
Tight Dimension Independent Lower Bound on the
Expected Convergence Rate for Diminishing Step

Sizes in SGD

Phuong Ha Nguyen
Electrical and Computer Engineering

University of Connecticut, USA
phuongha.ntu@gmail.com

Lam M. Nguyen
IBM Research, Thomas J. Watson Research Center

Yorktown Heights, USA
LamNguyen.MLTD@ibm.com

Marten van Dijk
Electrical and Computer Engineering

University of Connecticut, USA
marten.van_dijk@uconn.edu

Abstract

We study the convergence of Stochastic Gradient Descent (SGD) for strongly
convex objective functions. We prove for all t a lower bound on the expected
convergence rate after the t-th SGD iteration; the lower bound is over all possible
sequences of diminishing step sizes. It implies that recently proposed sequences
of step sizes at ICML 2018 and ICML 2019 are universally close to optimal in
that the expected convergence rate after each iteration is within a factor 32 of our
lower bound. This factor is independent of dimension d. We offer a framework
for comparing with lower bounds in state-of-the-art literature and when applied to
SGD for strongly convex objective functions our lower bound is a significant factor
775 · d larger compared to existing work.

1 Introduction

We are interested in solving the following stochastic optimization problem
min
w∈Rd

{F (w) = E[f(w; ξ)]} , (1)

where ξ is a random variable obeying some distribution g(ξ). In the case of empirical risk mini-
mization with a training set {(xi, yi)}ni=1, ξi is a random variable that is defined by a single random
sample (x, y) pulled uniformly from the training set. Then, by defining fi(w) := f(w; ξi), empirical
risk minimization reduces to

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
. (2)

Problems of this type arise frequently in supervised learning applications [9]. The classic first-order
methods to solve problem (2) are gradient descent (GD) [21] and stochastic gradient descent (SGD)1

[23] algorithms. GD is a standard deterministic gradient method, which updates iterates along the
negative full gradient with learning rate ηt as follows

wt+1 = wt − ηt∇F (wt) = wt −
ηt
n

n∑
i=1

∇fi(wt) , t ≥ 0.

1We notice that even though stochastic gradient is referred to as SG in literature, the term stochastic gradient
descent (SGD) has been widely used in many important works of large-scale learning.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

We can choose ηt = η = O(1/L) and achieve a linear convergence rate for the strongly convex case
[17]. The upper bound of the convergence rate of GD and SGD has been studied in [2, 4, 17, 24, 19,
18, 8].

The disadvantage of GD is that it requires evaluation of n derivatives at each step, which is very
expensive and therefore avoided in large-scale optimization. To reduce the computational cost for
solving (2), a class of variance reduction methods [12, 6, 10, 20] has been proposed. The difference
between GD and variance reduction methods is that GD needs to compute the full gradient at each
step, while the variance reduction methods will compute the full gradient after a certain number of
steps. In this way, variance reduction methods have less computational cost compared to GD. To
avoid evaluating the full gradient at all, SGD generates an unbiased random variable ξt satisfying

Eξt [∇f(wt; ξt)] = ∇F (wt),

and then evaluates gradient∇f(wt; ξt) for ξt drawn from a distribution g(ξ). After this, wt is updated
as follows

wt+1 = wt − ηt∇f(wt; ξt). (3)

We focus on the general problem (1) where F is strongly convex. Since F is strongly convex, a
unique optimal solution of (1) exists and throughout the paper we denote this optimal solution by w∗
and are interested in studying the expected convergence rate

Yt = E[‖wt − w∗‖2].

Algorithm 1 provides a detailed description of SGD. Obviously, the computational cost of a single
iteration in SGD is n times cheaper than that of a single iteration in GD. However, as has been shown
in literature we need to choose ηt = O(1/t) and the expected convergence rate of SGD is slowed
down to O(1/t) [3], which is a sublinear convergence rate.

Algorithm 1 Stochastic Gradient Descent (SGD) Method

Initialize: w0

Iterate:
for t = 0, 1, . . . do

Choose a step size (i.e., learning rate) ηt > 0.
Generate a random variable ξt with probability density g(ξt).
Compute a stochastic gradient∇f(wt; ξt).
Update the new iterate wt+1 = wt − ηt∇f(wt; ξt).

end for

Problem Statement and Contributions: We seek to find a tight lower bound on the expected
convergence rate Yt with the purpose of showing that the stepsize sequences of [19] and [8] for
classical SGD is optimal for µ-strongly convex and L-smooth respectively expected L-smooth
objective functions within a small dimension independent constant factor. This is important because
of the following reasons:

1. The lower bound tells us that a sequence of stepsizes as a function of only µ and L cannot
beat an expected convergence rate of O(1/t) – this is known general knowledge and was
already proven in [1], where a dimension dependent lower bound for a larger class of
algorithms that includes SGD was proven. For the class of SGD with diminishing stepsizes
as a function of only global parameters µ and L we show a dimension independent lower
bound which is a factor 775 · d larger.

2. We now understand into what extent the sequence of stepsizes of [19] and [8] are optimal
in that it leads to minimal expected convergence rates Yt for all t: For each t we will show
a dimension independent lower bound on Yt over all possible stepsize sequences. This
includes the best possible stepsize sequence which minimizes Yt for a given t. Our lower
bound achieves the upper bound on Yt for the stepsize sequences of [19] and [8] within a
factor 32 for all t. This implies that these stepsize sequences universally minimizes each Yt
within factor 32.

2

3. As a consequence, in order to attain a better expected convergence rate, we need to either
assume more specific knowledge about the objective function F so that we can construct a
better stepsize sequence for SGD based on this additional knowledge or we need to step
away from SGD and use a different kind of algorithm. For example, the larger class of
algorithms in [1] may contain a non-SGD algorithm which may get close to the lower bound
proved in [1] which is a factor 775 · d smaller. Since the larger class of algorithms in [1]
contains algorithms such as Adam [11], AdaGrad [7], SGD-Momentum [25], RMSProp
[27] we now know that these practical algorithms will at most improve a factor 32 · 775 · d
over SGD for strongly convex optimization – this can be significant as this can lead to orders
of magnitude less gradient computations. We are the first to make such quantification.

Outline: Section 2 discusses background: First, we discuss the recurrence on Yt used in [19] for
proving their upper bound on Yt – this recurrence plays a central role in proving our lower bound.
We discuss the upper bounds of both [19] and [8] – the latter holding for a larger class of algorithms.
Second, we explain the lower bound of [1] in detail in order to be able to properly compare with our
lower bound. Section 3 introduces a framework for comparing bounds and explains the consequences
of our lower bound in detail. Section 4 describes a class of strongly convex and smooth objective
functions which is used to derive our lower bound. We also verify our theory by experiments in the
supplementary material. Section 5 concludes the paper.

2 Background

We explain the upper bound of [19, 8], and lower bound of [1] respectively.

2.1 Upper Bound for Strongly Convex and Smooth Objective Functions

The starting point for analysis is the recurrence first introduced in [19, 13]

E[‖wt+1 − w∗‖2] ≤ (1− µηt)E[‖wt − w∗‖2] + η2
tN, (4)

where
N = 2E[‖∇f(w∗; ξ)‖2]

and ηt is upper bounded by 1
2L ; the recurrence has been shown to hold, see [19, 13], if we assume

1. F (.) is µ-strongly convex,

2. f(w; ξ) is L-smooth,

3. f(w; ξ) is convex, and

4. N is finite;

we detail these assumptions below:

Assumption 1 (µ-strongly convex). The objective function F : Rd → R is µ-strongly convex, i.e.,
there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w)− F (w′) ≥ 〈∇F (w′), (w − w′)〉+
µ

2
‖w − w′‖2. (5)

Assumption 2 (L-smooth). f(w; ξ) is L-smooth for every realization of ξ, i.e., there exists a constant
L > 0 such that, ∀w,w′ ∈ Rd,

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖. (6)

Assumption 2 implies that F is also L-smooth.

