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1 ADMM algorithmic details

1.1 Derivation of ADMM update steps

ADMM admits the following sequence of updates:

(R(t+1)

ij ,Q(t+1)

ij )← argmin
Rij∈S(D,D)

Qij∈U(nx,i,nyj )

P (t)

ij Cij(Rij ,Qij) +
µ

2D
‖Rij −R(t) + Λ(t)

ij ‖
2
F +Hγ2(Qij),

(1)

P (t+1) ← argmin
P∈Bc

∑
i,j

PijCij(R
(t+1)

ij ,Q(t+1)

ij ) +Hγ1(P ), (2)

R(t+1) ← argmin
R∈S(D,D)

∑
i,j

‖R(t+1)

ij −R+ Λ(t)

ij ‖
2
F , (3)

Λ(t+1)

ij ← Λ(t)

ij +R(t+1)

ij −R. (4)

Update (1) involves an alternating minimization over Qij and Rij whereby the first variable is
fixed while the second is minimized, followed by the second fixed and the first minimized, and the
procedure is repeated until convergence is achieved. When solving for Rij we have the following
Stiefel manifold optimization:

R(t+1)

ij ← argmin
Rij∈S(D,D)

P (t)

ij Cij(Rij ,Qij) +
µ

2D
‖Rij −R(t) + Λ(t)

ij ‖
2
F

= argmax
Rij∈S(D,D)

tr
((

2P (t)

ij YjQ
>
ijX

>
i + µ(R(t) −Λ(t)

ij )
)
R>ij

)
= UV >,

where 2P (t)

ij YjQ
>
ijX

>
i + µ(R(t) −Λ(t)

ij ) = UDV > is its SVD. We employ the Sinkhorn algorithm
(Algorithm 1 of [1]) to solve for Qij , using an entropic parameter of γ2/P

(t)

ij and uniform marginals.
R(t+1)

ij and Q(t+1)

ij are retrieved once the alternating minimization converges.

Update (2) also employs the Sinkhorn algorithm over the cost matrix generated byCij(R
(t+1)

ij ,Q(t+1)

ij )
using variables found in update (1), along with an entropic parameter of γ1 and uniform marginals.

Update (3) is a consensus update over a Stiefel manifold optimization:

R(t+1) ← argmin
R∈S(D,D)

∑
i,j

‖R(t+1)

ij −R+ Λ(t)

ij ‖
2
F = UV >,

where
∑
i,jR

(t+1)

ij + Λ(t)

ij = UDV > is its SVD.
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1.2 Computational complexity of distributed ADMM algorithm

The main computational complexity of the ADMM algorithm comes from line 8, which demands the
solving of S2 Sinkhorn problems per ADMM iteration. Fortunately, these Sinkhorn problems (i.e.,
update steps for Qij ,Rij ,Lij) may be conducted in parallel, making it amenable for a distributed
implementation. When fully parallelized, the algorithm has a per-iteration computational complexity
of O(ninj), where ni, nj refers to the number of points in the largest clusters of X,Y respectively
(compared to vanilla Sinkhorn’s O(nxny) complexity where nx, ny refers to the total number of
points in respective datasets, assuming D � max(ni, nj)). In Figure 1, we record run times of two
versions of the same algorithm, with and without parallelism, operating on a similar test dataset, at
varying cluster sizes S (50 data points per cluster). 10 random trials were conducted and the means
and standard deviations were reported (error lines). As expected, the parallel implementation scales
better. These results were computed using an i7 intel processor with 6 cores clocked at 2.6 GHz.

Figure 1: Run time comparison between a parallelized and a non-parallelized implementation: We varied
the number of clusters – the main bottleneck to run time - to compare the runtimes of the parallelized and
non-parallelized implementations.

1.3 Stopping criteria.

In lines 3 and 6 of Algorithm 1, possible stopping criteria are (i)
∥∥R(t+1) −R(t)

∥∥
F
≤ τ where the

difference is between the current and previous iteration’s transformation and τ is the tolerance, and
(ii) t ≤ T where T is the maximum number of iterations.

2 Proof of Theorem 4.1

2.1 Part 1: Geometric perturbations conditions over the Birkhoff polytope

First, we provide the following lemma that illuminates some basic geometrical insights of the general
OT cost matrix, whose coupling is in the Birkhoff polytope Bc := {P ∈ Rc×c : P1c = P>1c =
1c}. We define the OT program with respect to a cost matrix C as

L(C) := argmin
P∈Bc

〈P ,C〉 . (5)

The following lemma describes the conditions on C for P to remain unperturbed at P ?.

