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Abstract

We analyse the learning performance of Distributed Gradient Descent in the context
of multi-agent decentralised non-parametric regression with the square loss function
when i.i.d. samples are assigned to agents. We show that if agents hold sufficiently
many samples with respect to the network size, then Distributed Gradient Descent
achieves optimal statistical rates with a number of iterations that scales, up to a
threshold, with the inverse of the spectral gap of the gossip matrix divided by the
number of samples owned by each agent raised to a problem-dependent power.
The presence of the threshold comes from statistics. It encodes the existence of a
“big data” regime where the number of required iterations does not depend on the
network topology. In this regime, Distributed Gradient Descent achieves optimal
statistical rates with the same order of iterations as gradient descent run with all the
samples in the network. Provided the communication delay is sufficiently small,
the distributed protocol yields a linear speed-up in runtime compared to the single-
machine protocol. This is in contrast to decentralised optimisation algorithms that
do not exploit statistics and only yield a linear speed-up in graphs where the spectral
gap is bounded away from zero. Our results exploit the statistical concentration
of quantities held by agents and shed new light on the interplay between statistics
and communication in decentralised methods. Bounds are given in the standard
non-parametric setting with source/capacity assumptions.

1 Introduction

In machine learning a canonical goal is to use training data sampled independently from an unknown
distribution to fit a model that performs well on unseen data from the same distribution. With a loss
function measuring the performance of a model on a data point, a common approach is to find a
model that minimises the average loss on the training data with some form of explicit regularisation
to control model complexity and avoid overfitting. Due to the increasingly large size of datasets
and high model complexity, direct minimisation of the regularised problem is posing more and
more computational challenges. This has led to growing interest in approaches that improve models
incrementally using gradient descent methods [8], where model complexity is controlled through
forms of implicit/algorithmic regularisation such as early stopping and step-size tuning [57, 58, 27].

The growth in the size of modern datasets has also meant that the coordination of multiple machines
is often required to fit machine learning models. In the centralised server-clients setup, a single
machine (server) is responsible to aggregate and disseminate information to other machines (clients)
in what is an effective star topology. In some settings, such as ad-hoc wireless and peer-to-peer
networks, network instability, bandwidth limitation and privacy concerns make centralised approaches
less feasible. This has motivated research into scalable methods that can avoid the bottleneck
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and vulnerability introduced by the presence of a central authority. Such solutions are called
“decentralised”, as no single entity is responsible for the collection and dissemination of information:
machines communicate with neighbours in a network structure that encodes communication channels.

Since the early works [52, 53] to the more recent work [22, 34, 33, 23, 29, 30, 10, 18, 47, 31],
problems in decentralised multi-agent optimisation have often been treated as a particular instance of
consensus optimisation. In this framework, a network of machines or agents collaborate to minimise
the average of functions held by individual agents, hence “reaching consensus” on the solution of
the global problem. In this setting the performance of the chosen protocol naturally depends on the
network topology, since to solve the problem each agent has to communicate and receive information
from all other agents. In particular, the number of iterations required by decentralised iterative
gradient methods typically scales with the inverse of the spectral gap of the communication matrix
(a.k.a. gossip or consensus matrix) [18, 42, 43], which reflects the performance of gossip protocols in
the problem of distributed averaging [9, 17, 44, 4].

