
Exploration Bonus for Regret Minimization in
Discrete and Continuous Average Reward MDPs

Jian Qian, Ronan Fruit
Sequel Team - Inria Lille

jian.qian@ens.fr, ronan.fruit@inria.fr

Matteo Pirotta, Alessandro Lazaric
Facebook AI Research

{pirotta, lazaric}@fb.com

Abstract

The exploration bonus is an effective approach to manage the exploration-
exploitation trade-off in Markov Decision Processes (MDPs). While it has been
analyzed in infinite-horizon discounted and finite-horizon problems, we focus on
designing and analysing the exploration bonus in the more challenging infinite-
horizon undiscounted setting. We first introduce SCAL+, a variant of SCAL [1],
that uses a suitable exploration bonus to solve any discrete unknown weakly-
communicating MDP for which an upper bound c on the span of the optimal bias
function is known. We prove that SCAL+ enjoys the same regret guarantees as
SCAL, which relies on the less efficient extended value iteration approach. Fur-
thermore, we leverage the flexibility provided by the exploration bonus scheme
to generalize SCAL+ to smooth MDPs with continuous state space and discrete
actions. We show that the resulting algorithm (SCCAL+) achieves the same regret
bound as UCCRL [2] while being the first implementable algorithm for this setting.

1 Introduction
While learning in an unknown environment, a reinforcement learning (RL) agent must trade off the
exploration needed to collect information about the dynamics and reward, and the exploitation of
the experience gathered so far to gain reward. An effective strategy to trade off exploration and
exploitation is the optimism in the face of uncertainty (OFU) principle. A popular technique to
ensure optimism is to use an exploration bonus. This approach has been successfully implemented in
H-step finite-horizon and infinite-horizon γ-discounted settings with provable guarantees in finite
MDPs. Furthermore, its simple structure (i.e., it only requires solving an estimated MDP with a
reward increased by the bonus) allowed it to be integrated in deep RL algorithms [e.g., 3, 4, 5, 6].
As the exploration bonus is designed to bound estimation errors on the value function, it requires
knowing the maximum reward rmax and the intrinsic horizon of the problem [e.g., 7, 8, 9] (e.g.,
H in finite-horizon and 1/(1 − γ) in discounted problems). Here we consider the challenging
infinite-horizon undiscounted setting [10, Chap. 8], which generalizes the two previous settings when
H →∞ and γ → 1. While several algorithms implementing the OFU principle in this setting have
been proposed [11, 2, 12, 1, 13], none of them exploits the idea of an exploration bonus.

In this paper we study the problem of defining and analysing an exploration bonus approach in the
infinite-horizon undiscounted setting. Contrary to the other settings, in average reward there is no
information about the intrinsic horizon. As a consequence, we follow the approach in [14, 1] and we
assume that an upper-bound c on the range of the optimal bias (i.e., value function) is known. We
define SCAL+ and we show that its regret is bounded by Õ

(
max{c, rmax}

√
ΓSAT

)
w.h.p. for any

MDP with S states, A actions and Γ possible next states. We prove that the bonus used by SCAL+

ensures optimism using a novel technical argument. We no longer use an inclusion argument (i.e.,
the true MDP is contained in a set of plausible MDPs) but we reason directly at the level of the
Bellman operator. We show that the optimistic Bellman operator defined by the empirical MDP with
optimistic reward r̂(s, a) + b(s, a) dominates the Bellman operator of the true MDP when applied to
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the optimal bias function. This is sufficient to prove that the solution of the optimistic MDP is indeed
(gain-)optimistic. This proof technique has two main advantages w.r.t. the inclusion argument. First,
it directly applies to slightly perturbed empirical MDPs, without re-deriving confidence sets. Second,
as we study the optimistic Bellman operator applied only to the optimal bias function (rather than
all possible vector in RS), we save a factor

√
Γ in designing the exploration bonus, compared to the

(implicit) bounds obtained by algorithms relying on confidence sets on the MDP. Furthermore, as
SCAL+ only solves the estimated MDP with optimistic reward, it is computationally cheaper than
UCRL-based algorithms, which require computing the optimal policy for an extended MDP with a
continuous action space defined by the confidence set over MDPs.

Surprisingly, the “tighter” optimism of SCAL+ does not translate into a better regret, which actually
matches the one of SCAL and still depends on the factor

√
Γ. We isolate and discuss where the

term
√

Γ appears in the proof sketch of Sect. 3.3. While Azar et al. [8], Jin et al. [9] managed to
remove the

√
Γ term in the finite-horizon setting, their proof techniques cannot be directly applied

to the infinite-horizon case. Recently Ortner [15] derived an algorithm achieving O
(√
tmixSAT

)
regret bound under the assumption that the true MDP is ergodic (tmix denotes the maximum mixing
time of any policy). It remains an open question if a regret scaling with

√
S (instead of

√
ΓS) can

be achieved in the infinite-horizon case without any ergodicity assumption. We report preliminary
experiments showing that the exploration bonus may indeed limit over-exploration and lead to better
empirical performance w.r.t. approaches based on confidence intervals on the MDP itself (i.e., UCRL
and SCAL). A more detailed comparison to existing literature is postponed to App. A.

To further illustrate the generality of the exploration bonus approach, we also present SCCAL+, an
extension of SCAL+ to continuous state MDPs. As in [2, 16], we require the reward and transition
functions to be Hölder continuous with parameters ρL and α. SCCAL+ is also the first implementable
algorithm in continuous average reward problems with theoretical guarantees (existing algorithms with
theoretical guarantees such as UCCRL [2] cannot be implemented). The key result is a regret bound
of Õ

(
max{c, rmax}ρL

√
AT

(α + 2)/(2α + 2)
)

w.h.p. Finally, we provide an empirical comparison of
SCCAL+ with a Q-learning algorithm with exploration bonus for average reward problems (RVIQ-
UCB) inspired by [17, 9] and the results in this paper (to deal with continuous states).

2 Preliminaries
We consider a weakly-communicating MDP [10, Sec. 8.3] M = (S,A, p, r) with state space S
and action space A. Every state-action pair (s, a) is characterized by a reward distribution with
mean r(s, a) and support in [0, rmax], and a transition distribution p(·|s, a) over next states. In this
section, we assume the finite case (i.e., |S|, |A| < +∞), although all following definitions extend to
continuous state spaces under mild assumptions on r and p (see Sect. 4). We denote by S = |S| and
A = |A| the number of states and action, by Γ(s, a) = ‖p(·|s, a)‖0 the number of states reachable
by selecting action a in state s, and by Γ = maxs,a Γ(s, a) its maximum. A stationary Markov
randomized policy π : S → P (A) maps states to distributions over actions. The set of stationary
randomized (resp. deterministic) policies is denoted by ΠSR (resp. ΠSD). Any policy π ∈ ΠSR has an
associated long-term average reward (or gain) and a bias function defined as

gπ(s) := lim
T→+∞

Eπs
[

1

T

T∑
t=1

r(st, at)

]
and hπ(s) := C- lim

T→+∞
Eπs
[ T∑
t=1

(
r(st, at)− gπ(st)

)]
,

where Eπs denotes the expectation over trajectories generated starting from s1 = s with at ∼ π(st).
The bias hπ(s) measures the expected total difference between the reward and the stationary reward
in Cesaro-limit (denoted by C- lim). Accordingly, the difference of bias hπ(s)− hπ(s′) quantifies
the (dis-)advantage of starting in state s rather than s′. We denote by sp (hπ) := maxs h

π(s) −
mins h

π(s) the span of the bias function. In weakly communicating MDPs, any optimal policy
π∗ ∈ arg maxπ g

π(s) has constant gain, i.e., gπ
∗
(s) = g∗ for all s ∈ S. Moreover, there exists a

policy π∗ ∈ arg maxπ g
π(s) for which (g∗, h∗) = (gπ

∗
, hπ

∗
) satisfy the optimality equation,

∀s ∈ S, h∗(s) + g∗ = Lh∗(s) := max
a∈A
{r(s, a) + p(·|s, a)Th∗}, (1)

where L is the optimal Bellman operator. Finally, D = maxs6=s′{τ(s→ s′)} denotes the diameter
of M , where τ(s→ s′) is the minimal expected number of steps needed to reach s′ from s.
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Input: Confidence δ ∈]0, 1[, rmax, S (I for SCCAL+), A, c ≥ 0 (and ρL and α for SCCAL+)
For episodes k = 1, 2, ... do
1. Set tk = t and episode counters νk(s, a) = 0.

2. Compute estimates p̂+k (I(s′)|I(s), a), r̂+k (I(s), a), bk(I(s), a) (Eq. 3 or 6) and build the MDP M̂+
k

(SCAL+) or M̂ag+
k (SCCAL+).

3. Compute an rmax
tk

-approximate solution of Eq. 4 for M̂+
k (SCAL+) or M̂ag+

k (SCCAL+) using SCOPT

4. Sample action at ∼ πk(·|I(st)).
5. While νk(I(st), at) < max{1, Nk(I(st), at)} do

(a) Execute at, obtain reward rt, and observe next state st+1.
(b) Increment counter νk(st, at) += 1.
(c) Sample action at+1 ∼ πk(·|I(st+1)) and increment t += 1.

6. Increment counters Nk+1(s, a) := Nk(s, a) + νk(s, a) for all s, a.

Figure 1: Shared pseudo-code for SCAL+ and SCCAL+. For SCAL+ I(s) = s by definition.

Learning Problem. Let M∗ be the true MDP. We consider the learning problem where S, A and
rmax are known, while rewards r and dynamics p are unknown and need to be estimated on-line.
We evaluate the performance of a learning algorithm A after T time steps by its cumulative regret
∆(A, T ) =

∑T
t=1(g∗ − rt(st, at)). Finally, we make the following assumption.

Assumption 1. There exists a known upper-bound c > 0 to the optimal bias span i.e., c ≥ sp (h∗).