Assumption 3. f(w; ξ) is convex for every realization of ξ, i.e., ∀w,w′ ∈ Rd,

f(w; ξ)− f(w′; ξ) ≥ 〈∇f(w′; ξ), (w − w′)〉.

Assumption 4. N = 2E[‖∇f(w∗; ξ)‖2] is finite.

3

We denote the set of strongly convex objective functions by Fstr and denote the subset of Fstr
satisfying Assumptions 1, 2, 3, and 4 by Fsm.

We notice that the earlier established recurrence in [15] under the same set of assumptions

E[‖wt+1 − w∗‖2] ≤ (1− 2µηt + 2L2η2
t)E[‖wt − w∗‖2] + η2

tN

is similar, but worse than (4) as it only holds for ηt < µ
L2 where (4) holds for ηt ≤ 1

2L . Only for step
sizes ηt < µ

2L2 the above recurrence provides a better bound than (4), i.e., 1−2µηt+2L2η2
t ≤ 1−µηt.

In practical settings such as logistic regression µ = O(1/n), L = O(1), and t = O(n) (i.e. t is
at most a relatively small constant number of epochs, where a single epoch represents n iterations
resembling the complexity of a single GD computation). See (8) below, for this parameter setting
the optimally chosen step sizes are� µ

L2 . This is the reason we focus in this paper on analyzing
recurrence (4) in order to prove our lower bound: For ηt ≤ 1

2L ,

Yt+1 ≤ (1− µηt)Yt + η2
tN, (7)

where Yt = E[‖wt − w∗‖2].

Based on the above assumptions (without the so-called bounded gradient assumption) and knowledge
of only µ andL a sequence of step sizes ηt can be constructed such that Yt is smaller thanO(1/t) [19];
more explicitly, for the sequence of step sizes

ηt =
2

µt+ 4L
(8)

we have for all objective functions in Fsm the upper bound

Yt ≤
16N

µ

1

µ(t− T ′) + 4L
=

16N

µ2t
(1 +O(1/t)), (9)

where
t ≥ T ′ =

4L

µ
max{LµY0

N
, 1} − 4L

µ
.

We notice that [8] studies the larger class, which we denote Fesm, which is defined as Fsm where
expected smoothness is assumed in stead of smoothness and convexity of component functions. We
rephrase their assumption for classical SGD as studied in this paper.2

Assumption 5. (L-smooth in expectation) The objective function F : Rd → R is L-smooth in
expectation if there exists a constant L > 0 such that, ∀w ∈ Rd,

E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L‖F (w)− F (w∗)‖. (10)

The results in [8] assume the above assumption for empirical risk minimization (2). L-smoothness,
see [17], implies Lipschitz continuity (i.e., ∀w,w′ ∈ Rd,

f(w, ξ) ≤ f(w′, ξ) + 〈∇f(w′, ξ), (w − w′)〉+
L

2
‖w − w′‖2

) and together with Proposition A.1 in [8] this implies L-smooth in expectation. This shows that
Fesm defined by Assumptions 1, 4, and 5 is indeed a superset of Fsm.

The step sizes (8) from [19] for Fsm ⊆ Fesm and

ηt =
2t+ 1

(t+ 1)2µ
for t >

4L

µ
and ηt =

1

2L
for t ≤ 4L

µ
(11)

developed for Fesm in [8] and [19] are equivalent in that they are both ≈ 2
µt for t large enough. Both

step size sequences give exactly the same asymptotic upper bound (9) on Yt (in our notation).

In [23], the authors proved the convergence of SGD for the step size sequence {ηt} satisfying
conditions

∑∞
t=0 ηt =∞ and

∑∞
t=0 η

2
t <∞. In [15], the authors studied the expected convergence

rates for another class of step sizes of O(1/tp) where 0 < p ≤ 1. However, the authors of both [23]
and [15] do not discuss about the optimal step sizes among all proposed step sizes which is what is
done in this paper.

2This means that distribution D in [8] must be over unit vectors v ∈ [0,∞)n, where n is the number
of component functions, i.e., n possible values for ξ. Arbitrary distributions D correspond to SGD with
mini-batches where each component function indexed by ξ is weighted with vξ.

4

2.2 Lower Bound for First Order Stochastic Oracles

The authors of [16] proposed the first formal study on lower bounding the expected convergence
rate for a large class of algorithms which includes SGD. The authors of [1] and [22] independently
studied this lower bound using information theory and were able to improve it.

The derivation in [1] is for algorithms including SGD where the sequence of stepsizes is a-priori
fixed based on global information regarding assumed stochastic parameters concerning the objective
function F . Their proof uses the following set of assumptions: First, The assumption of a strongly
convex objective function, i.e., Assumption 1 (see Definition 3 in [1]). Second, the objective function
is convex Lipschitz:
Assumption 6. (convex Lipschitz) The objective function F is a convex Lipschitz function, i.e., there
exists a bounded convex set S ⊂ Rd and a positive number K such that ∀w,w′ ∈ S ⊂ Rd

‖F (w)− F (w′)‖ ≤ K‖w − w′‖.

We notice that this assumption implies the assumption on bounded gradients as stated here (and
explicitly mentioned in Definition 1 in [1]): There exists a bounded convex set S ⊂ Rd and a positive
number σ such that

E[‖∇f(w; ξ)‖2] ≤ σ2 (12)

for all w ∈ S ⊂ Rd. This is not the same as the bounded gradient assumption where S = Rd is
unbounded.3 Clearly, for w∗, (12) implies a finite N ≤ 2σ2.

We define Flip as the set of strongly convex objective functions that satisfy Assumption 6. Classes
Fesm and Flip are both subsets of Fstr and differ (are not subclasses of each other) in that they
assume expected smoothness and convex Lipschitz respectively.

To prove a lower bound of Yt for Flip, the authors constructed a class of objective functions ⊆ Flip
and showed a lower bound of Yt for this class; in terms of the notation used in this paper,

log(2/
√
e)

432 · d
N

µ2t
. (13)

The authors of [1] prove lower bound (13) for the class Astoch of stochastic first order algorithms
that can be understood as operating based on information provided by a stochastic first-order oracle,
i.e., any algorithm which bases its computation in the t-th iteration on µ, K or L, d, and access to
an oracle that provides f(wt; ξt) and ∇f(wt; ξt). This class includes ASGD defined as SGD with
some sequence of diminishing step sizes as a function of global parameters such as µ and L or µ and
K, see Algorithm 1. We notice that Astoch also includes practical algorithms such as Adam [11],
etc. We revisit their derivation in the supplementary material where we show4 how their lower bound
transforms into (13). Notice that their lower bound depends on dimension d.

3 Framework for Upper and Lower Bounds

Let par(F) denote the concrete values of the global parameters of an objective function F such
as the values for µ and L corresponding to objective functions F in Fsm and Fesm or µ and K
corresponding to objective functions F in Flip. When defining a class F of objective functions,
we also need to explain how F defines a corresponding par(.) function. We will use the notation
F [p] to stand for the subclass {F ∈ F : p = par(F)} ⊆ F , i.e., the subclass of objective
functions of F with the same parameters p. We assume that parameters of a class are included in
the parameters of a smaller subclass: For example, Fsm is a subset of the class of strongly convex
objective functions Fstr with only global parameter µ. This means that for concrete values µ and L
we have Fsm[µ,L] ⊆ Fstr[µ].