Many distributed machine learning problems, in particular those involving empirical risk minimisation,
have been framed in the context of consensus optimisation. However, as highlighted in [46] and more
recently in [38], often these problems have more structure than consensus optimisation due to the
statistical regularity of the data. When the agents’ functions are the empirical risk of their local data, in
the setting where the local data comes from the same unknown distribution (homogeneous setting), the
functions held by each agent are similar to one another by the phenomenon of statistical concentration.
In particular, in the limit of an infinite amount of data per agent, the local functions are the same and
agents do not need to communicate to solve the problem. This phenomenon highlights the existence
of a natural trade-off between statistics and communication. While statistical similarities of local
objective functions and the statistics/communication trade-off have been investigated and exploited in
centralised server-clients setup, typically in the analysis and design of divide-and-conquer schemes
[60, 28, 20, 32, 26, 1, 62, 46, 45, 61, 2], only recently there has been some investigation into the
interplay between statistics and communication/network-topology in the decentralised setting. The
authors in [6] investigate the interplay between the spectral norm of the data-generating distribution
and the inverse spectral gap of the communication matrix for Distributed Stochastic Gradient Descent
in the case of strongly convex losses. As most of the literature on decentralised machine learning,
this work also focuses on minimising the training error and not the test/prediction error (numerical
experiments are given for the test error). Some works have investigated the performance on the
test loss in the single-pass/online stochastic setting where agents use each data point only once.
The authors in [37, 51] investigate a distributed regularised online learning setting [55] and obtain
guarantees for a “multi-step” Distributed Stochastic Mirror Descent algorithm where agents reach
consensus on their stochastic gradients in-between computation steps. The works [25] and [3]
consider the performance of Distributed Stochastic Gradient Descent algorithms in the non-convex
smooth case. They investigate the average performance of the agents over the network in terms of
convergence to a stationary point of the test loss [19] and show that a linear speed-up in computational
time can be achieved provided the number of samples seen, equivalently the number of iterations
performed, exceeds the network size times the inverse of the spectral gap, each raised to a certain
power. The work [38] seems to be the first to have considered minimisation of the test error in the
multi-pass/offline stochastic setting that more naturally relates to the classical literature on consensus
optimisation. The authors investigate stability of Distributed Stochastic Gradient Descent on the test
error and show that for smooth and convex losses the number of iterations required to achieve optimal
statistical rates scales with the inverse of the spectral gap of the gossip matrix, a term that captures
the noise of the gradients’ estimates, and a term that controls the statistical proximity of the local
empirical losses.

1.1 Contributions

In this work we investigate the implicit-regularisation learning performance of full-batch Distributed
Gradient Descent [33] on the test error in the context of non-parametric regression with the square
loss function. In the homogeneous setting where agents hold independent and identically distributed
data points, we investigate the choice of step size and number of iterations that guarantee each agent to
achieve optimal statistical rates with respect to all the samples in the network. We build a theoretical
framework that allows to directly and explicitly exploit the statistical concentration of quantities
(i.e. batched gradients) held by agents. On the one hand, exploiting concentration yields savings on
computation, i.e. it allows to achieve faster convergence rates compared to methods that do not exploit
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concentration in their parameter tuning. On the other hand, it yields savings on communication,
as it allows to take advantage of the trade-off between statistical power and communication costs.
Firstly, we show that if agents hold sufficiently many samples with respect to the network size, then
Distributed Gradient Descent achieves optimal statistical rates up to poly-logarithmic factors with
a number of iterations that scales with the inverse of the spectral gap of the communication matrix
divided by the number of samples owned by each agent raised to a problem-dependent power, up
to a statistics-induced threshold. Previous results for decentralised iterative gradient schemes in the
context of consensus optimisation do not take advantage of the statistical nature of decentralised
empirical risk minimisation problems. In the statistical setting that we consider, these methods would
require a larger number of iterations that scales only with respect to the inverse of the spectral gap.
Secondly, we show that if agents additionally hold sufficiently many samples with respect to the
inverse of the spectral gap, then the same order of iterations allows Distributed Gradient Descent and
Single-Machine Gradient Descent (i.e. gradient descent run on a single machine that holds all the
samples in the network) to achieve optimal statistical rates up to poly-logarithmic factors. Provided
the communication delay is sufficiently small, this yields a linear speed-up in runtime over Single-
Machine Gradient Descent, with a “single-step” method that performs a single communication round
per local gradient descent step. Single-step methods that do not exploit concentration can only achieve
a linear speed-up in runtime in graphs with spectral gap bounded away from zero, i.e. expanders or
the complete graph. Our results demonstrate how the increased statistical similarity between the local
empirical risk functions can make up for a decreased connectivity in the graph topology, showing
that a linear speed-up in runtime can be achieved in any graph topology by exploiting concentration.
To the best of our knowledge, we seem to be the first to isolate this type of phenomena.

We prove our results under the standard “source” and “capacity” assumptions in non-parametric
regression. These assumptions relate, respectively, to the projection of the optimal predictor on the
hypothesis space and to the effective dimension of this space [59, 12]. A contribution of this work
is to show that proper tuning yields, up to poly-logarithmic terms, optimal non-parametric rates in
decentralised learning. As far as we aware, in the distributed setting such guarantees have been
established only for centralised divide-and-conquer methods [60, 28, 20, 32, 26].