This assumption is common in the literature [see e.g., 18, 2, 1]. Such a bound to the “range” of the
value function is already available in discounted and finite horizon problems (i.e., as 1

1−γ and H),
so Asm. 1 is not more restrictive. While the span sp (h∗) is a non-trivial function of the dynamics
and the rewards of the MDP, some intuition about how the cumulative reward varies depending on
different starting states is often available. Furthermore, as sp (h∗) ≤ rmaxD [e.g., 14], it is sufficient
to have prior knowledge about the diameter D and the range of the reward rmax, to provide a rough
upper-bound on the span.

3 SCAL+: SCAL with exploration bonus
In this section, we introduce SCAL+, the first online RL algorithm –in the infinite horizon undiscounted
setting– that leverages an exploration bonus to achieve near-optimal regret guarantees. Similar to
SCAL [1], SCAL+ takes as input an upper-bound c on the optimal bias span (i.e., sp (h∗) ≤ c) to
constrain the planning problem solved over time. The crucial difference is that SCAL+ does not
compute an optimistic MDP within a high-probability confidence set, but it directly computes the
optimal policy of the estimated MDP, with the reward increased by an exploration bonus. The bonus
is carefully tuned so as to guarantee optimism and small regret at the same time (Thm. 1).

3.1 The Algorithm

Similar to other OFU-based algorithms, SCAL+ proceeds in episodes (see Fig. 1)1. Denote by tk the
starting time of episode k, Nk(s, a, s′) the number of observations of tuple (s, a, s′) before episode
k and Nk(s, a) :=

∑
s′ Nk(s, a, s′). We define the estimators of the transitions and rewards as

p̂+
k (s′|s, a) =

Nk(s, a, s′)

Nk(s, a) + 1
+

1(s′ = s)

Nk(s, a) + 1
, rk(s, a) =

tk−1∑
t=1

rt(st, at)1
(
(st, at) = (s, a)

)
Nk(s, a)

(2)

where s ∈ S is an arbitrary state and rk(s, a) := rmax, p̂+
k (s′|s, a) = 1/S when Nk(s, a) = 0. The

transition model p̂+
k (s′|s, a) is a biased (but asymptotically consistent) estimator of p(s′|s, a). We

further define the exploration bonus

bk(s, a) := (c+ rmax)

√
ln
(
20SAN+

k (s, a)/δ
)

N+
k (s, a)︸ ︷︷ ︸

:=βsak

+
c

Nk(s, a) + 1
, (3)

1The algorithm is reported in its general form, which applies to both discrete and continuous state space.
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where N+
k (s, a) = max{1, Nk(s, a)}. Intuitively, the exploration bonus is large for poorly visited

state-action pairs, while it decreases with the number of visits. A crucial aspect in the formulation
of bk is that it scales with the span c. In fact, the exploration bonus is not used to obtain an upper-
confidence bound on the reward (setting bk(s, a) = βsak would be sufficient), but it is designed to
take into consideration how estimation errors on p and r, which are bounded by βsak , may propagate
to the bias and gain through repeated applications of the Bellman operator. As the span c provides
prior knowledge about the “range” of the optimal bias function, the exploration bonus is obtained by
considering that “local” estimation errors may be amplified up to a factor c. The specific shape of bk
and βsak and their theoretical properties are derived in Lem. 1. At each episode k, SCAL+ builds an
MDP M̂+

k = (S,A+, p̂+
k , r̂

+
k ) obtained by duplicating every action in A with transition probabilities

unchanged and optimistic reward set to 0. Formally, let A+ := A× {1, 2} and we denote any pair
(a, i) ∈ A × {1, 2} by ai. We then define r̂+

k (s, ai) :=
(
rk(s, a) + bk(s, a)

)
· 1(i = 1). SCAL+

proceeds by computing the optimal policy of the MDP M̂+
k subject to the constrains on the bias span:

πk := arg sup
π∈Πc(M̂

+
k )

{gπ}; g∗c (M̂+
k ) := sup

π∈Πc(M̂
+
k )

{gπ}, (4)

where the constraint set is Πc(M) :=
{
π ∈ ΠSR : sp (hπ) ≤ c ∧ sp (gπ) = 0

}
. The optimal policy

is executed until the number of visits in at least one state-action pair during the episode has doubled.

Problem 4 is well posed and can be solved using SCOPT.Let L̂+ be the optimal Bellman operator
associated to M̂+

k , given v ∈ RS and c ≥ 0, we define the value operator T̂+
c : RS → RS as

T̂+
c v = ΓcL̂

+v =

{
L̂+v(s) ∀s ∈

{
s ∈ S|L̂+v(s) ≤ mins{L̂+v(s)}+ c

}
c+ mins{L̂+v(s)} otherwise

(5)

where Γc is the span constrain projection operator (see [1, App. D] for details). In other words,
operator T̂+

c applies a span truncation to the one-step application of L̂+, which guarantees that
sp(T̂+

c v) ≤ c. Given a vector v0 ∈ RS and a reference state s, SCOPT runs relative value iteration
where L̂+ is replaced by T̂+

c as vn+1 = T̂+
c vn − T̂+

c vn(s)e. The policy πk returned by SCOPT takes
action in the augmented set A+ and it can be “projected” on A as πk(s, a)← πk(s, a1) + πk(s, a2)
(we use the same notation for the two policies), which is the policy actually executed through the
episode. Following similar steps as in [1], we can prove that M̂+

k satisfies all sufficient conditions for
SCOPT to converge and return the optimal policy (see App. B).

Proposition 1. The MDP M̂+
k satisfies the following properties: 1) the associated optimal Bellman

operator L̂+ is a γ-span-contraction; 2) all policies are unichain; 3) the operator T̂+
c is globally fea-

sible at any vector v ∈ RS such that sp (v) ≤ c, i.e., for all s ∈ S, mina∈A{r(s, a)+p(·|s, a)Tv} ≤
mins′{Lv(s′)}+ c. As a consequence, SCOPT converges and returns a policy πk solving (4).

3.2 Optimistic Exploration Bonus

All regret proofs for OFU-based algorithms rely on the property that the optimal gain of the MDP used
to compute πk (M̂+

k in our case) is an upper-bound on g∗. If we want to use the same proof technique
for SCAL+, we need to ensure that the policy πk is gain-optimistic, i.e., ĝ+

k := g∗c
(
M̂+
k

)
≥ g∗.

Recall that the optimal gain and bias of the true MDP (g∗, h∗) satisfy the optimality equation
Lh∗ = h∗+g∗e where e = (1, . . . , 1). Since sp (h∗) ≤ c (by assumption), we also have sp (Lh∗) =
sp (h∗ + g∗e) = sp (h∗) ≤ c and so Tch∗ = Lh∗. A minor variation to Lemma 8 of Fruit et al. [1]
shows that a sufficient condition to prove optimistic gain is to show that the operator T̂+

c is optimistic
w.r.t. its exact version when applied to the optimal bias function, i.e., (see Prop. 3 in App. B)

T̂+
c h
∗ ≥ h∗ + g∗e = Tch

∗.

As the truncation operated by Tc (i.e., Γc) is monotone, this inequality is implied by L̂+
k h
∗ ≥ Lh∗.

Finally, since p̂+
k (s′|s, a1) = p̂+

k (s′|s, a2) = p̂k(s′|s, a) and r̂+
k (s, a2) ≤ r̂+

k (s, a1) it is immediate to
see that L̂+

k h
∗ = L̂kh

∗, thus implying that a sufficient condition for ĝ+
k ≥ g∗ is to have L̂kh∗ ≥ Lh∗,

which reduces to verifying optimism for the Bellman operator of M̂+
k when applied to the exact

optimal bias function. The exploration bonus is tailored to achieve this condition with high probability.
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Lemma 1. Denote by L̂k the optimal Bellman operator of M̂k. With probability at least 1− δ
5 , for

all k ≥ 1, L̂kh∗ ≥ Lh∗ (componentwise) and as a consequence ĝ+
k ≥ g∗.

Proof (see App. D). By using Hoeffding-Azuma inequality and union bound, we can show that for
all k ≥ 1, |rk(s, a)− r(s, a)| ≤ rmaxβ

sa
k and |(pk(·|s, a)− p(·|s, a))

ᵀ
h∗| ≤ c βsak w.h.p. (pk is

the MLE of p). We also need to take into account the small bias introduced by p̂k(·|s, a) compared to
pk(·|s, a) which is not bigger than c/(Nk(s, a) + 1) by definition. Then, with high probability, for
all k ≥ 1, rk(s, a) + bk(s, a) + p̂k(·|s, a)ᵀh∗ ≥ r(s, a) + p(·|s, a)ᵀh∗ for all (s, a) ∈ S ×A.

The argument used to prove optimism (Lem. 1)) significantly differs from the one used for UCRL and
SCAL. Confidence-based methods compute the optimal policy of an extended MDP that “contains”
the true MDP M∗ (w.h.p.), which directly implies that the gain of the extended MDP is bigger than
g∗. The main advantage of our argument is that it allows for a “tighter” optimism (i.e., less prone
to over-exploration). In fact, the exploration bonus quantifies by how much L̂+

k h
∗ is bigger than

Lh∗ and it approximately scales as bk(s, a) = Θ̃
(

max{rmax, c}/
√
Nk(s, a)

)
. In contrast, UCRL

and SCAL use an optimistic Bellman operator L̃ such that L̃h∗ is bigger than Lh∗ by respectively
Θ̃
(
rmaxD

√
Γ/Nk(s, a)

)
(UCRL) and Θ̃

(
max{rmax, c}

√
Γ/Nk(s, a)

)
(SCAL). In other words, the

optimism in SCAL+ is tighter by a multiplicative factor
√

Γ.

3.3 Regret Analysis of SCAL+

We report the main result of this section.
Theorem 1. For any weakly communicating MDP M such that sp (h∗) ≤ c, with probability at
least 1− δ it holds that for any T ≥ 1, the regret of SCAL+ is bounded as

∆(SCAL+, T ) = O

(
max{rmax, c}

(√(∑
s,a

Γ(s, a)
)
T ln

(
T/δ

)
+ S2A ln2

(T
δ

)))

Since the optimism in SCAL+ is tighter than in UCRL and SCAL by a factor
√

Γ, one may expect to get
a regret bound scaling as c

√
SAT instead of c

√
ΓSAT , thus matching the lower bound of Jaksch et al.