For a given objective function F , we are interested in the best possible expected convergence rate
after the t-th iteration among all possible algorithms A in a larger class of algorithms A. Here, we

3The bounded gradient assumption, where S is unbounded, is in conflict with assuming strong convexity as
explained in [19].

4We also discuss the underlying assumption of convex Lipschitz and show that in order for the analysis in [1]
to follow through one – likely tedious but believable – statement still needs a formal proof.

5

assume that A is a subclass of the larger class Astoch,U of stochastic first order algorithms where
the computation in the t-th iteration not only has access to par(F) and access to an oracle that
provides f(wt; ξt) and ∇f(wt; ξt) but also access to possibly another oracle U providing even more
information. Notice that A ⊆ Astoch ⊆ Astoch,U for any oracle U . With respect to the expected
convergence rate, we want to know which algorithm A in A minimizes Yt the most. Notice that for
different t this may be a different algorithm A. We define for F ∈ F (with associated par(.))

γFt (A) = inf
A∈A

Yt(F,A),

where Yt is explicitly shown as a function of the objective function F and choice of algorithm A.

Among the objective functions F ∈ F with same global parameters p = par(F) (i.e., F ∈ F [p]), we
consider the objective function F which has the worst expected convergence rate at the t-th iteration.
This is of interest to us because algorithms A only have access to p = par(F) as the sole information
about objective function F , hence, if we prove an upper bound on the expected convergence rate for
algorithm A, then this upper bound must hold for all F ∈ F with the same parameters p = par(F).
In other words such an upper bound must be at least

γt(F [p],A) = sup
F∈F [p]

γFt (A) = sup
F∈F [p]

inf
A∈A

Yt(F,A).

So, any lower bound on γt(F [p],A) gives us a lower bound on the best possible upper bound on Yt
that can be achieved. Such a lower bound tells us into what extent the expected convergence rate Yt
cannot be improved.

The lower bound (13) and upper bound (9) are not only a function of µ in p = par(F) but also a
function of N which is outside p = par(F) for F ∈ Flip or F ∈ Fesm. We are really interested
in such more fine-grained bounds that are a function of N . For this reason we need to consider the
subclass of objective functions F in F [p] that all have the same N . We implicitly understand that N
is an auxiliary parameter of an objective function F and we denote this as a function of F as N(F).
We define Fa[p] = {F ∈ F [p] : a = aux(F)} where aux(.) represents for example N(.). This
leads to notation like FNlip[µ,K, d]. Notice that p = par(F) can be used by an algorithm A ∈ A
while a = aux(F) is not available to A through p = par(F) (but may be available through access to
an oracle).

If we find a tight lower bound with upper bound up to a constant factor, as in this paper, then we know
that the algorithm that achieves the upper bound is close to optimal in that the expected convergence
rate cannot be further minimized/improved in a significant way. In practice we are only interested
in upper bounds on Yt that can be realized by the same algorithm A (if not, then we need to know
a-priori the exact number of iterations t we want to run an algorithm and then choose the best one
for that t). In this paper we consider the algorithm A for F in Fsm resp. Fesm defined as SGD with
diminishing step sizes (8) resp. (11) as a function of par(F) = (µ,L) giving upper bound (9) on
expected convergence rate Yt(F,A). We show that A is close to optimal.

Given the above definitions we have

γt(F [p],A) ≤ γt(F ′[p′],A′) (14)

for F [p] ⊆ F ′[p′] and A′ ⊆ A, i.e., the worst objective function in a larger class of objective
functions is worse than the worst objective function in a smaller class of objective functions (see
the supremum used in defining γt) and the best algorithm from a larger class of algorithms is better
than the best algorithm from a smaller class of algorithms (see the infinum used in defining γt). This
implies

γt(FNlip[µ,K, d],Astoch) ≤ γt(FNstr[µ],ASGD), (15)

γt(FNsm[µ,L],AExtSGD) ≤ γt(FNesm[µ,L],ASGD) ≤ γt(FNstr[µ],ASGD), (16)

where ASGD ⊆ AExtSGD is defined as follows:

In our framework we introduce extended SGD as the class AExtSGD of SGD algorithms where the
stepsize in the t-th iteration can be computed based on global parameters µ, L, and access to an
oracle U that provides additional information N ,∇F (wt), and Yt. This class also includes SGD with

6

diminishing stepsizes as defined in Algorithm 1, i.e.,ASGD ⊆ AExtSGD. The reason for introducing
the larger class AExtSGD is not because it contains practical algorithms different than SGD, on the
contrary. The only reason is that it allows us to define one single algorithm A ∈ AExtSGD which
realizes γFt (AExtSGD) for all t for all F in a to be constructed subclass F ⊆ Fsm – the topic of the
next section. This property allows a rather straightforward calculus based proof without needing to
use more advanced concepts from information and probability theory as required in the proof of [1].
Looking ahead, we will prove in Theorem 1

1

2

N

µ2t
(1−O((ln t)/t)) ≤ γt(FNsm[µ,L],AExtSGD). (17)

Notice that the construction of ηt for algorithms in AExtSGD does not depend on knowledge of the
stochastic gradient∇f(wt; ξt). So, we do not consider step sizes that are adaptively computed based
on∇f(wt; ξt).

As a disclaimer we notice that for some objective functions F ∈ FNsm[µ,L] the expected convergence
rate can be much better than what is stated in (17); this is because γt({F},AExtSGD) can be much
smaller than γt(FNsm[µ,L],AExtSGD), see (14). This is due to the specific nature of the objective
function F itself. However, without knowledge about this nature, one can only prove a general upper
bound on the expected convergence rate Yt and any such upper bound must be at least the lower
bound (17).

Results (13) and (9) of the previous section combined with (15), (16), and (17) yield
log(2/

√
e)

432 · d
N

µ2t
≤ γt(FNlip[µ,K, d],Astoch) ≤ γt(FNstr[µ],ASGD), (18)

1

2

N

µ2t
(1−O((ln t)/t)) ≤ γt(FNesm[µ,L],AExtSGD) ≤ γt(FNstr[µ],ASGD), (19)

1

2

N

µ2t
(1−O((ln t)/t)) ≤ γt(FNsm[µ,L],AExtSGD) ≤ γt(FNesm[µ,L],ASGD)

≤ 16N

µ2t
(1 +O(1/t)). (20)

We conclude the following observations (our contributions):

1. The first inequality (18) is from [1]. Comparing (19) to (18) shows that as a lower bound
for γt(FNstr[µ],ASGD) (SGD for the class of strongly convex objective functions) our lower
bound (17) is dimension independent and improves the lower bound (13) of [1] by a factor
775 · d. This is a significant improvement.

2. However, our lower bound does not hold for the larger class Astoch. This teaches us that if
we wish to reach smaller (better) expected convergence rates, then one approach is to step
beyond SGD where our lower bound does not hold implying that withinAstoch there may be
an opportunity to find an algorithm leading to at most a factor 32 · 775 · d smaller expected
convergence rate compared to upper bound (20). This is the first exact quantification into
what extent a better (practical) algorithm when compared to classical SGD can be found.
E.g., Adam [11], AdaGrad [7], SGD-Momentum [25], RMSProp [27] are all in Astoch and
can beat classical SGD by at most a factor 32 · 775 · d.