To prove our results we build upon previous work for Single-Machine Gradient Descent applied
to non-parametric regression, in particular the line of works [57, 40, 27]. Exploiting that in our
setting the iterates of Distributed Gradient Descent can be written in terms of products of linear
operators depending on the data held by agents, we decompose the excess risk into bias and sample
variance terms for Single-Machine Gradient Descent plus an additional quantity that captures the
error incurred by using a decentralised protocol over the communication network. We analyse this
network error term by further decomposing it into a term that behaves similarly to the consensus
error previously considered in [18, 33], and a new higher-order term. We control both terms by using
the structure of the gradient updates, which allows us to analyse the interplay between statistics, via
concentration, and network topology, via mixing of random walks related to the gossip matrix.

The work is structured as follows. Section 2 presents the setting, assumptions, and algorithm that
we consider. Section 3 states the main convergence result and discusses implications from the point
of view of statistics, computation and communication. Section 4 presents the error decomposition
into bias, variance, and network error, and it illustrates the implicit regularisation strategy that we
adopt. Section 5 highlights some of the features of our contribution in the light of future research
directions. The appendix in the supplementary material is structured as follows. Section A includes
some remarks about our results. Section B illustrates the main scheme of the proofs, highlighting the
interplay between statistics and network topology. Section C contains the full details of the proofs.

2 Setup

In this section we describe the learning problem, assumptions and algorithm that we consider.

2.1 Learning problem: decentralised non-parametric least-squares regression

We adopt the setting used in [40, 27], which involves regression in abstract Hilbert spaces. This
setting is of relevance for applications related to the Reproducing Kernel Hilbert Space (RKHS). See
the work in [57] and references therein.
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Let H be a separable Hilbert Space with inner product and induced norm denoted by 〈 · , · 〉H and
‖ · ‖H , respectively. Let X ⊆ H be the input space and Y ⊂ R be the output space. Let ρ be an
unknown probability measure on Z = X × Y , ρX( · ) be the marginal on X , and ρ( · |x) be the
conditional distribution on Y given x ∈ X . Assume that there exists a constant κ ∈ [1,∞) so that

〈x, x′〉H ≤ κ2, ∀x, x′ ∈ X. (1)
Let the network of agents be modelled by a simple, connected, undirected, finite graph G = (V,E),
with |V | = n nodes joined by edges E ⊆ V ×V . Edges represent communication constraints: agents
v, w ∈ V can only communicate if they share an edge (v, w) ∈ E. We consider the homogeneous
setting where each agent v ∈ V is given m data points zv := {xv,yv} sampled independently from
ρ, where xv = {xi,v}i=1,...,m and yv = {yi,v}i=1,...,m, and each pair (xi,v, yi,v) is sampled from ρ.
The problem under study is the minimisation of the test/prediction risk with the square loss:

inf
ω∈H
E(ω), E(ω) =

∫
X×Y

(〈ω, x〉H − y)2dρ(x, y), (2)

The quality of an approximate solution ω̂ ∈ H is measured by the excess risk E(ω̂)− infω∈H E(ω).

Notation Given a matrix A ∈ Rn×n, let Avw denote the (v, w)-th element and Av =
(Avw)w=1,...,n denote the v-th row. Let O( · ) denote orders of magnitudes up to constants in n
and m, and Õ( · ) denote orders of magnitudes up to both constants and poly-logarithmic terms in n
and m. Let .,&,' denote inequalities and equalities modulo constants and poly-logarithmic terms
in n,m. We use the notation a ∨ b = max{a, b} and a ∧ b = min{a, b}.

2.2 Assumptions

The assumptions that we consider are standard in non-parametric regression [27, 35]. The first
assumption is a control on the even moments of the response.
Assumption 1. There exist M ∈ (0,∞) and ν ∈ (1,∞) such that for any ` ∈ N we have∫
Y
y2`dρ(y|x) ≤ ν`!M ` ρX -almost surely.