[11] as for the dependency in S. Unfortunately, such a bound seems difficult to achieve with SCAL+

(and even SCAL) due to the correlation between hk and pk (see App. D). Azar et al. [8] managed to
achieve the optimal dependence in S in finite-horizon problems. In this setting, the definition of regret
is different and it is not clear whether it is possible to adapt their guarantees and techniques to infinite
horizon without introducing a Θ(T )-term. Agrawal and Jia [19] showed the optimistic posterior
sampling has a regret of Õ(D

√
SAT ) in the infinite horizon undiscounted setting. Unfortunately,

their proof critically relies on the concentration inequality |(pk(·|s, a)− p(·|s, a))Thk| . rmaxDβ
sa
k

which is incorrect.2 It remains as an open question whether the
√

Γ term can be actually removed.

Finally, SCAL+’s regret does not scale min{rmaxD, c} as for SCAL, implying that SCAL+ may
perform worse when c is too large. The difference resides in the fact SCAL builds an extended MDP
that contains the true MDP (w.h.p.). The shortest path between two states in the extended MDP is
therefore shorter than in the true MDP and consequently, the diameter of the extended MDP is smaller
than the true diameter D. This explains why the regret of SCAL depends on both D and c (which is
provided as input to the algorithm). Unfortunately, in SCAL+ it is not clear how to bound the diameter
of M̂+

k and the only information that can be exploited to bound the regret is the constraint c.

4 SCCAL+: SCAL+ for continuous state space
We now consider an MDP with continuous state space S = [0, 1] and discrete action space A. In
general, it is impossible to learn an arbitrary real-valued function with only a finite number of samples.
We therefore introduce the same smoothness assumption as Ortner and Ryabko [2]:
Assumption 2 (Hölder continuity). There exist ρL, α > 0 s.t. for any two states s, s′ ∈ S and any
action a ∈ A, |r(s, a)− r(s′, a)| ≤ rmaxρL|s− s′|α and ‖p(·|s, a)− p(·|s′, a)‖1 ≤ ρL|s− s′|α.

As in Sec. 3, we start by introducing our proposed algorithm SCCAL+ which is a variant of SCAL+

for continuous state space (Sec. 4.1), and then analyze its regret (Sec. 4.2).
2See https://arxiv.org/abs/1705.07041.
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4.1 The algorithm

In order to apply SCAL+ to a continuous problem, we discretize the state space as in [2]. We
partition S into S intervals defined as I1 :=

[
0, 1

S

]
and Ik =

]
k−1
S , kS

]
for k = 2, . . . , S. The set of

aggregated states is then I := {I1, . . . , IS} (|I| = S). The number of intervals S is a parameter of
the algorithm and plays a central role in its performance. Note that the termsNk(s, a, s′) andNk(s, a)
defined in Sec. 3 are still well-defined for s and s′ lying in [0, 1] but are 0 except for a finite number
of s and s′. For any subset I ⊆ S, the sum

∑
s∈I us is also well-defined as long as the collection

(us)s∈I contains only a finite number of non-zero elements. We can therefore define the aggregated
counts, rewards and transition probabilities for all I, J ∈ I as: Nk(I, a) :=

∑
s∈I Nk(s, a),

ragk (I, a) :=
1

Nk(I, a)

tk−1∑
t=1

rt(st, at)1(st ∈ I, at = a), pagk (J |I, a) :=

∑
s′∈J

∑
s∈I Nk(s, a, s′)∑

s∈I Nk(s, a)
.

Similar to Eq. 3, we define the exploration bonus of an aggregated state as

bk(I, a) :=(c+ rmax)
(
βIak + ρLS

−α)+
c

Nk(I, a) + 1
(6)

where βIak is defined in (3). The main difference is an additional O(cρLS
−α) term that accounts for

the fact that the states that we aggregate are not completely identical but have parameters that differ by
at most ρLS−α. We pick an arbitrary reference aggregated state I and define M̂ag

k = (I,A, p̂agk , r̂
ag
k ),

the aggregated (discrete) analogue of M̂k defined in Sec. 3, where r̂agk = ragk + bk and

p̂agk (J |I, a) :=
Nk(I, a)pagk (J |I, a)

Nk(I, a) + 1
+

1(J = I)

Nk(I, a) + 1
,

Similarly we “augment” M̂ag
k into M̂ag+

k = (I,A+, p̂ag+k , r̂ag+k ) (analogue of M̂+
k in Sec. 3)

by duplicating each transition in M̂ag
k . At each episode k, SCCAL+ uses SCOPT (with the same

parameters as in Sec. 3) to solve optimization problem (4) on M̂ag+
k . This is possible because although

the state space of M∗ is uncountable, M̂ag+
k has only S < +∞ states. SCOPT returns an optimistic

optimal policy πk satisfying the span constraint. This policy is defined in the discrete aggregated
state space but can easily be extended to the continuous case by setting πk(s, a) := πk(I(s), a) for
any (s, a) (with I(s) mapping a state to the interval containing it).

4.2 Regret Analysis of SCCAL+

This section is devoted to the regret analysis of SCCAL+, with the main result summarized in Thm.2.
Theorem 2. For any MDP M satisfying Asm. 2 and such that sp (h∗M ) ≤ c, with probability at least
1− δ it holds that for any T ≥ 1, the regret of SCCAL+ is bounded as

∆(SCCAL+, T ) = O

(
max {rmax, c}

(
S
√
AT ln

(
T/δ

)
+ S2A ln2

(
T/δ

)
+ ρLS

−αT

))
By setting S =

(
αρL

√
T
A

)1/(α + 1)

the bound becomes: Õ
(

max{rmax, c}ρ
1

(α+1)

L A
α

(2α+2)T
(α+2)
(2α+2)

)
.

Thm. 2 shows that SCCAL+ achieves the same regret as UCCRL [2] while being the only imple-
mentable algorithm with such theoretical guarantees for this setting. Thm. 2 can be extended to
the more general case where S is d-dimensional. As pointed out by [2], in this case Sd intervals
are needed for the discretization leading to a regret bound of order Õ(T

(2d + α)/(2d + 2α)) after tuning
S = T

1/(2d + 2α). Finally, we believe that SCCAL+ can be extended to the setting considered by [16]
where, in addition to Hölder conditions, the transition function is assumed to be κ-times smoothly
differentiable. In the case of Lipschitz model, i.e., α = 1, this means that it is possible obtain an
asymptotic regret (as κ→∞) of Õ(T 2/3) while SCCAL+ is achieving Õ(T 3/4).

Proof sketch. Thm. 2 can be seen as a generalization of Thm. 1 but the continuous nature of the state
space makes the analysis more difficult. The main technical challenge lies in relating two MDPs
with different state spaces: M̂ag

k (with finite state space) and M∗ (with continuous state space). For
instance, It is necessary to compare these two MDPs to prove optimism. To facilitate the comparison,
we introduce an “intermediate” MDP M̂k which has continuous state space like M∗, but which also
depends on the samples collected before episode k like M̂ag

k .
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Definition 1 (Empirical MDP with continuous state space). Let M̂k = (S,A, p̂k, r̂k) be the continu-
ous state space MDP s.t. for all (s, a) ∈ S ×A, rk(s, a) := ragk (I(s), a),

r̂k(s, a) := rk(s, a) + bk(I(s), a) and p̂k(s′|s, a) :=
Nk(I(s), a)pk(s′|s, a)

Nk(I(s), a) + 1
+
S · 1(s′ ∈ I(s))

Nk(I(s), a) + 1

where I : S → I is the function mapping a state s to the interval containing s, and pk(s′|s, a) is the

Radon-Nikodym derivative of the cumulative density function F (s) =
∑
s′≤s

∑
x∈I(s)Nk(x,a,s′)

Nk(I(s),a) .

MDP M̂k is designed so that: 1) the reward function is piece-wise constant over any interval in I and
matches the reward function of M̂ag

k , 2) the transitions integrated over s′ ∈ J ∈ I are piece-wise
constant and match the transitions of the discrete state space MDP M̂ag

k . More precisely, ∀J ∈ I,∫
J
pk(s′|s, a)ds′ = pagk (J |I(s), a) and so ∀(s, J) ∈ S × I:∫
J

p̂k(s′|s, a)ds′ =
Nk(I(s), a)pagk (J |I(s), a)

Nk(I(s), a) + 1
+
S
∫
J
1(s′ ∈ I(s))ds′

Nk(I(s), a) + 1
= p̂agk (J |I(s), a) (7)

This ensures that M̂ag
k and M̂k can be easily compared (and as a consequence, so can M̂ag+

k and
M̂+
k , the augmented versions of M̂ag

k and M̂k) although they have different state spaces and obtain:

Lemma 2. For any k ≥ 1, ĝag+k := g∗c
(
M̂ag+
k

)
= ĝ+

k := g∗c
(
M̂+
k

)
Proof (see App. C.2). We notice that for any continuous function v(s) defined on S and piece-wise
constant on the intervals of I, we can associate a discrete function v′(I) (defined on I) such that
for all s ∈ S, v′(I(s)) = v(s). Let v0 = 0 (continuous function) and denote by v′0 its discrete
analogue. We define the sequences (vn)n∈N and (un)n∈N by recursively applying T̂+

c and T̂ ag+c

respectively: vn+1 := T̂+
c vn and un+1 := T̂ ag+c un with u0 := v′0. It is easy to show that for all

n, vn is piece-wise constant and its discrete analogue is un i.e., un = v′n. Therefore the sequences
vn+1(s)− vn(s) and un+1(I(s))− un(I(s)) have the same limits, respectively ĝ+

k and ĝag+
k .

Leveraging Lem. 2, it is sufficient to compare the gains of M̂+
k and M∗ to prove optimism. Since

both MDPs have the same (continuous) state space, we can proceed as in Sec. 3.2 and just show that
L̂kh

∗ ≥ Lh∗ (analogue of Lem. 1), with the difference that h∗ is defined on a continuous space.

Lemma 3. Denote by L̂k the optimal Bellman operator of M̂k. With probability at least 1− δ
5 , for

all k ≥ 1 we have L̂kh∗ ≥ Lh∗ (on the whole state space) and as a consequence ĝag+k ≥ g∗.