3. When searching for a better algorithm in Astoch which significantly improves over SGD,
it does not help to take an SGD-like algorithm which uses step sizes that are a function of
iteratively computed estimates of ∇F (wt) and Yt as this would keep such an algorithm in
AExtSGD for which our lower bound is tight.

4. Another approach to reach smaller expected convergence rates is to stick with SGD but
consider a smaller restricted class of objective functions for which more/other information
in the form of extra global parameters is available for adaptively computing ηt.

5. For strongly convex and smooth, respectively expected smooth, objective functions the
algorithm A ∈ ASGD with stepsizes ηt = 2

µt+4L , respectively ηt = 2t+1
(t+1)2µ for t > 4L

µ

and ηt = 1
2L for t ≤ 4L

µ , realizes the upper bound in (20) for all t. Inequalities (20) show
that this algorithm is close to optimal: For each t, the best sequence of diminishing step
sizes which minimizes Yt can at most achieve a constant (dimension independent) factor 32
smaller expected convergence rate.

7

4 Lower Bound for Extended SGD

In order to prove a lower bound we propose a specific subclass of strongly convex and smooth
objective functions F and we show in the extended SGD setting how, based on recurrence (7), to
compute the optimal step size ηt as a function of µ and L and an oracle U with access to N ,∇F (wt),
and Yt, i.e., this step size achieves the smallest Yt+1 at the t-th iteration.

We consider the following class of objective functions F : We consider a multivariate normal
distribution of a d-dimensional random vector ξ, i.e., ξ ∼ N (m,Σ), where m = E[ξ] and Σ =
E[(ξ−m)(ξ−m)T] is the (symmetric positive semi-definite) covariance matrix. The density function
of ξ is chosen as

g(ξ) =
exp(−(ξ−m)TΣ−1(ξ−m)

2)√
(2π)d|Σ|

.

We select component functions f(w; ξ) = s(ξ)‖w−ξ‖
2

2 , where function s(ξ) is constructed a-priori
according to the following random process:

• With probability 1−µ/L, we draw s(ξ) from the uniform distribution over interval [0, µ/(1−
µ/L)].

• With probability µ/L, we draw s(ξ) from the uniform distribution over interval [0, L].

The following theorem analyses the sequence of optimal step sizes for our class of objective functions
and gives a lower bound on the corresponding expected convergence rates. The theorem states that we
cannot find a better sequence of step sizes. In other words without any more additional information
about the objective function (beyond µ,L,N, Y0, . . . , Yt for computing ηt), we can at best prove a
general upper bound which is at least the lower bound as stated in the theorem. The proof of the
lower bound is presented in the supplementary material:
Theorem 1. We assume that component functions f(w; ξ) are constructed according to the recipe
described above with µ < L/18. Then, the corresponding objective function is µ-strongly convex
and the component functions are L-smooth and convex.

If we run Algorithm 1 and assume that access to an oracle U with access to N , ∇F (wt), and Yt
is given at the t-th iteration (our extended SGD problem setting), then an exact expression for the
optimal sequence of stepsizes ηt based on µ,L,N, Y0, . . . , Yt can be given, i.e., this sequence of
stepsizes achieves the smallest possible Yt+1 at the t-th iteration for all t. For this sequence of
stepsizes,

Yt ≥
N

2µ

1

µt+ 2µ ln(t+ 1) +W
, (21)

where

W =
L2

12(L− µ)
.

In the supplementary material we show numerical experiments in agreement with the presented
theorem.

5 Conclusion

We have studied the convergence of SGD by introducing a framework for comparing upper bounds
and lower bounds and by proving a new lower bound based on straightforward calculus. The new
lower bound is dimension independent and improves a factor 775 ·d over previous work [1] applied to
SGD, shows the optimality of step sizes in [19, 8], and shows that practical algorithms like Adam [11],
AdaGrad [7], SGD-Momentum [25], RMSProp [27] for strongly convex objective functions can at
most achieve a factor 32 · 775 · d smaller expected convergence rate compared to classical SGD.

Acknowledgement

We thank the reviewers for useful suggestions to improve the paper. Phuong Ha Nguyen and Marten
van Dijk were supported in part by AFOSR MURI under award number FA9550-14-1-0351.

8

References
[1] Alekh Agarwal, Peter L Bartlett, Pradeep Ravikumar, and Martin J Wainwright. Information-

theoretic lower bounds on the oracle complexity of stochastic convex optimization. 2010.

[2] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[3] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv:1606.04838, 2016.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[5] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,
New York, NY, USA, 1991.

[6] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In NIPS, pages 1646–1654,
2014.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[8] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtarik. Sgd: General analysis and improved rates. arXiv preprint arXiv:1901.09401, 2019.

[9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edition, 2009.

[10] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, pages 315–323, 2013.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an
exponential convergence rate for finite training sets. In NIPS, pages 2663–2671, 2012.

[13] Rémi Leblond, Fabian Pederegosa, and Simon Lacoste-Julien. Improved asynchronous parallel
optimization analysis for stochastic incremental methods. arXiv preprint arXiv:1801.03749,
2018.

[14] Lucien LeCam et al. Convergence of estimates under dimensionality restrictions. The Annals of
Statistics, 1(1):38–53, 1973.

[15] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems, pages
451–459, 2011.

[16] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

[17] Yurii Nesterov. Introductory lectures on convex optimization : a basic course. Applied
optimization. Kluwer Academic Publ., Boston, Dordrecht, London, 2004.

[18] Lam Nguyen, Phuong Ha Nguyen, Peter Richtarik, Katya Scheinberg, Martin Takac, and
Marten van Dijk. New convergence aspects of stochastic gradient algorithms. arXiv preprint
arXiv:1811.12403, 2018.

[19] Lam Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtarik, Katya Scheinberg, and
Martin Takac. SGD and hogwild! Convergence without the bounded gradients assumption. In
ICML, 2018.

[20] Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In ICML, 2017.

9

[21] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, 2nd
edition, 2006.

[22] Maxim Raginsky and Alexander Rakhlin. Information-Based Complexity, Feedback and
Dynamics in Convex Programming. IEEE Trans. Information Theory, 57(10):7036–7056, 2011.

[23] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[24] Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a
strong growth condition. arXiv preprint arXiv:1308.6370, 2013.

[25] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147, 2013.

[26] Bin Yu. Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam, pages 423–435. Springer,
1997.

[27] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A Sufficient Condition for
Convergences of Adam and RMSProp. arXiv preprint arXiv:1811.09358, 2018.

10

Supplementary Material

A Proof

We extend Theorem 1 with an upper bound used in our numerical experiments.

Theorem 1 We assume that component functions f(w; ξ) are constructed according to the recipe
described in Section 4 with µ < L/18. Then, the corresponding objective function is µ-strongly
convex and the component functions are L-smooth and convex.

If we run Algorithm 1 and assume that access to an oracle U with access to N , ∇F (wt), and Yt
is given at the t-th iteration (our extended SGD problem setting), then an exact expression for the
optimal sequence of stepsizes ηt based on µ,L,N, Y0, . . . , Yt can be given, i.e., this sequence of
stepsizes achieves the smallest possible Yt+1 at the t-th iteration for all t. For this sequence of
stepsizes,

Yt ≥
N

2µ

1

µt+ 2µ ln(t+ 1) +W
,

where W = L2

12(L−µ) and for t ≥ T ′ = 20L
µ ,

Yt ≤
16N

µ

1

µt− 16L
. (22)

Proof. We first restrict oracle U to only supply information about N and Yt at the t-th iteration. At
the end of this proof we show that our arguments generalize to the more powerful oracle U which
also provides the full gradient∇F (wt) at the t-th iteration.