Let L2(H, ρX) be the Hilbert space of square-integrable functions from H to R with respect to
ρX , with norm ‖f‖ρ := (

∫
X
|f(x)|2dρX(x))1/2. Let Lρ : L2(H, ρX) → L2(H, ρX) be the

operator defined as Lρ(f) :=
∫
X
〈x, · 〉Hf(x)dρX(x). Under Assumption 1 the operator Lρ can

be proved to be in the class of positive trace operators [15], and therefore the r-th power Lrρ, with
r ∈ R, can be defined by using spectral theory. Let us also define the operator Tρ : H → H as
Tρ :=

∫
X
〈x, · 〉HxdρX(x) and its operator norm ‖Tρ‖ := supω∈H,‖ω‖H=1 ‖Tρω‖H . The function

minimising the expected squared loss (2) over all measurable functions f : H → R is known to
be the conditional expectation fρ(x) :=

∫
Y
ydρ(y|x) for x ∈ X . Let Hρ := {f : X → R | ∃ω ∈

H with f(x) = 〈w, x〉H , ρX -almost surely} be the hypothesis space that we consider. The optimal
fρ may not be in Hρ as under Assumption 1 the space of functions searched Hρ is a subspace of
L2(H, ρX). Let fH denote the projection of fρ onto the closure of Hρ in L2(H, ρX). Searching for
a solution to (2) is equivalent to searching for a linear function in Hρ that approximates fH .
The following assumption quantifies how well the target function fH can be approximated in Hρ.
Assumption 2. There exist r > 0 and R > 0 such that ‖L−rρ fH‖ρ ≤ R.

This assumption is often called the “source” condition [12]. Representing fH in the eigenspace of
Lρ, this condition can be related to the rate at which the coefficients of this representation decay. The
bigger r is, the faster the decay, and more stringent the assumption is. In particular, if r ≥ 1/2 then
the target function is in the hypothesis space fH ∈ Hρ. The last assumption is on the capacity of the
hypothesis space.

Assumption 3. There exist γ ∈ (0, 1], cγ > 0 such that Tr(Lρ
(
Lρ+λI

)−1
) ≤ cγλ−γ for all λ > 0.

Assumption 3 relates to the effective dimension of the underlying regression problem [59, 12] and is
often called the “capacity” assumption. This assumption is always satisfied for γ = 1 and cγ = κ2

since Lρ is a trace class operator. This case is called the capacity-independent setting. Meanwhile,
this assumption is satisfied for γ ∈ (0, 1] if, for instance, the eigenvalues of Lρ, denoted by {τi}i≥1,
decay sufficiently quickly, i.e. τi = O(i−1/γ). This case allows improved rates to be obtained. For
more details on the interpretation of these assumptions we refer to the work in [40, 27, 35].
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2.3 Algorithm: distributed gradient descent

We now describe the Distributed Gradient Descent algorithm [33] and its application to the problem
of non-parametric regression. Let P ∈ Rn×n≥0 be a symmetric doubly-stochastic matrix, i.e. P = P>

and P1 = 1 where 1 = (1, . . . , 1) ∈ Rn is the vector of all ones. Let P be supported on the
graph, i.e. for any v 6= w, Pvw 6= 0 only if (v, w) ∈ E. The matrix P encodes local averaging on
the network: when each agent has a real number represented by the vector a = (av)v∈V ∈ Rn,
the vector (Pa)v =

∑
w∈V Pvwaw for v ∈ V encodes what each agent computes after taking a

weighted average of its own and neighbours’ numbers. Distributed Gradient Descent is implemented
by communication on the network through the gossip matrix P . Initialised at w1,v = 0 for v ∈ V ,
the iterates of the Distributed Gradient Descent are defined as follows, for v ∈ V and t ≥ 1:

ωt+1,v =
∑
w∈V

Pvw

(
ωt,w − ηt

1

m

m∑
i=1

(
〈ωt,w, xi,w〉H − yi,w

)
xi,w

)
, (3)

where {ηt}t≥1 is the sequence of positive step sizes. The iterates (3) can be seen as a combination
of two steps: first, each agent w ∈ V performs a local gradient descent step ωt+1/2,w = ωt,w −
ηt

1
m

∑m
i=1

(
〈ωt,w, xi,w〉H − yi,w

)
xi,w; second, each agent performs local averaging through the

consensus step1 ωt+1,v =
∑
w∈V Pvwωt+1/2,w. We treat gradient descent as a statistical device. We

are interested in tuning the parameters of the algorithm to bound the expected value of the excess risk
E[E(ωt+1,v)]− infω∈H E(ω), where E[ · ] denotes expectation with respect to the data {zv}v∈V .