Lemma 2.1. Define the set of vertices on the c-th Birkhoff polytope Bc that are within a δ-ball from
P ? as

Pδ(P ?) = {P ∈ Bc \ {P ?} : ‖P − P ?‖F ≤ δ}. (6)

Define the set of matrices that denote directions from P ? to each neighboring vertex Pi as

Vδ(P ?) = {V ∈ Rc×c : V = P − P ?, P ∈ Pδ(P ?)}. (7)

For the linear program’s solution P ? = L(C) to remain unchanged, ∀V ∈ Vδ(P ?) for δ = 2, the
cost matrix C should satisfy

〈C,V 〉 > 0. (8)
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Proof. Birkhoff-von Neuman’s theorem [2] states that the optimal transport solution must lie on the
convex hull of the c-th Birkhoff polytope Bc, and that its vertices are in fact permutation matrices. We
therefore say that an LP solution P ? is a vertex on Bc. The outline of this proof is straightforward:
so that P ? remains unchanged, C should not cause P ? to move to an adjacent edge of the Birkhoff
polytope, nor should it cause it to extend beyond its adjacent edge because then, the neighboring
vertex would assume the new solution. For the rest of this proof, we shall let P ? = I without any loss
of generality. We define the set of nearest neighbors to P ?, which are simply permutation matrices
that can be described as taking P ? and exchanging any two columns. For a P with any two columns
of P ? exchanged, notice that the difference matrix V = P − P ? is a symmetric matrix of mostly
zeros except for two off-diagonal +1 entries and two diagonal −1 entries, hence ‖P − P ?‖F = 2.
Formally, we describe the set of nearest neighbors with Pδ(P ?) with δ = 2, defined by (6). Next, we
define edges that are adjacent to P ? using the set Vδ(P ?) also with δ = 2, defined by (7). Note that
there are K :=

(
c
2

)
− 1 = c(c−1)

2 − 1 neighboring vertices and adjacent edges.

We will now show how perturbing C in just one direction V changes P ?. First, consider a cost
matrix that produce P ?, which is defined as C? :=

∑
Vi∈Vδ(P ?) Vi, meaning that it is equi-angle

from all V ∈ Vδ(P ?), for δ = 2. By enumerating over all V , we may derive C? = 11
>− cI , along

with the fact that 〈C?,V 〉
‖C?‖F ‖V ‖F

= 1√
c−1 . Define P1 = L(C1) with C1 such that 〈V1,C1〉 ≤ 0 and

〈Vi,C1〉
‖Vi‖F ‖C1‖F

= 1√
c−1 , ∀i ∈ 2, . . . ,K. Define P2 = L(C2) with C2 such that 〈Vi,C2〉

‖Vi‖F ‖C2‖F
= 1√

c−1 ,
∀i ∈ JKK. We make the claim that P1 = P2 and proceed with a proof by contradiction. As
mentioned before, ∀V ∈ Vδ(P ?) for P ? = I , δ = 2 has exactly four non-zero entries, i.e.,
Vii = Vjj = −1 and Vij = Vji = +1, where i, j ∈ JcK, i 6= j. Writing out 〈V ,C〉 explicitly, we
have 〈V ,C〉 = −(Cii + Cjj) + (Cij + Cji). To ensure that C1 and C2 does not interact with
other edges of the polytope, we fix 〈Vi,C〉 = 〈Vi,C?〉 = c for i = 2, . . . ,K. Since we constructed
C1 and C2 to differ only by the condition 〈V1,C1〉 ≤ 0 or 〈V1,C2〉 > 0, and any Vi affects only
four entries of the cost matrix, we may greatly simplify our analysis of C and P to only these four
entries. As such, we extract these four entries of P , represent it using P̂ ∈ B2, and parameterize
using t ∈ [0, 1] it as

P̂ (t) = t

[
1 0
0 1

]
+ (1− t)

[
0 1
1 0

]
. (9)

With this parameterized form, we may reexpress the optimization for L(C) as

min
t∈[0,1]

t(Cii + Cjj) + (1− t)(Cij + Cji) = min
t∈[0,1]

(Cii + Cjj
Cij + Cji

− 1
)
t

The above minimization has three cases. If Cii + Cjj = Cij + Cji then there exists no unique
solution t. If Cii +Cjj > Cij +Cji then t = 0. If Cii +Cjj < Cij +Cji then t = 1. The first two
cases directly corresponds to 〈V1,C1〉 ≤ 0, while the third case corresponds to 〈V1,C2〉 > 0. The
fact that t is not consistent between all cases demonstrates a contradiction. Moreover, t = 1 produces
the solution P̂ = I , and if this holds for all V ∈ Vδ(P ?), then all off-diagonal entries must be zero
and therefore P ? = I must be the minimizer for L(C).