Proof (see Lem. 4 and 5) in App. C). The proof is similar to Lem. 1: we compare r̂k and p̂k with the
true reward function r and transition probabilities p using concentration inequalities. Due to the
aggregation of states, there are two major differences with the discrete case. The first difference is
that p̂k is even more biased than before. Thanks to the smoothness assumption (Asm. 2), the extra
bias is only of order O(LS−α) (this explains why this term appears in the definition of the bonus
in (6)). The second difference is that since there are uncountably many states, it is impossible to use a
union bound argument on the set of states (like in Lem. 1). Instead, we show using optional skipping
that the terms of interest are martingales and we apply Azuma’s and Freedman’s inequalities.

The rest of the proof is similar to SCAL+ with additional steps to deal with the continuous state space.

5 Numerical Simulations
We design experiments to investigate the learning performance in discrete and continuous MDP
(see App. E for details). In the discrete case, the main theoretical open question is whether the
tighter exploration bonus does translate in a better regret, that is, whether the dependency on the
branching factor Γ in the regret bound is due to the analysis or not. Unfortunately, it is difficult
to design experiments to thoroughly investigate the actual dependency. First, it is challenging to
design MDPs with all parameters fixed (i.e., gain, span, diameters, number of states and actions)
but Γ (e.g., the bigger Γ, the smaller the span as the MDP is more connected). Furthermore, the
regret bound is worst-case w.r.t. all MDPs with a given set of parameters, which is difficult to
design in practice. For these reasons, instead of investigating the exact dependency, we rather
focus on comparing the performance of SCAL+ to UCRL for different values of Γ. We consider
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Figure 2: Cumulative regret (Garnet MDPs) and cumulative reward (continuous state MDPs). We
report mean, max and min curves obtained over 50 independent runs.

the Garnet(S, A, Γ) family [20] of random MDPs. In all the experiments we take S = 200,
A = 3 and c = 2 and we guarantee the MDPs to be communicating by setting p(s0|s, a) ≥ 0.01
for every pair (s, a) and an arbitrary state s0. In order to provide a fair comparison of UCRL,
SCAL and SCAL+, we consider Hoeffdin-based confidence bounds with standardized constants:
βrk(s, a) = rmax

√
Lk/Nk(s, a) and βp(s, a) =

√
ΓLk/Nk(s, a) with Lk = log(SA/δk)/4 for

UCRL and SCAL, and bk(s, a) = βrk(s, a) + cβpk(s, a) for SCAL+. Since Garnet(S, A, Γ) defines
a distribution over MDPs, we evaluate the algorithms on the MDP with median bias span (since
the distribution shows relatively long tails, see App. E). According to the theoretical analysis, the
per-episode regret of UCRL scales as O(sp (hk)

√
Γ), where sp (hk) is the span of the optimistic

MDP, while SCAL+ has regret O(c
√

Γ), where c is an upper-bound on sp (h∗). While in the worst
case sp (hk) ≤ D, in the MDP we selected, UCRL always generates optimistic MDPs with span
sp (hk) smaller than sp (h∗) ≤ c. In this favorable case for UCRL, the only hope for SCAL+ to
achieve better performance is if the tighter optimism translates into a per-episode regret of O(c), with
no dependency on Γ. This is indeed what we observed empirically. When Γ = 5, as expected, UCRL
outperforms SCAL+ as sp (hk)

√
Γ ≤ c for most of the episodes. On the other hand, when Γ = 144,

the tighter optimism of SCAL+ allows a faster convergence to the optimal solution compared to UCRL
as sp (hk)

√
Γ ≥ c. Although this result does not provide a definite answer on whether and how the

regret of SCAL+ scales with Γ, it hints to the fact that tighter optimism does indeed translate to better
empirical performance w.r.t. confidence-based algorithms such as UCRL.

As SCCAL+ is the first implementable model-based algorithm with regret guarantees in continuous
MDPs, we compare it to model-free heuristic variants. We consider RVI Q-learning [17] with either
ε-greedy and UCB [9] exploration.3 Since Q-learning is model-free, it does not perform planning and
updates the policy at each time step (the action selection is greedy w.r.t. the current estimate). Even
in this case we harmonize the bonus such that b(s, a) = βr(s, a) + cβp(s, a) + (rmax + c)ρLS

−α.
We use the same uniform discretization of the state space for all the algorithms. We considering a
continuous version of the RiverSwim [7] discretized into S = 50 states (ρL = α = 1, c = 30, S ⊆ R)
and the ShipSteering domain [21] with S = |I| = 512 discrete states (ρL = 5, α = 1, c = 1.5,
S ⊆ R3) (see the App. E for MountainCar [22]). In both cases, RVIQ shows an unstable behaviour.
In the RiverSwim it outperforms the other approaches when optimistically initialized (i.e., q0 = c)
while the same configuration fails to learn in the ShipSteering. Moreover, RVIQ with q0 = 0 shows
the ability to learn in the ShipSteering but also high variance. This undesired behavior is typical
of unstable algorithms (we observed linear regret in some run). RVIQ-UCB is able to learn in the
RiverSwim but not in the ShipSteering. The only stable algorithm in both domains is SCCAL+.

6 Conclusion
We derive the first regret analysis of exploration bonus for average reward with discrete and continuous
state space by leveraging on an upper-bound to the range of the optimal bias function to properly scale
the bonus (as done in other settings). It is an open question whether an exploration bonus approach
is still possible when no prior knowledge on the span of the optimal bias function is available [see
e.g., 11, 23]. Despite the

√
Γ improvement in the definition of the exploration bonus (i.e., optimism)

compared to confidence-set-based algorithms, the final regret still scales with Γ leaving it as an open
question whether such dependency can be actually removed in non-ergodic MDPs.

3Refer to App. E.1 for details about RVIQ and RVIQ-UCB. There is no known regret bound for model-free
algorithms in average reward, we think this is an interesting line of research for future work.
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Structure of the appendix. We start with a review of the literature and positioning of this paper
(App A). We then review the problem of planning under bias span constraint (App B). We present
the proofs for the continuous case first (App. C), and then for the discrete case (App. D) since
the latter can be viewed as a special case of the former. That way, we only need to highlight the
main differences in the discrete case. Because of the continuous nature of the state space and the
aggregation of states in the continuous case, extra care needs to be taken while using concentration
inequalities compared to standard regret proofs in RL (see App. C.1.3 for more details). In App. E we
report all the details of the experiments. Finally, in App. F we recall/prove all the necessary results
from probability theory that we use in the regret proofs.

For sake of clarity we state the main terms of the analysis in the following table.

Discrete case

Mk = (S,A, pk, rk) Empirical (MLE) MDP

rk(s, a) =
∑tk−1
t=1

rt(st,at)1
(

(st,at)=(s,a)
)

Nk(s,a)

pk(s′|s, a) = Nk(s,a,s′)
Nk(s,a)

M̂k = (S,A, p̂k, r̂k) Perturbed MDP with bonus

r̂k(s, a) = rk(s, a) + bk(s, a)

p̂k(s′|s, a) = Nk(s,a)pk(s′|s,a)
Nk(s,a)+1 + 1(s′=s)

Nk(s,a)+1

bk(s, a) := c ·min
{
βsak + 1

Nk(s,a)+1 ; 2
}

+ rmax ·min {βsak ; 1}

M̂+
k = (S,A+, p̂+

k , r̂
+
k ) Augmentation of M̂k

A+ = A× {1, 2}

r̂+
k (s, ai) = r̂k(s, a) · 1 (i = 1)

p̂+
k (s′|s, ai) = p̂k(s′|s, a)

Continuous case

ρL, α Hölder continuity parameters

M
ag

k = (I,A, ragk , p
ag
k ) Empirical (MLE) MDP (discrete state space)

I1 :=
[
0, 1

S

]
and Ik =

]
k−1
S , kS

]
for k = 2, . . . , S

I := {I1, . . . , IS} (|I| = S)

ragk (I, a) := 1
Nk(I,a)

∑tk−1
t=1 rt(st, at)1(st ∈ I, at = a)

pagk (J |I, a) :=
∑
s′∈J

∑
s∈I Nk(s,a,s′)∑

s∈I Nk(s,a)

M̂ag
k = (I,A, r̂agk , p̂

ag
k ) Perturbed MDP with bonus (discrete state space)

bk(J, a) := c ·min
{
βJak + ρLS

−α + 1
Nk(J,a)+1 ; 2

}
+ rmax ·

min
{
βJak + ρLS

−α; 1
}
, ∀J ∈ I

M̂ag+
k = (I,A, r̂ag+k , p̂ag+

k ) Augmentation of M̂ag
k (discrete state space)

Mk = (S,A, rk, pk) Empirical MDP (continuous state space)
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rk(s, a) := ragk (I(s), a)

pk(s′|s, a) is the Radon-Nikodym derivative of the cumulative

density function F (s) =
∑
s′≤s

∑
x∈I(s)Nk(x,a,s′)

Nk(I(s),a)

M̂k = (S,A, r̂k, p̂k) Perturbed MDP with bonus (continuous state space)

bk(s, a) := bk(I(s), a)

r̂k(s, a) := rk(s, a) + bk(s, a)

p̂k(s′|s, a) := Nk(I(s),a)pk(s′|s,a)
Nk(I(s),a)+1 + S·1(s′∈I(s))

Nk(I(s),a)+1

M̂+
k = (S,A, r̂+

k , p̂
+
k ) Augmentation of M̂k (continuous state space)

M̃k = (S,A, r̃k, p̃k)
Approximation of true MDP M∗ to be piecewise constant on I
(continuous state space)

r̃k(s, a) := 1
Nk(I(s),a)

∑
x∈I(s)Nk(x, a)r(x, a)

p̃k(s′|s, a) := 1
Nk(I(s),a)

∑
x∈I(s)Nk(x, a)p(s′|x, a)

A Extended Introduction and Related Work

While learning in an unknown environment, a reinforcement learning (RL) agent must trade off
the exploration needed to collect information about the dynamics and reward, and the exploitation
of the experience gathered so far to gain reward. The performance of an online learning agent is
measured in terms of its cumulative regret, which compares the rewards accumulated by the agent to
the rewards obtained by an optimal policy. A popular strategy to trade off exploration and exploitation
and minimize regret is the optimism in the face of uncertainty (OFU) principle.