Network dependence Let σ2 be the second largest eigenvalue in magnitude of the communication
matrix P . Specifically, given the spectral decomposition of the gossip matrix P =

∑n
l=1 λlulu

>
l

where 1 = λ1 ≥ λ2 ≥, . . . ,≥ λn > −1 are the ordered real eigenvalues of P and {ul}l=1,...,n

the associated eigenvectors, we have σ2 := max{|λ2|, |λn|}. In many settings, the spectral gap
scales with the size of the network raised to a certain power depending on the topology. For instance,
supposing G is a finite regular graph and the communication matrix is the random walk matrix, then
the inverse of the spectral gap (1− σ2)−1 scales as Θ(1) for a complete graph, Θ(n) for a grid, and
Θ(n2) for a cycle [14, 24, 18]. The question of designing gossip matrices P that yield better (smaller)
scaling for the quantity (1− σ2)−1 has been investigated [56], and it has been found numerically that
the rates mentioned above can not be improved unless lifted graphs are considered [44].

3 Main result: optimal statistical rates with linear speed-up in runtime

We now state and highlight the main contribution of this work in the context of decentralised statistical
optimisation. The result that we are about to state in Theorem 1 showcases the interplay between
statistics and communication that arise from the statistical regularities of the problem. This result
shows the existence of a “big data” regime where Distributed Gradient Descent can achieve a linear
(in the number of agents n) speed-up in runtime compared to Single-Machine Gradient Descent.

Theorem 1. Let Assumptions 1, 2, 3 hold with r ≥ 1/2 and 2r+ γ > 2. Let t be the smallest integer
greater than the quantity

(nm)1/(2r+γ)︸ ︷︷ ︸
Single-Machine Iterations

×


(

(nm)2r/(2r+γ)

m(1−σ2)γ

)1/γ
∨ 1 if m ≥ n2r/γ

(nm)r/(2r+γ)√
m(1−σ2)

otherwise

Let ηs ≡ η = κ−2(nm)1/(2r+γ)

t ∀s ≥ 1. If m ≥ n
2r+2+γ
2r+γ−2 and n ≥ 2(1 + r) log( n

1−σ2
), then ∀v ∈ V :

E[E(ωt+1,v)]− inf
ω∈H
E(ω) ≤ C(nm)−2r/(2r+γ),

where C depends on κ2, ‖Tρ‖,M, ν, r, R, γ, cγ , and polynomials of log(nm) and log( 1
1−σ2

).

1 We note, while this assumes agents communicate infinite dimensional quantities in the general non-
parametric setting, the framework we consider accommodates finite approximations of infinite dimensional
quantities whilst accounting for the statistical precision [13].
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Theorem 1 shows that when agents are given sufficiently many samples (m) with respect to the
number of agents (n), m ≥ n

2r+2+γ
2r+γ−2 , proper tuning of the step size and number of iterations (a form

of implicit regularisation) allows Distributed Gradient Descent to recover the optimal statistical rate
O((nm)−2r/(2r+γ)) for r ∈ (1/2, 1) [12] up to poly-logarithmic terms.

Single-Machine Gradient Descent run on all of the observations has been previously shown to reach
optimal statistical accuracy with a number of iterations of the order tSingle-Machine ∼ O((nm)1/(2r+γ))
[27]. The number of iterations t ≡ tDistributed prescribed by Theorem 1 scales like tSingle-Machine times a
network-dependent factor that is a function of the inverse of the spectral gap (1−σ2)−1. The fact that
the number of iterations required to reach a prescribed level of error accuracy is inversely proportional
to the spectral gap is a standard feature of iterative gradient methods applied to generic decentralised
consensus optimisation problems [18, 42, 43]. This dependence encodes the fact that in the case
of generic objective functions assigned to agents, agents have to share information with everyone
to solve the global problem and minimise the sum of the local functions; hence, more iterations
are required in graph topologies that are less well-connected. In the present homogeneous setting,
however, the statistical nature of the problem allows to exploit concentration of random variables to
characterise the existence of a (network-dependent) “big data” regime where the number of iterations
does not depend on the network topology. The trade-off between statistics and communication is
encoded by the dependence of the tuning parameters (stopping time and step size) on the number
of samples m assigned to each agent. Observe that the factor ( (nm)2r/(2r+γ)