Clearly, f(w; ξ) is s(ξ)-smooth where the maximum value of s(ξ) is equal to L. That is, all functions
f(w; ξ) are L-smooth (and we cannot claim a smaller smoothness parameter). We notice that

Eξ[s(ξ)] = (1− µ/L)
µ/(1− µ/L)

2
+ (µ/L)

L

2
= µ

and

Eξ[s(ξ)2] = (1− µ/L)
(µ/(1− µ/L))2

12
+ (µ/L)

L2

12

=
µ(L+ µ

1−µ/L)

12
=

µL2

12(L− µ)
.

With respect to f(w; ξ) and distribution g(ξ) we define

F (w) = Eξ[f(w; ξ)] = Eξ[s(ξ)
‖w − ξ‖2

2
].

Since s(ξ) only assigns a random variable to ξ which is drawn from a distribution whose description
is not a function of ξ, random variables s(ξ) and ξ are statistically independent. Therefore, F (w) =

Eξ[s(ξ)
‖w − ξ‖2

2
] = Eξ[s(ξ)]Eξ[

‖w − ξ‖2

2
] = µEξ[

‖w − ξ‖2

2
]

Notice:

1. ‖w − ξ‖2 = ‖(w −m) + (m− ξ)‖2 = ‖w −m‖2 + 2〈w −m,m− ξ〉+ ‖m− ξ‖2.

2. Since m = E[ξ], we have E[m− ξ] = 0.

3. E[‖m− ξ‖2] =
∑d
i=1 E[(mi − ξi)2] =

∑d
i=1 Σi,i = Tr(Σ).

Therefore, F (w) = µEξ[‖w−ξ‖
2

2] = µ‖w−m‖
2

2 +µTr(Σ)
2 , and this shows F is µ-strongly convex and

has minimum w∗ = m.

11

Since

∇w[‖w − ξ‖2] = ∇w[〈w,w〉 − 2〈w, ξ〉+ 〈ξ, ξ〉]
= 2w − 2ξ = 2(w − ξ),

we have
∇wf(w; ξ) = s(ξ)(w − ξ).

In our notation
N = 2Eξ[‖∇f(w∗; ξ)‖2] = 2Eξ[s(ξ)2‖w∗ − ξ‖2].

By using similar arguments as used above we can split the expectation and obtain

N = 2Eξ[s(ξ)2‖w∗ − ξ‖2] = 2Eξ[s(ξ)2]Eξ[‖w∗ − ξ‖2].

We already calculated (w∗ = m)

Eξ[‖w∗ − ξ‖2] = ‖w∗ −m‖2 + Tr(Σ) = Tr(Σ)

and we know

Eξ[s(ξ)2] =
µL2

12(L− µ)
.

This yields

N = 2Eξ[s(ξ)2]Eξ[‖w∗ − ξ‖2] =
µL2

6(L− µ)
Tr(Σ).

In the SGD algorithm we compute

wt+1 = wt − ηt∇f(wt; ξt)

= wt − ηts(ξt)(wt − ξt)
= (1− ηts(ξt))wt + ηts(ξt)ξt.

We draw ξ from its distribution and set w0 = ξ. Therefore,

Y0 = E[‖w0 − w∗‖2] = E[‖ξ − w∗‖2] = Tr(Σ).

Let Ft = σ(w0, ξ0, . . . , ξt−1) be the σ-algebra generated by w0, ξ0, . . . , ξt−1. We derive E[‖wt+1−
w∗‖2|Ft]

= E[‖(1− ηts(ξt))(wt − w∗) + ηts(ξt)(ξt − w∗)‖2|Ft]
which is equal to

E[(1− ηts(ξt))2‖wt − w∗‖2

+ 2ηts(ξt)(1− ηts(ξt))〈wt − w∗, ξt − w∗〉
+ η2

t s(ξt)
2‖ξt − w∗‖2|Ft]. (23)

Given Ft, wt is not a random variable. Furthermore, we can use linearity of taking expectations and
as above split expectations:

E[(1− ηts(ξt))2]‖wt − w∗‖2

+ E[2ηts(ξt)(1− ηts(ξt))]〈wt − w∗,E[ξt − w∗]〉
+ E[η2

t s(ξt)
2]E[‖ξt − w∗‖2]. (24)

Again notice that E[ξt − w∗] = 0 and E[‖ξt − w∗‖2] = Tr(Σ). So, E[‖wt+1 − w∗‖2|Ft] is equal to

E[(1− ηts(ξt))2]‖wt − w∗‖2 + η2
t

N

2

= (1− 2ηtµ+ η2
t

µL2

12(L− µ)
)‖wt − w∗‖2 + η2

t

N

2

= (1− µηt(2−
ηt
12

L2

L− µ
))‖wt − w∗‖2 + η2

t

N

2
.

12

In terms of Yt = E[‖wt − w∗‖2], by taking the full expectation (also over Ft) we get

Yt+1 = (1− µηt(2−
ηt
12

L2

L− µ
))Yt + η2

t

N

2
. (25)

This is very close to recurrence (4).

Equation (25) expresses Yt+1 as a function Yt+1(ηt, Yt) of ηt and Yt. Given Y0, we want to minimize
Yt+1 with respect to the step sizes ηt, ηt−1, . . . , η0. For i < t we derive

∂Yt+1

∂ηi
=
∂Yt+1

∂Yt

∂Yt
∂ηi

= (1− µηt(2−
ηt
12

L2

L− µ
))
∂Yt
∂ηi

and for i = t we derive

∂Yt+1

∂ηi
= −2µYt + 2µ

ηt
12

L2

L− µ
Yt +Nηt. (26)

We reach a stationary point for Yt+1 as a function of step sizes ηt, ηt−1, . . . , η0 if each of the partial
derivatives with respect to ηi is equal to 0. We notice that if for all t

1− µηt(2−
ηt
12

L2

L− µ
) > 0, (27)

then, for i < t, ∂Yt+1

∂ηi
= 0 if and only if ∂Yt

∂ηi
= 0. This implies that Yt+1 has a stationary point if and

only if

∀0≤i≤t
∂Yi+1

∂ηi
= 0.

Hence, if a step size sequence satisfies this for all t, then it leads to stationary points for all Yt+1 as
function of ηt, ηt−1, . . . , η0. So, such a sequence of step sizes simultaneously achieves stationary
points for all Yt+1.

For the argument to hold, we need to prove (27). The left hand side of (27) achieves its minimum
value

1− 12µ
L− µ
L2

for ηt = 12L−µL2 . For µ < L
12 , 12µ(L−µ) < 12µL < L2 implying that this minimum value is larger

than zero.

As explained above the optimal step size ηt in a sequence of optimal step sizes that minimizes all
expected convergence rates Yt is computed by taking the derivative of Yt+1 with respect to ηt. This
derivative is equal to (26) and shows that the minimum is achieved for

ηt =
2µYt

N + µL2

6(L−µ)Yt
(28)

giving, see (25),

Yt+1 = Yt −
2µ2Y 2

t

N + µL2

6(L−µ)Yt

= Yt −
2µ2Y 2

t

N(1 + Yt/Tr(Σ))
. (29)

We note that Yt+1 ≤ Yt for any t ≥ 0. We proceed by proving a lower bound on Yt. Clearly,

Yt+1 ≥ Yt −
2µ2Y 2

t

N
(30)

Let us define γ = 2µ2/N . We can rewrite (30) as follows:

γYt+1 ≥ γYt(1− γYt) or

(γYt+1)−1 ≤ 1 + (γYt)
−1 +

1

(γYt)−1 − 1
. (31)

13

In order to make the inequality above correct, we require 1−γYt > 0 for any t ≥ 0. Since Yt+1 ≤ Yt,
we only need Y0 <

1
γ . This is implied by Y0 = Tr(Σ) < 2

3γ , a condition which is needed in the next
sequence of arguments. This stronger condition means that we need

Tr(Σ) <
N

3µ2
, i.e., Tr(Σ) <

µL2

6(L− µ)

Tr(Σ)

3µ2

after substituting N . This is equivalent to µ < L2

18(L−µ) which is true for µ < L/18.