Optimistic approaches have been widely studied in the context of stochastic multi-armed bandit
(MAB) problems and RL. A popular technique to ensure optimism is to use an exploration bonus.
OFU-based bandit algorithms maintain optimistic estimates of the expected reward for each action
a by adding a high-probability confidence bound b(a) to the empirical average reward r̂(a), thus
obtaining the optimistic reward r̂(a) + b(a). The action with highest optimistic estimate is then
played [see e.g., 24]. The confidence bound plays the role of an exploration bonus: the higher b(a),
the more likely a will be explored. For instance, the Upper-Confidence Bound (UCB) algorithm uses
b(a) = Θ̃

(
rmax/

√
N(a)

)
where N(a) is the number of times action a has been played and rmax is

a bound to the range of the rewards.

In RL, the agent aims at maximizing the cumulative expected reward (i.e., value function) rather than
the immediate reward as in MAB. As a consequence, the exploration bonus should be designed to
obtain an upper-bound on the value function. While standard concentration inequalities can be used
to derive confidence bounds on “local” estimation errors on the reward function and dynamics, it
is crucial to study how these errors compound when computing the value function. Exploiting the
recursive structure of the optimal value function, it is possible to bound how errors are amplified
through repeated applications of the optimal Bellman operator. Strehl and Littman [7] analysed
the infinite-horizon γ-discounted setting and derived PAC guarantees on the sample complexity
of the Model Based Interval Estimation with Exploration Bonus (MBIE-EB) algorithm.4 MBIE-
EB plays the optimal policy of the estimated MDP where in each state-action pair (s, a), a bonus
b(s, a) = Θ̃

(
rmax

1−γ

√
1

N(s,a)

)
is added to estimated reward r̂(s, a). As the exploration bonus is

designed to bound estimation errors on the value function, it scales by its range rmax

1−γ .

The exploration bonus approach has also been successfully applied to finite-horizon problems [8,
9]. In this setting, the planning horizon H is known to the learning agent and the range of the

4Sample complexity is a more natural metric then regret in discounted problems.
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value function is rmaxH . A natural choice for the bonus is then b(s, a) = Θ̃
(
rmaxH/

√
N(s, a)

)
.

UCBVI_1 introduced by Azar et al. [8] uses such a bonus and achieves near-optimal regret guarantees
Õ
(
H
√
SAT

)
where S and A are the number of states and the number of actions of the unknown

MDP. Refined versions of UCBVI_1 achieve a tighter regret of Õ
(√
HSAT

)
[8, 25, 9].

Both the finite-horizon and infinite-horizon discounted setting assume an intrinsic horizon (respec-
tively H and 1

1−γ ) known to the learning agent. Unfortunately, in many common RL problems it
is not clear how to define H or 1

1−γ and it is often desirable to set them as big as possible (e.g.,
in episodic problems, the time to the goal is not known in advance and random in general). As H
tends to infinity the regret of UCBVI_1 becomes linear, while as γ tends to 1 the sample complexity
(of MBIE-EB, etc.) tends to infinity. In this paper, we focus on the more natural infinite-horizon
undiscounted setting [10, Chap. 8], which generalizes the two previous settings to the case where
H → ∞ and γ → 1 respectively. Several algorithms implementing the OFU principle in this
setting have been proposed in the literature [e.g., 11, 2, 12, 1, 13], but none of these approaches
exploits the idea of an exploration bonus. Instead, they all maintain a confidence set on the MDP
(i.e., on the reward function and dynamics) and select the MDP with largest optimal average reward.
Since the true MDP is contained in the set of plausible MDPs, the solution of this optimization
problem is optimistic. UCRL [11] achieves a regret of order5 Õ

(
rmaxD

√
ΓSAT

)
where D and Γ

are respectively the diameter of the true MDP and the maximum number of states reachable from any
state. Fruit et al. [1] introduced SCAL, achieving an improved bound Õ

(
min {rmaxD, c}

√
ΓSAT

)
when a known upper bound c on the range of the optimal value function (i.e., bias function) is known
to the learning agent.

In this paper, we introduce and analyse SCAL+, the first algorithm that relies on an exploration bonus
to efficiently balance exploration and exploitation in the infinite-horizon undiscounted setting. Similar
to the exploration bonus used in finite-horizon and discount setting, which depends on the knowledge
of γ or H , we follow the approach of Bartlett and Tewari [14], Fruit et al. [1] and we assume an
upper-bound c on the range of the optimal bias is known. The exploration bonus used by SCAL+ is
thus b(s, a) = Θ̃

(
max{c, rmax}/

√
N(s, a)

)
. We prove that this bonus ensures optimism using a

novel technical argument. We no longer use an inclusion argument (i.e., the true MDP is contained in
a set of plausible MDPs) but we reason directly at the level of the Bellman operator. We show that the
optimistic Bellman operator defined by the empirical MDP with optimistic reward r̂(s, a) + b(s, a)
dominates the Bellman operator of the true MDP when applied to the optimal bias function. This is
sufficient to prove that the solution of the optimistic MDP is indeed (gain-)optimistic. This proof
technique has two main advantages w.r.t. the inclusion argument. First, it directly applies to slightly
perturbed empirical MDPs, without re-deriving confidence sets. Second, as we study the optimistic
Bellman operator applied only to the optimal bias function (rather than all possible vector in RS),
we save a factor

√
Γ in designing the exploration bonus, compared to the (implicit) bounds obtained

by algorithms relying on confidence sets on the MDP. In practice, this may limit over-exploration
and lead to better empirical performance. Furthermore, as SCAL+ only solves the estimated MDP
with optimistic reward, it is computationally cheaper than UCRL-based algorithms, which require
computing the optimal policy for an extended MDP with a continuous action space defined by the
confidence set over MDPs.

To further illustrate the generality of the exploration bonus approach, we also present SCCAL+, an
extension of SCAL+ to continuous state MDPs. As in [2, 16], we require the reward and transition
functions to be Hölder continuous with parameters ρL and α. SCCAL+ is also the first implementable
algorithm in continuous problem with theoretical guarantees (existing algorithms with theoretical
guarantees such as UCCRL [2] cannot be implemented). The main result of the paper can be
summarized as follows.

Theorem 3 (informal). For any MDP with S states, A actions and Γ next states, the regret of SCAL+

is bounded with high probability by Õ
(

max{c, rmax}
√

ΓSAT
)
. For any “smooth” MDP with

smoothness parameters ρL and α, 1-dimensional state space S = [0, 1] and A actions, the regret of

SCCAL+ is bounded with high probability by Õ
(

max{c, rmax}ρL
√
AT

(α + 2)/(2α + 2)

)
.

5The original bound of Jaksch et al. [11] has
√
S instead of

√
Γ but

√
Γ can be easily achieved by replacing

Hoeffding inequality by empirical Bernstein’s inequality for transition probabilities.
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The regret bound of SCAL+ (resp. SCCAL+) matches the one of SCAL (resp. UCCRL). Surprisingly,
the better optimism introduced by SCAL+ compared to SCAL and UCRL (i.e., the exploration bonus
is smaller by a factor

√
Γ) is not reflected in the final regret bound with the current statistical analysis.

We isolate and discuss where the term
√

Γ appears in the proof sketch of Sect. 3.3. Azar et al. [8], Jin
et al. [9] managed to remove the

√
Γ term in the finite-horizon setting, while recently Ortner [15]

derived an algorithm achieving O
(√
tmixSAT

)
regret bound under the assumption that the true MDP

is ergodic (tmix denotes the maximum mixing time of any policy). It remains an open question if a
regret scaling with

√
S (instead of

√
ΓS) can be achieved in the infinite-horizon case without any

ergodicity assumption (infinite mixing time for example). Adapting the proof techniques of the
finite-horizon setting does not seem straightforward either as (among other things) the two definitions
of regret do not match and differ by a linear term.

B Planning under span constraint

In this section we introduce and analyze the problem of planning under bias span constraint, i.e.,
maximizing the gain among policies π satisfying sp (hπ) ≤ c. This problem is at the core of the
proposed algorithms (SCAL+ and SCCAL+) for exploration-exploitation. Formally:

g∗c (M) := sup
π∈Πc(M)

{gπ}, (8)

where M is any MDP (with discrete or continuous state space) s.t. Πc(M) := {π ∈ ΠSR : sp (hπ) ≤
c ∧ sp (gπ) = 0} 6= ∅.6 This problem is a slight variation of the bias-span constrained problem
considered by [14, 2, 16], for which no known-solution is available. On the other hand, problem 8
has been widely analysed by Fruit et al. [1].

Problem 8 can be solved using SCOPT [1], a version of (relative) value iteration [10, 26], where the
optimal Bellman operator is modified to return value functions with span bounded by c, and the
stopping condition is tailored to return a constrained-greedy policy with near-optimal gain. Given
v ∈ RS and c ≥ 0, we define the value operator Tc : RS → RS as

Tcv = ΓcLv =

{
Lv(s) ∀s ∈ S(c, v)

c+ mins{Lv(s)} ∀s ∈ S \ S(c, v)
(9)

where S(c, v) = {s ∈ S|Lv(s) ≤ mins{Lv(s)}+ c} and Γc is the span constrain projection (“trun-
cation”) operator (see [1, App. D] for details). In other words, operator Tc applies a span trun-
cation Γc to the one-step application of L, which guarantees that sp (Tcv) ≤ c. Given a vector
v0 ∈ RS and a reference state s SCOPT implements relative value iteration where L is replaced by Tc:
vn+1 = Tcvn − Tcvn(s)e. We can now state the convergence guarantees of SCOPT [see 1, Lem. 8
and Thm. 10].
Proposition 2. Given an MDPM such that 1) the associated optimal Bellman operatorL is a γ-span-
contraction; 2) all policies are unichain; 3) the operator Tc is globally feasible at any vector v ∈ RS
such that sp (v) ≤ c, i.e., for all s ∈ S, mina∈A{r(s, a) + p(·|s, a)Tv} ≤ mins′{Lv(s′)} + c.
Then:

(a) Optimality equation: there exists a solution (g+, h+) ∈ R× RS to the optimality equation
Tch

+ = h+ + g+e. Moreover, any solution (g+, h+) satisfies g+ = g∗c .