m(1−σ2)γ
)1/γ ∨ 1 is a decreasing

function of m, up to the threshold 1. When m ≥ n2r/γ

(1−σ2)2r+γ
∨ n

2r+2+γ
2r+γ−2 this factor becomes 1 and

Theorem 1 guarantees that the same order of iterations allows both Distributed and Single-Machine
Gradient Descent to achieve the optimal statistical rates up to poly-logarithmic factors. This regime
represents the case when the increased statistical similarity between the local empirical risk functions
assigned to each agent (increasing as a function of m, as described by the non-asymptotic Law of
Large Numbers) makes up for the decreased connectivity in the graph topology (typically decreasing
with the spectral gap 1 − σ2) to yield a linear speed-up in runtime over Single-Machine Gradient
Descent when the communication delay between agents is sufficiently small. See Section 3.1 below.

The result of Theorem 1 depends on some other requirements which we now briefly discuss. The
requirement n ≥ 2(1 + r) log( n

1−σ2
) is technical and arises from the need to perform sufficiently

many iterations to reach the mixing time of the gossip matrix P , i.e. t & (1− σ2)−1. Noting that the
number of iterations t depends on the number of agents, samples and spectral gap. The requirement
2r + γ > 2 relates to the difficulty of the estimation problem and is stronger than a similar condition
seen for single-machine gradient methods where 2r + γ > 1, see for instance the works [27, 35].
This requirement, alongside m ≥ n

2r+2+γ
2r+γ−2 , ensures that the higher-order error terms arising from

considering a decentralised protocol decay sufficiently quickly with respect to the number of samples
owned by agents m. The condition m ≥ n

2r+2+γ
2r+γ−2 can be removed if the covariance operator Tρ is

assumed to be known to agents, which aligns with the additive noise oracle in single-pass Stochastic
Gradient Descent [16] or fixed-design regression in finite-dimensional settings [21]. The condition
m ≥ n2r/γ corresponds to the case when the rate of concentration of the batched gradients held by
agents (i.e. 1/m) is faster than the optimal statistical rate, i.e. 1

m ≤ (nm)−2r/(2r+γ). This condition
becomes more stringent (i.e. more data per agent is needed) as the problem becomes easier from a
statistical point of view and r and 1/γ increase (see discussion in Section 2.2). This is due to the fact
that as r and 1/γ increase, only the statistical rate improves while the rate of concentration in the
network error stays the same, implying that more data is needed to balance the two terms.

3.1 Linear speed-up in runtime

Let gradient computations cost 1 unit of time and communication delay between agents be τ units of
time.2 Denote the number of iterations required by Single-Machine Gradient Descent and Distributed
Gradient Descent to achieve the optimal statistical rate by tSingle-Machine and tDistributed, respectively. The
speed-up in computational time obtained by running the distributed protocol over the single-machine
protocol is of the order tSingle-Machine

tDistributed

nm
m+τ+Deg(P ) , where Deg(P ) = maxv∈V |{Pvw 6= 0, w ∈ V }|

is the maximum degree of the communication matrix P . Theorem 1 implies that when m ≥

2 For details on this communication model as well as comparison to [50] see remarks within Appendix A.
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n2r/γ

(1−σ2)2r+γ
∨ n

2r+2+γ
2r+γ−2 then tDistributed ∼ tSingle-Machine, and if τ + Deg(P ) grows as O(m) then the

speed-up in computational time is of order n, linear in the number of agents. Classical “single-step”
decentralised methods that alternate single communication rounds per local gradient computation,
such as the methods inspired by [33], do not exploit concentration and have a runtime that scales
with the inverse of the spectral gap, without any threshold. As a result, these methods only yield a
linear speed-up in graphs with spectral gap bounded away from zero, i.e. expanders or the complete
graph. See below for more details. On the other hand, “multi-step” methods that alternate multiple
communication rounds per local gradient computation, such as the ones considered in [37, 51, 42, 43],
display a runtime that scales with a factor of the form m+ τ+Deg(P )

1−σ2
in our setting. Thus, while these

methods can achieve a linear speed-up in any graph topology in the “big data” regime m & τ+Deg(P )
1−σ2

without exploiting concentration, they require an additional amount of communication rounds that is
network-dependent and scales with the inverse of the spectral gap. For a cycle graph, for instance, this
means an extra O(n2) communication steps per iteration (or O(n) for gossip-accelerated methods).
Hence, classical decentralised optimisation methods that do not exploit concentration suffer from a
trade-off between runtime and communication cost: if you reduce the first you increase the second,
and viceversa. Our results show that single-step methods can achieve a linear speed-up in runtime in
any graph topology by exploiting concentration: statistics allows to find a regime where it is possible
to simultaneously have a linear speed-up in runtime without increasing communication.