By using induction on t, upper bound (31) implies

(γYt+1)−1 ≤ (t+ 1) + (γY0)−1 +

t∑
i=0

1

(γYi)−1 − 1
. (32)

In order to further upper bound the sum in the right hand side, we first find a lower bound on (γYi)
−1.

We rewrite equation (29) as

(γYt+1) = (γYt)(1−
(γYt)

1 + Yt/Tr(Σ)
).

Since Yt ≤ Y0 = Tr(Σ), we have

(γYt+1) ≤ (γYt)(1−
(γYt)

2
).

This translates into

(γYt+1)−1 ≥ (γYt)
−1

1− (γYt)/2
=

(γYt)
−2

(γYt)−1 − 1/2

=
1

2
+ (γYt)

−1 +
1

4(γYt)−1 − 2

≥ 1

2
+ (γYt)

−1,

where the last inequality follows from (γYt)
−1 > (γY0)−1 = (γTr(Σ))−1 > 1 making 4(γYt)

−1−2
positive.

The resulting inequality leads to a recurrence and by using induction on t we obtain

(γYt+1)−1 ≥ (t+ 1)/2 + (γY0)−1.

Now we are able to upper bound
t∑
i=0

1

(γYi)−1 − 1
≤

t∑
i=0

1

i/2 + (γY0)−1 − 1

= 2

t∑
i=0

1

i+ 2((γY0)−1 − 1)
.

We showed earlier that µ < L/18 implies Y0 <
2

3γ . Substituting this upper bound in our derivation
leads to

t∑
i=0

1

(γYi)−1 − 1
≤ 2

t∑
i=0

1

i+ 1
≤ 2 ln(t+ 2).

Combining with (32) we have the following inequality:

(γYt+1)−1 ≤ (t+ 1) + (γY0)−1 + 2 ln(t+ 2).

Reordering, substituting γ = 2µ2/N , and replacing t+ 1 by t yields, for t ≥ 0, the lower bound

Yt ≥
N

2µ

1

µt+N/(2µY0) + 2µ ln(t+ 1)

=
N

2µ

1

µt+ 2µ ln(t+ 1) +W
,

14

where

W =N/(2µY0) =
L2

12(L− µ)
.

We now extend oracle U to also provide information about full gradient∇F (wt) at the t-th iteration.
The above proof generalizes to this more powerful oracle. This is because of the reason why we are
allowed to transform (23) into (24), i.e., ηt and ξt must be independent to get (24) from (23). If the
construction of ηt does not depend on ξt (or ∇f(wt; ξt)), then only Yt is required to construct the
optimal stepsize ηt. It implies that the information of ∇F (wt) is not useful and we can borrow the
above proof to arrive at the lower bound of this theorem.

The upper bound for Yt comes from the following fact. If we run Algorithm 1 with step size
η′t = 2

µt+4L for t ≥ 0 in [19], then we have from [19] an expected convergence rate

Y ′t ≤
16N

µ

1

µ(t− T ′) + 4L

for t ≥ T ′, where

T ′ =
4L

µ
max{LµY0

N
, 1} − 4L

µ
.

Substituting

N =
µL2

6(L− µ)
Tr(Σ) and Y0 = Tr(Σ)

yields T ′ ≤ 20L
µ . Since ηt is the most optimal step size and η′t is not, Yt ≤ Y ′t . I.e., we have for

t ≥ 20L
µ ≥ T

′,

Yt ≤
16N

µ

1

µ(t− 20L
µ) + 4L

=
16N

µ

1

µt− 16L
.

B Numerical Experiments

We verify our theory by considering simulations with different values of sample size n (1000, 10000,
and 100000) and vector size d (10, 100, and 1000). We generate m ∈ Rd and a diagonal matrix
Σ ∈ Rd×d by drawing each element in m and each element on the diagonal of Σ at random from
a uniform distribution over [0, 1]. We have L = 1 and µ = 1/n where n is the number of samples.
Hence the condition number L/µ is equal to n and represents the number of SGD iterations in a
single epoch. We experimented with 10 runs and reported the average results.

We denote the labels “Upper Y_t” (red line) and “Lower Y_t” (violet line) in Figure 1 as the upper
and lower bounds of Yt in (22) and (21) respectively (with a vertical line at epoch 20 because we
expect to see the upper bound take effect when t ≥ T ′ = 20L/µ, see supplemental material A);
“Y_t_opt” (orange line) as Yt defined in Theorem 1 computed by using information from oracle U ;
“Y_t” (green line) as the squared norm of the difference between wt and w∗, where wt is generated
from Algorithm 1 with learning rate (28). Note that Yt in Figure 1 is computed as average of 10 runs
of ‖wt − w∗‖2 (not exactly E[‖wt − w∗‖2]).

“Upper Y_t” (red line), “Lower Y_t” (violet line) and “Y_t_opt” (orange line) do not oscillate because
they can be correctly computed using formulas (22), (21), and (29), respectively, i.e., they have no
variation. The green line “Y_t” for stepsize ηt = 2

µt+4L in Figure 1 oscillates because our analysis
does not consider the variance of ‖wt − w∗‖2. From (4) we infer that a decrease in ηt leads to a
decrease of the variance of ‖wt −w∗‖2. This fact is reflected in all subfigures in Figure 1. We expect
that increasing d and n (the number of dimensions in data and the number of data points) will increase
the variance. Hence, it requires larger t to make the variance approach 0 as shown in Figure 1. For
sufficiently large t, the optimality of ηt = 2

µt+4L is clearly shown in Figure 1 when n = 1000 and
d = 10, i.e., the green line is in between red line (upper bound) and violet line (lower bound). We
note that “Lower Y_t” and “Y_t_opt” are very close to each other in Figure 1 and the difference
between them is shown in Figure 2.

15

Figure 1: Yt and its upper and lower bounds

Figure 2: The difference between “Lower Y_t” and “Y_t_opt” (n = 10000, d = 100)

C Related Work

In [1], the authors showed that the lower bound of Yt is O(1/t) with bounded gradient assumption
for objective function F over a convex set S . To show the lower bound, the authors use the following
three assumptions for the objective function F :

1. The assumption of a strongly convex objective function, i.e., Assumption 1 (see Definition 3
in [1]).

2. There exists a bounded convex set S ⊂ Rd such that

E[‖∇f(w; ξ)‖2] ≤ σ2

for all w ∈ S ⊂ Rd (see Definition 1 in [1]). Notice that this is not the same as the bounded
gradient assumption where S = Rd is unbounded.

3. The objective function F is a convex Lipschitz function, i.e., there exists a positive number
K such that

‖F (w)− F (w′)‖ ≤ K‖w − w′‖,∀w,w′ ∈ S ⊂ Rd.
We notice that this assumption actually implies the assumption on bounded gradients as
stated above.