(b) Convergence: for any initial vector v0 ∈ RS , SCOPT converges to a solution h+ of the
optimality equation, and limn→+∞ Tn+1

c v0 − Tnc v0 = g+e.

We also recall that the operator Tc satisfies the following property as a direct consequence of Fruit
et al. [1, Lem. 8].
Proposition 3 (Dominance). If there exists (g, h) satisfying Tch ≥ h+ ge then gc ≥ g.

Proof. By induction, using the monotonicity and “linearity” of Tc [1, Lemma 16 (a) & (c)], we have
that ∀n ∈ N,

(
Tc
)n+1

h ≥
(
Tc
)n
h+ ge. By Prop. 2, limn→+∞

(
Tc
)n+1

h−
(
Tc
)n
h = gc. Taking

the limit when n tends to infinity in the previous inequality yields: gc ≥ g.
6Fruit et al. [1, Lem. 2] showed that there may not exist a deterministic optimal policy for problem 8.
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We finally conclude this section by formally showing that the 3 assumptions stated earlier (Prop. 1
and 2) hold for the discrete MDP M̂+

k defined in Sec. 3.1.

Proof of Prop. 1. We follow the arguments of Fruit et al. [1, Sec. 6] for SCAL. We denote by L̂+,
L̂ and L the optimal Bellman operators of M̂+

k , M̂k and M∗ respectively. Similarly, we denote by
T̂+
c , T̂c and Tc the “truncated” Bellman operators of these MDPs.

1) Contraction of L̂+. The small bias in the definition of p̂k ensures that the “attractive” state s
is reached with non-zero probability from any state-action pair (s, ai) implying that the ergodic

coefficient of M̂+
k defined as γk = 1−min s,u∈S,

a,b∈A+

{∑
j∈S min {p̂k(j|s, a), p̂k(j|u, b)}

}
is smaller

than 1−mins,a

{
Nk(s,a,s)+1
Nk(s,a)+1

}
< 1 and thus L̂+ is γk-contractive [10, Thm. 6.6.6].

2) M̂+
k is unichain. By construction, the attractive state s necessarily belongs to all recurrent classes

of all policies implying that M̂+
k is unichain (i.e., all policies are unichain).

3) Global feasibility of T̂+
c . Let v ∈ RS such that sp (v) ≤ c and let (s∗, a∗i ) ∈ S × A+ be

such that r̂+
k (s∗, a∗i ) + p̂+

k (·|s∗, a∗i )Tv = mins∈S
{

maxa∈A+{r̂+
k (s, a) + p̂+

k (·|s, a)Tv}
}

. For all
(s, a2) ∈ S ×A+ we have:

p̂+
k (·|s, a2)Tv − p̂+

k (·|s∗, a∗i )Tv ≤ max
s∈S
{v(s)} −min

s∈S
{v(s)} = sp (v) ≤ c

and r̂+
k (s, a2) = 0 ≤ r̂+

k (s∗, a∗i ). Therefore, for all s ∈ S, min
aj∈A+

{r̂+
k (s, aj) + p̂+

k (·|s, aj)Tv} ≤

mins′
{
L̂+v(s′)

}
+ c, i.e., T̂+

c is globally feasible at v [1, Lemma 5]. The application of Prop. 2
concludes the proof.

C Continuous state MDPs: the analysis of SCCAL+

In all this section we say that a function v : s ∈ S 7→ R is piece-wise constant on I when
∀J ∈ I, ∀s, s′ ∈ J we have v(s) = v(s′) and we denote by v(J) the joint value.

C.1 High probability bound using the exploration bonus (proof of Lem. 3)

To begin with, we introduce a slightly tighter exploration bonus than the one defined in (6). Despite
being always smaller, it is of the same order of magnitude and has a slightly more complex expression.
We decided to simplify it in the main body of the paper for the sake of clarity (this simplification
does not change the final regret bound, but may impact the empirical performances).

bk(J, a) := c ·min

{
βJak + ρLS

−α +
1

Nk(J, a) + 1
; 2

}
+ rmax ·min

{
βJak + ρLS

−α; 1
}

(10)

where βsak is defined in Eq. 3 (with J in place of s in this case). We also recall that the terms rk, r̂k,
pk and p̂k are defined in Def. 1 in the main body. Lem. 3 is a direct consequence of the following
(more general) result:

Lemma 4. Consider the estimated continuous MDP M̂k defined in Def. 1. For any v : S 7→ R,
define the term

∆Lk(s, a, v) =

∣∣∣∣rk(s, a)− r(s, a) +

∫
S

(p̂k(s′|s, a)− p(s′|s, a)) v(s′)ds′
∣∣∣∣

and the event Fb(v) := {∀k ≥ 1,∀(s, a) ∈ S ×A, bk(s, a) ≥ ∆Lk(s, a, v)}. Then, for any v such
that sp (v) ≤ c, P

(
Fb(v)

)
≥ 1− δ

5 .
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Proof of Lem. 4 We introduce an intermediate MDP M̃k := (S,A, r̃k, p̃k) (with continuous
state-space) defined for all pairs (s, a) ∈ S ×A by:

r̃k(s, a) :=
1

Nk(I(s), a)

∑
x∈I(s)

Nk(x, a)r(x, a)

p̃k(s′|s, a) :=
1

Nk(I(s), a)

∑
x∈I(s)

Nk(x, a)p(s′|x, a)

M̃k can be interpreted as an approximation of M where s 7→ r̃k(s, a) and s 7→ p̃k(s′|s, a) are
constrained to be piece-wise constant on I in a way that depends on the states visited before episode
k. We then decompose p̂k − p and rk − r as

p̂k − p = (p̂k − pk) + (pk − p̃k) + (p̃k − p) and rk − r = (rk − r̃k) + (r̃k − r) (11)

and bound all the terms separately in the next sections. To simplify the analysis, we “recenter”
the function v and define w(s) := v(s) − (max{v(s)}+ min{v(s)}) /2 so that for all s ∈ S,
w(s) ∈ [−c/2, c/2].

C.1.1 Bounding the difference between r̃k/p̃k and r/p

To bound the differences r̃k(s′|s, a)− r(s, a) and
∫

(p̃k(s′|s, a)− p(s′|s, a))w(s′)ds′ we simply use
the smoothness assumption on the reward and transition model (see Asm. 2). For all (s, a) ∈ S ×A
(using the triangle inequality):∣∣r̃k(s, a)− r(s, a)

∣∣ ≤ 1

Nk(I(s), a)

∑
x∈I(s)

Nk(x, a)
∣∣r(x, a)− r(s, a)

∣∣︸ ︷︷ ︸
≤rmaxLS−α since x∈I(s)

≤ rmaxρLS
−α (12)

For the transition probability we have that (using the triangle inequality):∣∣∣∣∣
∫
S

(p̃k(s′|s, a)− p(s′|s, a))w(s′)ds′

∣∣∣∣∣ ≤ c
∫
S
|p̃k(s′|s, a)− p(s′|s, a)|ds′

=
c

Nk(I(s), a)

∑
x∈I(s)

Nk(x, a)

∫
S
|p(s′|x, a)− p(s′|s, a)|︸ ︷︷ ︸
≤ρLS−α since x∈I(s)

ds′

≤ cρLS−α

(13)

Note that all these inequalities hold with probability 1.

C.1.2 Bounding the difference between p̂k and pk

Using the triangle inequality and the fact that
∫
S 1(s′ ∈ I(s))ds′ =

∫
I(s)

1ds′ =
∣∣I(s)

∣∣ = 1/S we
have that for any (s, a) ∈ S ×A:∣∣∣∣∫

S
(p̂k(s′|s, a)− pk(s′|s, a))w(s′)ds′

∣∣∣∣ ≤ ∫
S
|p̂k(s′|s, a)− pk(s′|s, a)| · |w(s′)|ds′

=

∣∣∣∣ Nk(I(s), a)

Nk(I(s), a) + 1
− 1

∣∣∣∣ ∫
S
pk(s′|s, a) |w(s′)|︸ ︷︷ ︸

≤c/2

ds′

+ S

∫
S

|w(s′)|1(s′ ∈ I(s))

Nk(I(s), a) + 1
ds′

≤ c

Nk(I(s), a) + 1

(14)

C.1.3 Bounding the difference between r̃k/p̃k and rk/pk

Let’s consider a fixed pair (s, a) ∈ S × A and a fixed aggregated state J ∈ I. Our goal is to
bound the differences

∫
S
(
p̃k(s′|s, a) − pk(s′|s, a)

)
w(s′)ds′,

∫
J
p̃k(s′|s, a) − pk(s′|s, a)ds′ and
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r̃k(s, a)− rk(s, a). Since p̃k and r̃k are in some sense the expected values of pk and rk, we would
like to use concentration inequalities. In the case of a finite state space S, Jaksch et al. [11, UCRL ]
and Fruit et al. [1, SCAL ] use concentration inequalities that apply to independent random variables
(r.v.). We argue that a more careful analysis is needed here since the states lie in an uncountable
set. Indeed, the implicit assumption made about the RL model for UCRL and SCAL is that for each
state-action pair (s, a), the rewards (respectively next states) are sampled from an infinite stack of
independent and identically distributed (i.i.d.) rewards (respectively next states). More precisely,
each time the agent visits (s, a), it receives a reward from the top of the stack of rewards associated
to (s, a) and moves to the state on the top of the stack of next states associated to (s, a). The two
samples are then withdrawn from their respective stacks (meaning that they cannot be popped again).
For more details about why this is a valid model refer to [27, Section 4.4]. In the case where S
and A are discrete sets (finite or countable), it is possible to use any concentration inequality for
i.i.d. r.v. and then take a union bound over all “stacks” (s, a). When S is uncountable however, the
same argument cannot be used (the probability of an uncountable union of events is not even always
defined). Moreover, the terms r̃k and p̃k are obtained using sampled from different states x ∈ I(s)
instead of a single state s. To overcome these technical problems, we use a variant of Doob’s optional
skipping [e.g., 28, Sec. 5.3, Lem. 4] and concentration inequalities for martingales (Azuma and
Freedman inequalities). For the sake of completeness, the argument that we use is formalized (with
detailed proofs) in App. F (Thm. 4), but it is of course not new.