A direct consequence of lemma 2.1 is the following.

Corollary 2.2. The solution to the linear program defined by (5) is P ? = I if the linear cost matrix
C satisfies the following property

Cij + Cji − Cii − Cjj > 0, ∀i, j ∈ JcK, i 6= j. (10)

Proof. Analyzing (8), we observe that any V ∈ Vδ(P ?) for δ = 2 has only four symmetric non-
negative entries, which we condense V and C into R2×2 matrices at these four support locations

respectively as V̂ =

[
−1 +1
+1 −1

]
and Ĉ =

[
Cii Cji
Cij Cjj

]
. It thus follows that an explicit computation

produces:

〈P ,C〉 ≥ 0⇒
〈
P̂ , Ĉ

〉
= (Cij + Cji)− (Cii + Cjj) ≥ 0.

Since the set Vδ(P ?) spans all permutations between i, j ∈ JcK, i 6= j, we conclude with (10).
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In the variational setting, Cij(R,Qij)’s are themselves linearly coupled with R and Qij . The
following proposition introduces a trivial criterion on Cij(R,Qij)’s to guarantee that P remains
unperturbed from P ?. For pedagogical reasons, we shall assume that n→∞ for this proposition but
subsequently relax this.

Proposition 2.3 (Rotationally invariant disambiguity criterion). Problem (3) yields the solution P ?

if, ∀i, j : i 6= j, the following criterion is satisfied:

min
R,Qij

Cij(R,Qij) + min
R,Qji

Cji(R,Qji)− min
R,Qii

Cii(R,Qii)− min
R,Qjj

Cjj(R,Qjj) > 0. (11)

Proof. Consider a set of c clusters where clusters i, j satisfy

Cij(R
′
ij ,Q

′
ij) + Cji(R

′
ji,Q

′
ji)− Cii(R′,Q′ii)− Cjj(R′,Q′jj) ≤ 0, (12)

where

(R′ij ,Q
′
ij) := argmin

R∈S(d,d),Qij∈Bn
Cij(R),

(R′ji,Q
′
ji) := argmin

R∈S(d,d),Qji∈Bn
Cji(R),

(R′,Q′ii,Q
′
jj) := argmin

R∈S(d,d),Qii,Qjj∈Bn
Cii(R,Qii) + Cjj(R,Qjj).

Since the 2-Wasserstein is a valid metric, its distance between any two clusters must satisfy Cij(R) ≥
0 with equality holding if and only if the clusters are exactly similar. If P ? = I , similar clusters are
denoted with matching indices, and it must follow that Cii(R′) + Cjj(R

′) = 0. This implies that
(12) must be false since Cij(R′ij), Cji(R

′
ji) > 0 for mismatched clusters. Due to this contradiction,

the disambiguity criterion (11) must hold for all cluster pairs i, j : i 6= j.

This proposition provides a disambiguity criterion, requiring that matched clusters (i.e., Cii, Cjj)
should be more similar than mismatched clusters (i.e., Cij , Cji) up to some disambiguity threshold
(in the case of n→∞, the threshold is 0). To extend this proposition to the finite-sample regime, we
require a higher disambiguity-threshold to offset uncertainty due to finite samples.

2.2 Part 2: Disambiguity criterion in the finite-sample regime

We utilize a recent p-Wasserstein concentration bound by Weed and Bach [3] that describes finite
sample behavior on the Wasserstein distance for data embedded in high-dimensional space, but
whose clusters are themselves approximately low-dimensional. We will proceed our analysis with
the language of probability measures µ to make our analysis consistent with [3]. We thus define the
equivalent measure analogs as follows.

Definition 2.4. Let clusters Xi ∈ RD×nx,i and Yj ∈ RD×ny,j be respectively denoted by empirical
measures as

µ̂x,i :=
1

nx,i

nx,i∑
k=1

δXi(k), µ̂y,i :=
1

ny,j

ny,j∑
k=1

δYj(k),

where δXi(k) refers to a discrete point located at Xi(k). At the limit, we denote the measures as

µx,i := lim
nx,i→∞

1

nx,i

nx,i∑
k=1

δXi(k), µy,j := lim
ny,j→∞

1

ny,j

ny,j∑
k=1

δYj(k).