On the existence of the assumption of bounded convex set S ⊂ Rd where SGD converges: let
us restate the example in [19], i.e. F (w) = 1

2 (f1(w) + f2(w)) where f1(w) = 1
2w

2 and f2(w) = w.
It is obvious that F is strongly convex but f1 and f2 are not. Let w0 = 0 ∈ S , for any number t ≥ 0,
with probability 1

2t , the steps of SGD algorithm for all i < t are wi+1 = wi − ηi. This implies that
wt = −

∑
i=1 ηi. Since

∑
i=1 ηi = ∞, wt will escape the set S when t is sufficiently large. We

conclude that in Fstr there are objective functions that can escape any bounded set S with non-zero
probability.

16

If S is Rd, we have the following results:

On the non-coexistence of the assumption of a bounded gradient over Rd and assumption of
having strong convexity: As pointed out in [19], the assumption of bounded gradient does not
co-exist with strongly convex assumption. As shown in [17, 3], Assumption 1 on strong convexity
implies

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2 , ∀w ∈ Rd. (33)

As shown in [19], for any w ∈ Rd, we have

2µ[F (w)− F (w∗)]
(33)

≤ ‖∇F (w)‖2 = ‖E[∇f(w; ξ)]‖2

≤ E[‖∇f(w; ξ)‖2] ≤ σ2.

Therefore,

F (w) ≤ σ2

2µ
+ F (w∗),∀w ∈ Rd.

Note that, the from Assumption 1 and∇F (w∗) = 0, we have

F (w) ≥ µ‖w − w∗‖2 + F (w∗),∀w ∈ Rd.

Clearly, the two last inequalities contradict to each other for sufficiently large ‖w − w∗‖2. Precisely,
only when σ is equal to∞, then the assumption of bounded gradient and the assumption of strongly
convexity of F can co-exist. However, σ cannot be∞ and this result implies that there does not exist
any objective function F satisfies the assumption of bounded gradients over Rd and the assumption
of having a strongly convex objective function at the same time.

On the non-coexistence of the assumption of being convex Lipschitz over Rd and assumption
of being strongly convex: Moreover, we can also show that the assumption of convex Lipschitz
function does not co-exist with the assumption of being strongly convex. As shown in Section 2.3 in
[1], the assumption of Lipschitz function implies that ‖∇F (w)‖ ≤ K,∀w ∈ Rd. Hence, by using
the same argument from the analysis of the non-coexistence of bounded gradient assumption and
assumption of strongly convex, we can conclude that these two assumptions cannot co-exist. In other
words, there does not exist an objective function F which satisfies the assumption of convex Lipschitz
function and assumption of being strongly convex at the same time.

C.1 Discussion on the usage of Assumptions in [1]

As stated in Section 3 and Section 4.1.1 in [1], the authors construct a class of strongly convex
Lipschitz objective function F which has K = σ. The authors showed that the problem of convex
optimization for the constructed class of objective functions F is at least as hard as estimating the
biases of d independent coins (i.e., the problem of estimating parameters of Bernoulli variables). As
one additional important assumption to prove the lower bound of a first order stochastic algorithm, the
authors assume the existence of stepsizes ηt which make an first order stochastic algorithm converge
for a given objective function F under the three aforementioned assumptions (see Lemma 2 in [1]).
Note that the proof of the lower bound of Yt is described in Theorem 2 in [1] and Theorem 2 uses
their Lemma 2. If their Lemma 2 is not valid, then the proof of the lower bound of Yt in Theorem 2
is also not valid.

Given the proof strategy in [1] of the convergence of a first order stochastic algorithm, one may
require that the convex set S where F has all these nice properties must be Rd as explained above.
This, however, will lead to the non-coexistence of bounded gradient assumption and strongly convex
assumption and the non-coexistence of Lipschitz function assumption and strongly convex assumption
as discussed above. In this case, their Lemma 2 is not valid because of non-existence of an objective
function F , in which case the proof of lower bound of Yt in Theorem 2 is not correct.

However, we explain why the setup as proposed in [1] may still be acceptable and lead to a proper
lower bound: The paper assumes that we only restrict the analysis of SGD in a bounded convex
set S which is not Rd, and only in this bounded set S we assume that objective function acts like a
Lipschitz function (implying bounded gradients in S).

17

There are two possible cases at the t-th iteration a first order stochastic algorithm, the algorithm
diverges or converges. Let us define pt = Pr(wt /∈ S). Hence, Pr(wt ∈ S) = 1− pt. Let

Y convt = E[‖wt − w∗‖2|wt ∈ S]

and
Y divt = E[‖wt − w∗‖2|wt /∈ S].

Since Yt = E[‖wt − w∗‖2, Yt is equal to

Yt = p · Y divt + (1− p) · Y convt

≥ p · Y convt + (1− p) · Y convt

≥ Y convt

≥ lower bound in [1].

The above derivation hinges on the first inequality where we assume Y divt ≥ Y convt . Typically,
for strongly convex objective functions and w∗, w0 ∈ S), it seems always true that Y divt ≥ Y convt
because wt gets far from w∗ for the divergence case and it gets close to w∗ for the convergence case.
Of course a proper proof of this property is still needed in order to rigorously complete the argument
leading to the lower bound in [1]. In fact this remains an open problem (one can invent strange corner
cases that need extra thought/proof).

The above result is interesting because now we only need to prove the convergence of a first order
stochastic algorithm in a certain convex set S with a certain probability p. This is completely different
from the proof of convergence of e.g. SGD in the general case as in [15] and [19, 8] where we need
to prove it with probability 1.

C.2 Setup

We describe the setup of the class of strong convex functions proposed in [1].

As shown in Section 4.1.1 [1], the following two sets are required.

1. Subset V ⊂ {−1,+1}d and V = {α1, . . . , αM} with ∆H(αj , αk) ≥ d
4 for all j 6= k,

where ∆H denotes the Hamming metric, i.e ∆H(α, β) :=
∑d
i=1 I[αi 6= βi]. As discussed

by the authors, |V| = M ≥ (2/
√
e)

d
2 .

2. Subset Fbase = {f+
i , f

−
i , i = 1, . . . , d} where f+

i , f
−
i will be designed depending on the

problem at hand.

Given V , Fbase and a constant δ ∈ (0, 1
4], we define the function class F(δ) := {Fα, α ∈ V} where

Fα(w) :=
c

d

d∑
i=1

{(1/2 + αiδ)f
+
i (w) + (1/2− αiδ)f−i (w)}. (34)

The Fbase and constant c are chosen in such a way that F(δ) ⊂ F where F is the class of strongly
convex objective functions defined over set S and satisfies all the assumptions as mentioned before.
In case F is the class of strongly convex functions, the key idea to compute the lower bound of SGD
proposed in [1] by applying Fano’s inequality [26] and Le Cam’s bound [5, 14] is as follows: If an
SGD algorithmMt works well for optimizing a given function Fα∗ , α∗ ∈ V with a given oracle U ,
then there exists a hypothesis test finding α̂ such that:

1

3
≥ PrU [α̂(Mt) 6= α] ≥ 1− 2

16dtδ2 + log(2)

d log(2/
√
e)

. (35)

From (35), we have
16dtδ2 + log(2)

d log(2/
√
e)

≈ 16dtδ2

d log(2/
√
e)
≥ 2/3.

Hence,

t ≥ log(2/
√
e)

48

1

δ2
. (36)

18

As shown in Section 4.3 [1], to proceed the proof, we set Yt = cδ2r2

18(1−θ) . Combining with (36) yields

Yt ≥
1

t

log(2/
√
e)

864

cr2

1− θ
. (37)

In addition to the proof of the lower bound, we also need to set c = Ld
rd1/p

and µ2 = L
rd1/p

(1 − θ)
where S = B∞(r). By substituting c and µ2 into (37), we obtain:

Yt ≥
1

t

log(2/
√
e)

864d

1

µ2
c2r2. (38)

To complete the description of the setup in [1], we briefly describe the proposed oracle U which
outputs some information to the SGD algorithm at each iteration for constructing the stepsize ηt.
There are two types of oracle U defined as follows.