For any t ≥ 0, the σ-algebra induced by the past history of state-action pairs and rewards up to time t
is denoted Ft := σ (s1, a1, r1, . . . , st, at) where by convention F0 = σ (∅) and F∞ := σ(∪t≥0Ft).
Let F denote the filtration (Ft)t≥0. We define the following adapted sequences and stopping times:

1) Adapted sequences:
We consider the following stochastic processes adapted to F: (w(st))t≥0 and (rt−1(st−1, at−1))t≥0

(with the conventions r−1(s−1, a−1) = r0(s0, a0) = r∞(s∞, a∞) = 0 and w(s0) = w(s∞) = 0).
Theses processes are bounded as |w(st)| ≤ 2 × ‖w‖∞ ≤ c and |rt−1(st−1, at−1)| ≤ rmax for all
t ≥ 0.

2) Stopping times:
We define τ := (τl)l≥0 s.t. τ0 := 0 and τl+1 := inf{tk > t > τl : st ∈ I(s), at = a} (we omit the
dependency in (s, a) in the notation τl). For all l ≥ 0 and for all t ≥ 0, τl := {τl = t} ∈ Ft and so
τl is a stopping time w.r.t. F (see Def. 3 in App. F). By definition for any l ≥ 0, τl < τl+1 a.s. (i.e., τ
is strictly increasing, see Lem. 9). We denote Gl := Fτl+1 the σ-algebra at stopping time τl+1 (see
Def. 4 in App. F).

All the assumptions of Thm. 4 are satisfied and we have that ∀s, a ∈ S × A (using the compact
notation Nsa

k := Nk(I(s), a) for the sake of readibility)

P

∀k ≥ 1,

∣∣∣∣∣∣
Nsak∑
l=1

(
rτl(sτl , aτl)− E

[
rτl(sτl , aτl)

∣∣Gl−1

])∣∣∣∣∣∣ ≤ rmax

√
Nsa
k ln

(
2Nsa

k

δ

) ≥ 1− δ

P

∀k ≥ 1,

∣∣∣∣∣∣
Nsak∑
l=1

(
w(sτl+1)− E

[
w(sτl+1)

∣∣Gl−1

])∣∣∣∣∣∣ ≤ c
√
Nsa
k ln

(
2Nsa

k

δ

) ≥ 1− δ

We now need to relate the above sums to
∫
S
(
p̃k(s′|s, a)−pk(s′|s, a)

)
w(s′)ds′ and r̃k(s, a)−rk(s, a).

By defintion of τ , we can rewrite rk and pk as follows:

rk(s, a) =
1

Nk(I(s), a)

Nk(I(s),a)∑
l=1

rτl(sτl , aτl)

∫
J

pk(s′|s, a)ds′ =
1

Nk(I(s), a)

Nk(I(s),a)∑
l=1

1 (sτl+1 ∈ J)

It is also easy to verify that the following holds: E
[
w(sτl+1)

∣∣Gl−1

]
=
∫
S p(s

′|sτl , aτl)w(s′)ds′, and
E
[
rτl(sτl , aτl)

∣∣Gl−1

]
= r(sτl , aτl) (see Lem. 11 in App. F for a formal proof). As a result, we can
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rewrite r̃k and p̃k as follows:

r̃k(s, a) =
1

Nk(I(s), a)

∑
x∈I(s)

Nk(x, a)r(x, a) =
1

Nk(I(s), a)

Nk(I(s),a)∑
l=1

E
[
rτl(sτl , aτl)

∣∣Gl−1

]
and

∫
S
p̃k(s′|s, a)w(s′)ds′ =

1

Nk(I(s), a)

∑
x∈I(s)

Nk(x, a)

∫
S
p(s′|x, a)w(s′)ds′

=
1

Nk(I(s), a)

Nk(I(s),a)∑
l=1

E
[
w(sτl+1)

∣∣Gl−1

]
Then, we have that ∀(s, a) ∈ S ×A

P (∀k ≥ 1, |rk(s, a)− r̃k(s, a)| ≤ rmaxβ
sa
k ) ≥ 1− δ

10SA
(15)

P
(
∀k ≥ 1,

∣∣∣∣∫
S

(
pk(s′|s, a)− p̃k(s′|s, a)

)
w(s′)ds′

∣∣∣∣ ≤ cβsak ) ≥ 1− δ

10SA
(16)

To conclude, we take a union bound over all possible (I(s), a) ∈ I ×A and J ∈ I (and over both
inequalities 15 and 16). Note that we only need to take a union bound over I(s) ∈ I (and not S)
because s 7→ p̃k(·|s, a) and s 7→ r̃k(s, a) are piecewise constant on I (and similarly for pk and rk).

Remark. Note that for Nk(I(s), a) = 0 we have that βsak ≥ 1, thus the bound holds with
probability one.

C.1.4 Gathering all the terms

We first notice that
∫
S (p̂k(s′|s, a)− p(s′|s, a)) v(s′)ds′ =

∫
S (p̂k(s′|s, a)− p(s′|s, a))w(s′)ds′

sincew and v are equal up to a constant shift and
∫
S p̂k(s′|s, a)ds′ =

∫
S p(s

′|s, a)ds′ = 1. Gathering
equations (13), (14) and (16) we have that with probability at least 1− δ

12 , ∀s, a, k,∣∣∣∣∫
S

(p̂k(s′|s, a)− p(s′|s, a)) v(s′)ds′
∣∣∣∣ ≤ c ·min

{
βsak + ρLS

−α +
1

Nk(I(s), a) + 1
; 2

}
(17)

Gathering equations (15) and (12) we have that with probability at least 1− δ
12

∀s, a, k, |rk(s, a)− r(s, a)| ≤ rmax ·min
{
βsak + ρLS

−α; 1
}

(18)

The lemma follows by applying the triangular inequality, a union bound (to have (18) and (17) to
hold simultaneously) and by definition of the exploration bonus.

C.2 Optimism (Proof of Lem. 2 and 3)

Let ĝag+k := g∗c (M̂ag+
k ) denote the solution of optimisation problem (4) on MDP M̂ag+

k (defined in
Sec. 4). In this section we prove that:
Lemma 5 (see Lem. 3). Under event Fb(h∗) (Lem. 4), for any episode k ≥ 1, ĝag+k ≥ g∗.

M̂ag+
k only has a finite number of states while the true MDP M∗ has an uncountable state-space.

Thus, it is difficult to compare directly ĝag+
k with g∗. To overcome this difficulty, we first compare g∗

with the gain of M̂k and then compare the latter to ĝag+
k .

1. Optimism of M̂k. Let ĝk denote the solution of optimisation problem (4) on M̂k. To prove that
ĝk ≥ g∗ we can use Prop. 3 which –as explained in the main body of the paper– only requires to
show that L̂kh∗ ≥ Lh∗ where L̂k is the optimal Bellman operator of M̂k. Under event Fb(h∗),

∀s ∈ S, L̂kh∗(s) := max
a∈A

{
rk(s, a) + bk(s, a) +

∫
S
p̂k(s′|s, a)h∗(s′)ds′

}
≥ max

a∈A

{
r(s, a) +

∫
S
p(s′|s, a)h∗(s′)ds′

}
= Lh∗(s)
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Therefore, ĝk ≥ g∗.

2. Relationship between M̂k and M̂ag+
k (proof of Lem. 2). We now show that ĝag+

k = ĝk.
Consider a piecewise-constant function v0 on S (e.g., v0 = 0) and a vector u0 ∈ RS satisfying
u0(J) = v0(J) for all J ∈ I. We define the sequences vn+1 := T̂cvn and un+1 := T̂ ag+

c un. We
show by induction that un(J) = vn(J) for all n ≥ 0 and for all J ∈ I. By definition it is true for
n = 0 and for all n ≥ 0:∫

s∈S
p̂k(s′|s, a)vn(s′)ds′ =

∑
J∈I

∫
J

p̂k(s′|s, a)vn(s′)ds′

=
∑
J∈I

vn(J)

∫
J

p̂k(s′|s, a)ds′ =
∑
J∈I

un(J) p̂agk (J |I(s), a)

(19)

where the last equality follows from (7) and the induction hypothesis. In addition r̂k(s, a) is also
piecewise-constant on I and r̂k(s, a) = r̂agk (I(s), a) for all s ∈ S. Therefore, we have that
L̂agk un(I(s)) = L̂kvn(s) for any s ∈ S. Finally, the augmentation is not impacting the optimal
Bellman operator (i.e., for any v, L̂ag+k v = L̂agk v) so L̂ag+

k un(I(s)) = L̂kvn(s) and consequently
T̂ ag+c un(I(s)) = T̂cvn(s) for any s ∈ S. This shows that vn+1(J) = un+1(J) for all J ∈ I which
concludes the proof by induction.

As shown by Fruit et al. [1, Theorem 10], limn→+∞ vn+1(J) − vn(J) = ĝag+k and
limn→+∞ un+1(J)− un(J) = ĝk so that, under event Fb, ĝ

ag+
k = ĝk ≥ g∗.

C.3 Relaxation of the Exploration Bonus

In this section we introduce a new bonus dk(J, a) that will be used in the regret analysis:

dk(J, a) := c ·min

{
φJak + ρLS

−α +
1

Nk(J, a) + 1
; 2

}
+ rmax ·min

{
βJak + ρLS

−α; 1
}

(20)

with βJak defined in Eq. 3 (with J in place of s) and

φJak = 2

√√√√S ln
(

40S2AN+
k (J,a)

δ

)
N+
k (J, a)

+
4S ln

(
40S2AN+

k (J,a)

δ

)
N+
k (J, a)

≥ βJap,k (21)

with N+
k (J, a) := max{1, Nk(J, a)}. Note that dk is a looser exploration bonus, i.e., dk(s, a) ≥

bk(J, a), for all J, a, k. However, it allows us to extend Lem. 4: instead of showing that for all v
such that sp (v) ≤ c, Fb(v) holds with high probability, we show that

⋂
sp(v)≤c Fb(v) holds with

high probability (when bk is replaced by dk and with the additional restriction that all the functions v
should be piece-wise constant).