Definition 2.5. Denote a linear transformation R applied on the measure as

R ◦ µ̂x,i :=
1

nx,i

nx,i∑
k=1

δRXi(k), R ◦ µx,i := lim
nx,i→∞

1

nx,i

nx,i∑
k=1

δRXi(k).

The transformed inter-cluster distance between clusters may thus be denoted as

Ĉij(R) :=W2
2 (R ◦ µ̂x,i, µ̂y,i), C̃ij(R) :=W2

2 (R ◦ µx,i, µy,i).
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Now, we may proceed to state results from [3]. The following result pertains to the sample complexity
of measures µ in RD that are supported on an approximately low-dimensional set in Rd, where
d� D. First we require some definitions.
Definition 2.6. Given a set S ⊆ Rd, let Nε(S) denote the ε-covering number of set S, which
is defined as the minimum number m of closed balls B1, . . . , Bm of diameter ε such that S ⊆⋃

1≤i≤mBi.

Definition 2.7. For any set S ⊆ Rd, the ε-fattening of S is Sε := {y : D(y, S) ≤ ε}.
Proposition 2.8 (Weed and Bach [3], Proposition 16). Let S be a set that satisfiesNε′(S) ≤ (3ε′)−d

for all ε′ ≤ 1/27 and for some d > 2p. Suppose there exists a positive constant σ such that µ satisfies
µ(Sε) ≥ 1− e−ε2/2σ2

for all ε > 0. If p log 1
σ ≥ 1/18, then for all n ≤ (18pσ2 log 1

σ )
−d/2,

E[Wp
p (µ, µ̂n)] ≤ cn−p/d,

where c = 27p(2 + 1
3d/2−p−1 ).

This proposition states that the degree that µ is concentrated (as parameterized by σ) around set S
(approximately supported in low-dimensions) affects how “long” (in terms of n) we can enjoy the fast
convergence rate of n−p/d. We will leverage this result to obtain the following theorem on cluster
correspondence disambiguity with respect to sample complexity.
Corollary 2.9. Let sets Sx,i and Sy,j satisfy the conditions for S in proposition 2.8 for some
σx,i, σy,j > 0 and dx,i, dy,j > 4. If log 1

σx,i
≥ 1

36 and log 1
σy,j

≥ 1
36 , then for all nx,i ≤

(36σ2
x,i log

1
σx,i

)−dx,i/2 and ny,j ≤ (36σ2
y,j log

1
σy,j

)−dy,j/2,

E[|C̃ij(R)− Ĉij(R)|] ≤ cx,in
−2/dx,i
x,i + cy,jn

−2/dy,j
y,j ,

where
cz,k = 729(2 +

1

3dz,k/2−2 − 1
).

Proof. Denote µi, µj as measures and µ̂i, µ̂j as their empirical estimates. By the triangle inequality,

E[W2
2 (µ̂i, µ̂j)] ≤ E[W2

2 (µ̂i, µi) +W2
2 (µj , µ̂j)]

≤ E[W2
2 (µ̂i, µi) +W2

2 (µi, µj) +W2
2 (µ̂j , µj)]

⇒ E[|W2
2 (µi, µj)−W2

2 (µ̂i, µ̂j)|] ≤ E[W2
2 (µ̂i, µi)] + E[W2

2 (µ̂j , µj)]

⇒ E[|C̃ij(R)− Ĉij(R)|] ≤ cx,in−2/dx,ixi + cy,jn
−2/dy,j
y,j ,

where the last line is a direct application of definition 2.5 and proposition 2.8.

Lemma 2.10. Let Sx,i, Sy,i, Sx,j , Sy,j be sets that satisfy the conditions for S in proposition 2.8 for
some σx,i, σy,i, σx,j , σy,j > 0 and dx,i, dy,i, dx,j , dy,j > 4. If log 1

σx,i
, log 1

σy,i
, log 1

σx,j
, log 1

σy,j
≥

1
36 , then for all nx,i ≤ (36σ2

x,i log
1
σx,i

)−dx,i/2, ny,i ≤ (36σ2
y,i log

1
σy,i

)−dy,i/2, nx,j ≤
(36σ2

x,j log
1

σx,j
)−dx,j/2, and ny,j ≤ (36σ2

y,j log
1
σy,j

)−dy,j/2, cluster correspondences in prob-
lem (3) may be disambiguated to achieve P ? = I when the following criterion is fulfilled for all
i, j ∈ JcK : i 6= j:

E[min
R

Ĉij(R) + min
R

Ĉji(R)−min
R

Ĉii(R)−min
R

Ĉjj(R)] > 2(Bx,i +By,i +Bx,j +By,j).

where the constants are defined as

Bz,k := cz,kn
−2/dz,k
z,k , cz,k := 729

(
2 +

1

3dz,k/2−2 − 1

)
.