Comparison to single-step decentralised methods that do not exploit concentration Decen-
tralised optimisation methods that do not consider statistical concentration rates in their parameter
tuning can not exploit the statistics/communication trade-off encoded by the presence of the factor
( (nm)2r/(2r+γ)

m(1−σ2)γ
)1/γ ∨1 in Theorem 1, and they typically require a smaller step size and more iterations

to achieve optimal statistical rates. The convergence rate typically achieved by classical consensus
optimisation methods, e.g. [18], is recovered in Theorem 1 when m = n2r/γ as in this case the
number of iterations required becomes t ∼ (nm)1/(2r+γ)

1−σ2
, which corresponds to tSingle-Machine scaled

by a certain power of 1/(1− σ2) (in our setting the power is 1). This represents the setting where
the choice of step size aligns with the choice in the single-machine case scaled by (1 − σ2), and
a linear speed-up occurs when (1− σ2)−1 = O(1). Since the network error is decreasing in m in
our case (due to concentration), larger step sizes can be chosen for m > n2r/γ . Specifically, the
single-machine step size is now scaled by [(1− σ2)( m

n2r/γ )1/(2r+γ)] ∨ 1, yielding a linear speed-up
when (1 − σ2)−1 = O(( m

n2r/γ )1/(2r+γ)), which, as m increases, is a weaker requirement on the
network topology over the standard consensus optimisation setting.

4 General result: error decomposition and implicit regularisation

Theorem 1 is a corollary of the next result, which explicitly highlights the interplay between statistics
and network topology and the implicit regularisation role of the step size and number of iterations.
Theorem 2. Let Assumptions 1, 2, 3 hold with r ≥ 1/2. Let ηs = ηs−θ ∀s ≥ 1 with θ ∈ (0, 3/4)

and η ∈ (0, κ−2]. If t/2 ≥ d (r+1) log(t)
1−σ2

e =: t?, then for all v ∈ V , α ∈ [0, 1/2] and γ′ ∈ [1, γ]:

E[E(ωt+1,v)]− inf
ω∈H
E(ω)

≤
[
q1(ηt1−θ)−2r+ q2(nm)−2r/(2r+γ)

(
1∨(nm)−2/(2r+γ)(ηt1−θ)2∨t−2(ηt1−θ)2

)]
log2(t) (4)

+ q3
log2(n) log2(t?)

m

(
η2t−2r ∨ (m−1(ηt?)1+2α) ∨ (ηt?)γ

′+2α
)

(5)

+ q4
log4(n) log2(t)

m2

(
1 ∨ (ηt1−θ)2 ∨ t−2(ηt1−θ)4

)(
(m−1ηt1−θ) ∨ (ηt1−θ)γ

)
(6)

where q1, q2, q3, q4 are all constants depending on κ2, ‖Tρ‖,M, ν, r, R, γ, cγ .

The bound in Theorem 2 shows that the excess risk has been decomposed into three main terms,
as detailed in Section B.1. The first term (4) corresponds to the error achieved by Single-Machine
Gradient Descent run on all nm samples. It consists of both bias and sample variance terms [27].
The second two terms (5) and (6) characterise the network error due to the use of a decentralised
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protocol. These terms decrease with the number of samples m owned by each agent. This captures
the fact that, as agents are given samples from the same unknown distribution, agents are in fact
solving the same learning problem and their local empirical loss functions concentrate to the same
objective as m increases. The decentralised error term is itself composed of two terms which decay
at different rates with respect to m. The term in (5) is dominant and decays at the order of Õ(1/m).
This can be interpreted as the consensus error seen in the works [33, 18] for instance. As in that
setting, this quantity is also increasing with the step size η and decreasing with the spectral gap
of the communication matrix 1 − σ2, as encoded by t?. The term (6) decays at the faster rate of
Õ(1/m2). This is a higher-order error term that is not appearing in the error decomposition when the
covariance operator Tρ is assumed to be known to agents. This quantity arises from the interaction
between the local averaging on the network through P and what has been previously labelled as the
“multiplicative” noise in the single-machine single-pass stochastic gradient setting for least squares
[16], i.e. the empirical covariance operator interacting with the iterates at each step. Section B.2
provides a high-level illustration of the analysis of the Network Error terms (5) and (6).

