hoeffding’s inequality,

q q

PLZ D b > (1=p)) 2 PIER] — -3 b) <p—1/a] 2 1= exp(—g-2(p ~ 1/a)?).

i=1 =1

If 2 377, bi > 1—p then more than 1 —p fraction of the empirical means satisfy [w—w’| < \/ao?/L.

We now show that this holds also for w which is the p-of-means estimate. Assume for contradiction
that it does not hold for w. If w < w, it follows that all the p-fraction smaller estimates also do not
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satisfy the inequality, which is a contrdacition. If w > w and does not satisfy the inequality, then
w is larger than at least 1 — p fraction of the estimates. But this would imply p > 1 — p, which is
impossible since p < % Thus, the p-of-means satisfies the inequality, which concludes the proof. [

C Proof of Lemma/[5.7

Proof of Lemmal[5.7} Fori € [z], let {Y }JE (], le[@] be the set of i.i.d. samples of copies of Y; used
to get the MoM estlmate fii- Denote i} := 3 Z 1—1 Y7, so that ji; is the median of {1} ;c[4. Let
Yol = Diel] YZ . Then {Y 71} ;¢ 14 1€ is a set of i.i.d. samples of copies of Y. Let /i be the
(g, ¢)-1/3-of-means estimate of i = E[Y] based on these samples. Each mean in this estimator is
equal to %ZZE[Z] Yol = > ic(s) A for some j € [g]. Then /i is at least as large as a 1/3 of the
numbers in the set {3, .1 /4 }je(q)-

By Lemma|B.1| with p = 1/3 and a = 6, with a probability at least 1 — exp(—¢q - 2(1/3 — 1/6)?) =

1 — exp(—q/18),
< p4+/602 /L. &)

Now, let I == {i € [2] | i > ypu} and T = |I|. We have Vi € I,Y" ., T[] > yul > q/2.

Hence,
fZZ]I,u > ypl > T/2.

]G lq] i€l

Let Nj =3, ; I[[ﬂ? > vu] < T. Letting J be an integer random variable drawn uniformly from
[q], we conclude that E[N ;] > T'/2, so E[T — N;] < T'/2. By Markov’s inequality,

P[T — N, > 3T/4] < (T/2)/(3T/4) = 2/3,

so P[N; > T'/4] > 1/3. It follows that for at least a third of the indices j € [q], {ﬂg}ie[z] includes at
least T'/4 values larger than ~yp, hence for these indices, Zie[z] gl > T~u/4. Therefore fi > Tyu/4.
Combined with Eq. (5), we have that with a probability at least 1 — exp(—q/18),

Tyu/4 < i < p++/602/L.

Therefore, T' < (1 + ) which concludes the proof. O
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