Proof. This follows a direct application of criterion (11) and corollary 2.9.

Proposition 2.11 (Weed and Bach [3], Proposition 20). For all n ≥ 0 and 0 ≤ p <∞,

P[Wp
p (µ, µ̂n) ≥ EWp

p (µ, µ̂n) + t] ≤ exp(−2nt2).
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Theorem 2.12. Define Ĉ?ij := minR∈S(D,D) Ĉij(R). If the conditions in Lemma 2.10 are satisfied
then problem (3) yields the solution P ? = I with probability at least 1 − δ if, ∀i, j : i 6= j, the
following criterion is satisfied:

Ĉ?ij + Ĉ?ji − Ĉ?ii − Ĉ?jj > 2(Bx,i(δ) +By,i(δ) +Bx,j(δ) +By,j(δ))

where

Bz,k(δ) := cz,kn
− 2
dz,k

z,k +
√
log(1/δ)/2nz,k, cz,k := 729

(
2 +

1

3dz,k/2−2 − 1

)
, (13)

where dz,k refers to the intrinsic dimension of the k-th cluster from the z-th dataset.

Proof. For some measure µ and its empirical finite-sample estimate µ̂n, proposition 2.11 may be

equivalently stated with the choice of t =
√

log 1
δ /2n as:

|Wp
p (µ, µ̂n)− EWp

p (µ, µ̂n)| ≤
√

log(1/δ)/2n,

holds with at least probability 1− δ. Under the conditions stated in proposition (2.8), and combining
its result with the above relation, we have

Wp
p (µ, µ̂n) ≤ cn−p/d +

√
log(1/δ)/2n,

where c = 27p(2 + 1
3d/2−p−1 ). Combining this for all terms in the left-hand side of (13) yields the

stated result.

2.3 Putting everything together

The final proof of Theorem 4.1 is a simplified version of Theorem 2.12’s since we assert a stronger
(but cleaner) exact low-rank assumption to streamline communication. When the data is exactly
supported in low-dimensions (as opposed to approximately), the ε-fattening disappears (i.e., ε→ 0)
thus any positive σ < ε will send n→∞, implying that the rapid convergence in dimensions d� D
holds for n→∞. Hence an identical result holds, with the sole condition that d > 4. �

3 Proof of Theorem 4.2

We apply a very recent perturbation bound for the Procrustes problem developed by Arias-Castro
et al. [4] to subsequently state a cluster-based alignment bound. First, we outline the perturbation
bound for the classical Procrustes problem below.
Theorem 3.1 (Procrustes perturbation bounds, Theorem 1 [4]). Consider short matrices X,Y ∈
Rd×n with d < n and X having full rank. Set ε2 =

∥∥Y >Y −X>X
∥∥
p
, where ‖·‖p de-

notes the Schatten p-norm. Denote the singular value decomposition of X = UΣV >, where
Σ contains diagonal elements σ1 ≥ σ2 ≥ . . . σd > 0 = · · · = 0, and let X† be the
pseudo-inverse of X , i.e., X† = UΣ†V >, where Σ† = diag(σ−11 , σ−12 , . . . , σ−1d , 0, . . . , 0). If∥∥X†∥∥ ε ≤ 1√

2
(‖X‖

∥∥X†∥∥)−1/2 then

min
R∈S(d,d)

‖RX − Y ‖p ≤ (‖X‖
∥∥X†∥∥+ 2)

∥∥X†∥∥ ε2.
Directly applying Theorem 3.1 using the Schatten 2-norm (i.e., the Frobenius norm) yields

min
R∈S(d,d)

‖RX − Y ‖2F = min
R∈S(d,d)

c∑
i=1

tr(Q>iiX
>
i XiQii + Y >i Yi − 2YiQ

>
iiX

>
i R

>)

≤ ((‖X‖
∥∥X†∥∥+ 2)