The bound in Theorem 2 shows how the algorithmic parameters—step size and number of iterations—
act as regularisation parameters for Distributed Gradient Descent, following what is seen in the
single-machine setting. Theorem 1 demonstrates how optimal statistical rates can be recovered by
tuning these parameters appropriately with respect to the network topology, network size, number of
samples, and with respect to the estimation problem itself. The bound in Theorem 1 is obtained from
the bound in Theorem 2 by first tuning the quantity ηt to the order (nm)1/(2r+γ) so that the bias
and variance terms in (4) achieve the optimal statistical rate. This leaves the tuning of the remaining
degree of freedom (say η) to ensure that also the network error achieves the optimal statistical rate.
The high-level idea is the following. As m increases, the network error is dominated by the term
in (5) that is proportional to the factor (ηt?)γ

′+2α/m. There are two ways to choose the largest
possible step size η to guarantee that this factor is Õ((nm)−2r/(2r+γ)), depending on whether the
rate of concentration of the batched gradients held by agents is faster than the optimal statistical
rate or not, i.e., whether m ≥ n2r/γ is true or not (cf. Section 3). The two cases yield the factors
( (nm)2r/(2r+γ)

m(1−σ2)γ
)1/γ ∨ 1 and (nm)r/(2r+γ)√

m(1−σ2)
in Theorem 1, corresponding to the choice γ′ = γ , α = 0

and γ′ = 1 , α = 1/2, respectively. If the concentration of the batched gradients held by agents fully
compensates for the network error, i.e. m ≥ n2r/γ

(1−σ2)2r+γ
, then (ηt?)γ

′+2α/m ' (nm)−2r/(2r+γ)

with a constant step size and tDistributed ∼ tSingle-Machine ∼ (nm)1/(2r+γ), yielding the regime where a
linear speed-up occurs. For more details on the parameters α, γ′, see Lemma 8 in Appendix C.3.1.

5 Future directions

We highlight some of the features of our contribution and outline directions for future research.

Non-parametric setting We prove bounds in the attainable case r ≥ 1/2. The non-attainable case
r < 1/2 is known to be more challenging [27], and it is natural to investigate to what extent our
results can be extended to that setting. We consider the case γ > 0 which does not include the finite-
dimensional setting H = Rd, γ = 0, where the optimal rate is O(d/(nm)) [54]. While adapting
our results to this setting requires minor modifications, optimal bounds would only hold for “easy”
estimation problems with r > 1 due to the higher-order term in the network error. Improvements
require getting better bounds on this term, potentially using a different learning rate.

General loss functions The analysis that we develop is specific to the square loss, which yields
the bias/variance error decomposition and allows to get explicit characterisations by expanding the
squares. While the concentration phenomena that we exploit are generic, different techniques are
required to extend our analysis to other losses, as in the single-machine setting. The statistical
proximity of agents’ functions in the finite-dimensional setting has been investigated in [38].

Statistics/communication trade-off with sparse/randomised gossip In this work we show that
when agents hold sufficiently many samples, then Distributed and Single-Machine Gradient Descent
achieve the optimal statistical rate with the same order of iterations. This motivates balancing and
trading off communication and statistics, e.g., investigating statistically robust procedures in settings
when agents communicate with a subset of neighbours, either deterministically or randomly [9, 17, 4].
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Stochastic gradient descent and mini-batches Our work exploits concentration of gradients
around their means, so full-batch gradients (i.e. batches of size m) yield the concentration rate 1/m.
In single-machine learning, stochastic gradient descent [39] has been shown to achieve good statistical
performance in a variety of settings while allowing for computational savings. Extending our findings
to stochastic methods with appropriate mini-batch sizes is another venue for future investigation.
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