1. Oracle UA: 1-dimensional unbiased gradients
(a) Pick an index i ∈ 1, . . . , d uniformly at random.
(b) Draw bi ∈ {0, 1} according to a Bernoulli distribution with parameter 1/2 + αiδ.
(c) For the given input x ∈ S, return the value fi and subgradient ∇fi of the function

fi,A := c[bif
+
i + (1− bi)f−i].

2. Oracle UB : d-dimensional unbiased gradients.
• For i = 1, . . . , d, draw bi ∈ {0, 1} according to a Bernoulli distribution with parameter

1/2 + αiδ.
• For the given input x ∈ S, return the value fi and subgradient ∇fi of the function

fi,B :=
c

d

d∑
i=1

[bif
+
i + (1− bi)f−i].

C.3 Analysis and Comparison

In this section, we want to compare our lower bound (≈ N
2µ2t) with the one in (38) when t is

sufficiently large. In order to do this, we need to compute N = 2E[‖∇f(w∗; ξ)‖2] for the strongly
convex function class proposed in [1]. For the strongly convex case, the authors defined the base
functions as follows. Given a parameter θ ∈ [0, 1), we have

f+
i (w) = rθ|wi + r|+ 1− θ

4
(wi + r)2,

f−i (w) = rθ|wi − r|+
1− θ

4
(wi − r)2,

where w = (w1, . . . , wd). Let ei be 1/2 + αiδ. Substituting ei in (34) yields Fα(w) =
1
d [
∑d
i=1 fα,i(w)] where fα,i(w) = c[eif

+
i (w) + (1 − ei)f−i (w)]. Due to the construction of Fα,

the definition of fα,i(w) and the construction of oracle UA or oracle UB , w∗ of Fα can be found by
finding each w∗i for each fα,i(w) first. Precisely, we have the following cases:

1. wi < −r: we have
• fα,i(w) = −rθ(wi+r)ei+ 1−θ

4 (wi+r)
2ei−rθ(wi−r)(1−ei)+ 1−θ

4 (wi−r)2(1−ei).

• ∇fα,i(w) = (1− θ)eir − 1+θ
2 r + 1−θ

2 wi.

• ∇fα,i(w) = 0 at w−ri = r[1− 2ei + 2θ
1−θ].

2. −r ≤ wi ≤ r: we have
• fα,i(w) = rθ(wi+r)ei+

1−θ
4 (wi+r)

2ei−rθ(wi−r)(1−ei)+ 1−θ
4 (wi−r)2(1−ei).

• ∇fα,i(w) = (1 + θ)eir − 1+θ
2 r + 1−θ

2 wi.

• ∇fα,i(w) = 0 at w[−r,r]
i = r 1+θ

1−θ (1− 2ei).

19

3. r ≤ wi ≤ ∞: we have
• fα,i(w) = rθ(wi+r)ei+

1−θ
4 (wi+r)

2ei+rθ(wi−r)(1−ei)+ 1−θ
4 (wi−r)2(1−ei).

• ∇fα,i(w) = (1− θ)eir + 3θ−1
2 r + 1−θ

2 wi.

• ∇fα,i(w) = 0 at wri = r[1− 2ei − 2 θ
1−θ].

Now, we have five important points w−ri , w
[−r,r]
i , wri ,−r and r and at these points Fα can be

minimum. We consider the following cases

1. αi = −1 and then ei = 1
2 + αiδ = 1

2 − δ where δ ∈ [0, 1/4), we have

• w−ri = r[2θ
1−θ + 2δ] > −r.

• w[−r,r]
i = r 1+θ

1−θ (2δ). In this case w[−r,r]
i may belong [−r, r] or it may be greater than

r.
• wri = r(2δ − 2θ

1−θ) < r .

This result implies Fα is minimum at w∗i = r and ∇fα,i(w∗) = cr[(1 − θ)ei + θ] =

cr[(1 − θ)(1/2 − δ) + θ]. Or it can be minimum at w[−r,r]
i if w[−r,r]

i ∈ [−r, r] and
∇fα,i(w∗) = 0.

2. αi = +1 and then ei = 1
2 + αiδ = 1

2 + δ where δ ∈ [0, 1/4), we have

• w−ri = r[2θ
1−θ − 2δ]. Since 2θ

1−θ − 2δ > −1 when δ ∈ [0, 1/4) and θ ∈ [0, 1). Hence
w−ri > −r.

• w[−r,r]
i = r 1+θ

1−θ (−2δ) < 0. In this case w[−r,r]
i may belong [−r, r] or it may be

smaller than −r.
• wri = r(−2δ − 2θ

1−θ) < r.

This result implies Fα is minimum at w∗i = −r and ∇fα,i(w∗) = cr[(1 − θ)ei − 1] =

cr[(1 − θ)(1/2 + δ) − 1]. Or it can be minimum at w[−r,r]
i if w[−r,r]

i ∈ [−r, r] and
∇fα,i(w∗) = 0.

By definition, we have

N = 2E[‖∇fi(w∗)‖2] = 2
1

d

d∑
i=1

[ei‖c∇f+
i (w∗)‖2 + (1− ei)‖c∇f−i (w∗)‖2]

From the analysis above, we have four possible w∗i , i.e., −r, r, r 1+θ
1−θ (−2δ) and r 1+θ

1−θ (2δ). If we plug
w∗ which has w∗i = −r or w∗i = r, then we have [ei‖c∇f+

i (w∗)‖2 + (1 − ei)‖c∇f−i (w∗)‖2] =

(1/2− δ)c2r2. For w∗i which has w∗i = r 1+θ
1−θ (−2δ) or r 1+θ

1−θ (2δ), we have [ei‖c∇f+
i (w∗)‖2 + (1−

ei)‖c∇f−i (w∗)‖2] = (1/4− δ2)(1 + θ)2c2r2. This proves that

N = 2βc2r2

with β somewhere in the range

[(
1

2
− δ), (1

4
− δ2)(1 + θ)2] or [(

1

4
− δ2)(1 + θ)2, (

1

2
− δ)],

where δ ∈ [0, 1/4) and θ ∈ [0, 1).

Substituting N = 2βc2r2 into (38) yields

Yt ≥
log(2/

√
e)

(864 · d)(2β)

N

µ2t
, (39)

which is further minimized by taking

β = max{(1

2
− δ), (1

4
− δ2)(1 + θ)2}.

20

Notice that, given our freedom in choosing δ and θ, we can minimize β as a function of δ and θ in order
to maximize the lower bound in (39). This gives (in the limit) δ = 1/4 with θ ≤ 2/

√
3− 1 = 0.155

leading to β = 1/4. This leads to the final lower bound

Yt ≥
log(2/

√
e)

432 · d
N

µ2t
.

Clearly, the lower bound in is much smaller than our lower bound of ≈ N
2µ2t when t is sufficiently

large. Moreover, this lower bound depends on 1/d and it becomes smaller when d increases.

21

	Introduction
	Background
	Upper Bound for Strongly Convex and Smooth Objective Functions
	Lower Bound for First Order Stochastic Oracles

	Framework for Upper and Lower Bounds
	Lower Bound for Extended SGD
	Conclusion
	Proof
	Numerical Experiments
	Related Work
	Discussion on the usage of Assumptions in AgarwalBartlettRavikumarEtAl
	Setup
	Analysis and Comparison