∥∥X†∥∥ ε2)2 := B2,

⇒ max
R∈S(d,d)

c∑
i=1

tr(2YiQ
>
iiX

>
i R

>) ≥ tr(XX> + Y Y >)−B2,

where ε2 :=
∥∥Y >Y −X>X

∥∥
F

and under the conditions that X is full rank and
∥∥X†∥∥ ε ≤

1√
2
(‖X‖

∥∥X)†
∥∥)−1/2. When the criterion given by corollary 2.3 is satisfied, we are guaranteed
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cluster-correspondences P ? = I . Therefore
∑
ij PijCij(R) =

∑
i Cii(R). We utilize this to lower

bound
∑
i Cii(R) as follows:

min
R∈S(d,d)

c∑
i=1

Cii(R)

= min
R∈S(d,d)

c∑
i=1

tr(Xi diag(Qii1)X
>
i + Yi diag(Q

>
ii1)Y

>
j − 2YiQ

>
iiX

>
i R

>)

=

c∑
i=1

tr(Xi diag(Qii1)X
>
i + Yi diag(Q

>
ii1)Y

>
j )− max

R∈S(d,d)

c∑
i=1

tr(2YjQ
>
iiX

>
i R

>)

≤B2 +

c∑
i=1

tr(Xi(diag(Qii1)−QiiQ
>
ii)X

>
i + Yj(diag(Qii1)− I)Y >j )

=B2 +

c∑
i=1

tr(Xi(1/n−QiiQ
>
ii)X

>
i + Yj(1/n− I)Y >j ).

�

4 Proof of Lemma 4.3

To ease notation, let A = YjQ
>
ijX

>
i , and C = 1

nXiX
>
i + 1

nYjY
>
j . Let A be decomposed by the

singular-value decomposition as A = ŨΣ̃Ṽ >. Lastly, let U = [U ′,U ′′] and V = [V ′,V ′′], where
〈U ′′,U ′〉 = 〈V ′′,V ′〉 = 0. Then it follows that

tr(U>ŨΣ̃Ṽ >V ) ≤ tr(Σ̃) = tr(Ũ>ŨΣ̃Ṽ >Ṽ ) (14)

tr(U>AV ) ≤ tr(Ũ>AṼ )

tr
(
C − 2U ′>AV ′ − 2U ′′>AV ′′

)
≥ tr

(
C − 2Ũ>AṼ

)
min

U ′′,V ′′∈S(d,d−r):
〈U ′,U ′′〉=〈V ′,V ′′〉=0

tr
(
C − 2AV ′U ′> − 2AV ′′U ′′>

)
≥ min

Ũ ,Ṽ ∈S(d,d)
tr
(
C − 2AṼ Ũ>

)
min

R∈T (U ′,V ′)
Cij(R) ≥ min

R∈S(d,d)
Cij(R).

What remains is for us to show the condition for equality. From (14), we have that

tr(U>ŨΣ̃Ṽ >V ) = tr(Ṽ >V U>ŨΣ̃) ≤ tr(Σ̃),

with equality holding if Ṽ >V U>Ũ = I , implying that Ũ>U = Ṽ >V , which imply that

〈Ũ ,U ′〉 = 〈Ṽ ,V ′〉, 〈Ũ ,U ′′〉 = 〈Ṽ ,V ′′〉,
which are obtained via the substitutions U = [U ′,U ′′] and V = [V ′,V ′′]. �

References
[1] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in

neural information processing systems, pages 2292–2300, 2013.

[2] John Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment
problem. Contributions to the Theory of Games, 2(5-12):7, 1953.

[3] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of
empirical measures in wasserstein distance. arXiv preprint arXiv:1707.00087, 2017.

[4] Ery Arias-Castro, Adel Javanmard, and Bruno Pelletier. Perturbation bounds for procrustes,
classical scaling, and trilateration, with applications to manifold learning. arXiv preprint
arXiv:1810.09569, 2018.

7



5 Additional Figures

In this section, we provide an additional figure to compare HiWA with other competitor methods on
the brain decoding example.

Figure 2: Additional comparisons on brain decoding dataset: Here, we compared the decoding accuracy in
terms of: (a) reach direction decoding or the percentage of time points correctly classified in one of four reach
directions, and (b) the instantaneous decoding accuracy measured in terms of their R2 values. In both cases, we
compare HiWA with WA, DAD, and 6 other methods that are discussed in the main text and studied in synthetic
examples.
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