Lemma 6. Consider the estimated continuous MDP M̂k defined in Def. 1 and the term ∆Lk(s, a, v)
defined in Lem. 4. Let’s define the event

Fd := {∀v piece-wise constant s.t. sp (v) ≤ c, ∀k ≥ 1,∀(s, a) ∈ S×A, dk(s, a) ≥ ∆Lk(s, a, v)}
Then, P (Fd) ≥ 1− δ

5 .

Proof of Lem. 6 The proof follows the same steps as the proof of Lem. 4 and we do not repeat the
derivation of inequality (18). Similarly to Eq. 13, for all (s, a) ∈ S ×A:∑

J∈I

∣∣∣∣∣
∫
J

(p̃k(s′|s, a)−p(s′|s, a))ds′

∣∣∣∣∣ ≤∑
J∈I

∫
J

|p̃k(s′|s, a)− p(s′|s, a)|ds′

=
1

Nk(I(s), a)

∑
x∈I(s)

Nk(x, a)

∫
S
|p(s′|x, a)− p(s′|s, a)|︸ ︷︷ ︸
≤ρLS−α since x,s∈I(s)

ds′

≤ ρLS−α

(22)
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and similarly to Eq. 14:∑
J∈I

∣∣∣∣∫
J

(p̂k(s′|s, a)− pk(s′|s, a))ds′
∣∣∣∣ ≤ ∫

S
|p̂k(s′|s, a)− pk(s′|s, a)|ds′ ≤ 1

Nk(I(s), a) + 1

(23)

Let’s consider the same sequence of stopping times τ as in App. C.1.3 and the additional adapted
sequence (1 (st ∈ J))t≥0 (with the convention 1 (s0 ∈ J) = 1 (s∞ ∈ J) = 0). This process is
bounded as |1 (st ∈ J) | ≤ 1. Using again Thm. 4, we can state that ∀s, a, J ∈ S ×A× I

P

(
∀k ≥ 1,

∣∣∣∣∣
Nsak∑
l=1

(
1 (sτl+1 ∈ J)− E

[
1 (sτl+1 ∈ J)

∣∣Gl−1

])∣∣∣∣∣
≤ 2

√
Vk(J) ln

(
4Nsa

k

δ

)
+ 4 ln

(
4Nsa

k

δ

))
≥ 1− δ

(24)

where Vk(J) :=
∑Nsak
l=1 V

(
1 (sτl+1 ∈ J)

∣∣Gl−1

)
. We now need to relate

∫
J
p̃k(s′|s, a) −

pk(s′|s, a)ds′ to the above sum and to provide an explicit formula for Vk(J). By defintion of
τ , we can rewrite pk as follows:∫

J

pk(s′|s, a)ds′ =
1

Nk(I(s), a)

Nk(I(s),a)∑
l=1

1 (sτl+1 ∈ J)

It is also easy to verify that E
[
1 (sτl+1 ∈ J)

∣∣Gl−1

]
=
∫
J
p(s′|sτl , aτl)ds′ (see Lem. 11 in App. F

for a formal proof). As a result, we can rewrite p̃k as follows:∫
J

p̃k(s′|s, a)ds′ =
1

Nk(I(s), a)

Nk(I(s),a)∑
l=1

E
[
1 (sτl+1 ∈ J)

∣∣Gl−1

]
We can also give a more explicit expression for Vk:

V
(
1 (sτl+1 ∈ J)

∣∣Gl−1

)
:= E

[
1 (sτl+1 ∈ J)

2︸ ︷︷ ︸
=1(sτl+1∈J)

∣∣Gl−1

]
− E

[
1 (sτl+1 ∈ J)

∣∣Gl−1

]2

=

∫
J

p(s′|sτl , aτl)ds′ −
(∫

J

p(s′|sτl , aτl)ds′
)2

implying:

Vk(J) =

Nk(I(s),a)∑
l=1

(
1−

∫
J

p(s′|sτl , aτl)ds′
)

︸ ︷︷ ︸
≤1

∫
J

p(s′|sτl , aτl)ds′︸ ︷︷ ︸
≥0

≤
∑
x∈I(s)

Nk(x, a)

∫
J

p(s′|x, a)ds′

Using Cauchy-Scwartz inequality (recall that |I| = S)∑
J∈I

√
Vk(J) ≤

√
S
∑
J∈I

Vk(J) ≤
√√√√S

∑
x∈I(s)

Nk(x, a)
∑
J∈I

∫
J

p(s′|x, a)ds′ =
√
SNk(I(s), a)

Then, we have that ∀(s, a) ∈ S ×A (the inequalities remain valid after replacing Nk with N+
k )

P

(
∀k ≥ 1,

∑
J∈I

∣∣∣∣∫
J

pk(s′|s, a)− p̃k(s′|s, a)ds′
∣∣∣∣ ≤ φI(s)ak

)
≥ 1− δ

10SA
(25)

where we took a union bound over and J ∈ I. As in Sec. C.1.3, we can take a union bound over all
possible (I(s), a) ∈ I ×A.

Let v be a piecewise constant function on I s.t. sp (v) ≤ c and define w(s) := v(s) −
(inf{v(s)}+ sup{v(s)}) /2. w is also piecewise constant on I and for all J ∈ I, w(J) ∈
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[−c/2, c/2]. Gathering equations (25), (22) and (23) we have with probability at least 1 − δ
12

that ∀s, a, k and for all v piece-wise constant on I such that sp (v) ≤ c:∑
J∈I

∣∣∣∣∫
J

(p̂k(s′|s, a)− p(s′|s, a)) v(s′)ds′
∣∣∣∣ =

∑
J∈I

∣∣∣∣w(J)

∫
J

(p̂k(s′|s, a)− p(s′|s, a)) ds′
∣∣∣∣

≤ c

2

∑
J∈I

∣∣∣∣∫
J

(p̂k(s′|s, a)− p(s′|s, a)) ds′
∣∣∣∣

≤ c
(
φ
I(s)a
k + ρLS

−α +
1

Nk(I(s), a) + 1

)
(26)

Note also that
∑
J∈I

∣∣∫
J

(p̂k(s′|s, a)− p(s′|s, a)) ds′
∣∣ ≤ 2 so that another (trivial) bound is 2c. The

lemma follows by application of triangular inequality, union bound (to have (18) and (26) to hold
simultaneously) and by definition of the exploration bonus dk(s, a).

C.4 Regret Proof of SCCAL+ (Proof of Thm. 2)

In this section, we provide a complete proof for the regret bound of SCCAL+.

The arguments used in the proof of the following lemma will be used several times in the rest of the
regret proof (we will not repeat these arguments for the sake of brevity). We define the episode at
time t as kt := sup{k ≥ 1 : t ≥ tk}. Then,

Lemma 7. With probability at least 1− δ
5

∀T ≥ 1,

T∑
t=1

r(st, at) ≥
T∑
t=1

∑
a∈A

πkt(st, a)r(st, a) + 2rmax

√
T ln

(
5T

δ

)

Proof. For any t ≥ 0, the σ-algebra induced by the past history of state-action pairs and rewards up to
time t is denoted Ft := σ (s1, a1, r1, . . . , st, at, st+1) where by convention F0 = σ (∅) and F∞ :=
σ(∪t≥0Ft) (not that unlike in App. C.1.3, we include st+1 in the definition of Ft). Let’s consider the
stochastic process Xt = rt(st, at)−

∑
a∈A πkt(st, a)r(st, a). The term

∑
a∈A r(st, a)πkt(st, a) is

Ft−1-measurable and moreover

E[rt(st, at)|Ft−1] =
∑
a∈A

πkt(st, a)r(st, a)

so that E [Xt|Ft−1] = 0. Since in addition |Xt| ≤ rmax, (Xt,Ft)t≥1 is a Martingale Difference
Sequence (MDS) and we can apply Azuma’s inequality (see for example Jaksch et al. [11, Lemma
10]):

P

(
T∑
t=1

rt(st, at) ≤
T∑
t=1

∑
a∈A

πkt(st, a)r(st, a)− rmax

√
4T ln

(
5T

δ

))
≤
(
δ

5T

)2

≤ δ

20T 2

(27)

The lemma follows by taking a union bound over all possible values of T ≥ 1 and noticing that
1−∑+∞

T=1
δ

20T 2 = 1− 2π2δ
120 ≥ 1− δ

5 .

Defining ∆k =
∑
s∈S νk(s)

(
g∗ −∑a∈Ast

r(s, a)πk(s, a)
)

and using Lem. 7, it holds with proba-

bility at least 1 − δ
5 that: ∆(SCAL+, T ) ≤ ∑kT

k=1 ∆k + 2rmax

√
T ln

(
5T
δ

)
. Note that νk(s) is the

total number of observation of state s in episode k and is well-defined for s lying in [0, 1]. Finally,
recall that for any subset I ⊆ S, the sum

∑
s∈I us is also well-defined as long as the collection

(us)s∈I contains only a finite number of non-zero elements.

o In this section we will abuse notation and write p(·|s, a)Tv =
∫
S p(s

′|s, a)v(s′)ds′ for
any probability density function p defined on S = [0, 1].
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C.4.1 Optimism and Bellman Equation

From now on we assume that Fb(h∗) ∩ Fd hold (see Lem. 4 and 6). Denote by gk and hk the gain
and bias returned by SCOPT. By definition, gk := 1/2 · (max{T̂+

c hk − hk}+ min{T̂+
c hk − hk}).

The stopping condition of SCOPT [see 1] and Lem. 5 ensure that (since Fb(h∗) holds)

gk ≥ g∗c (M̂ag+
k )− rmax

tk

Lem. 5︷︸︸︷
≥ g∗ − rmax

tk

implying

∆k ≤ rmax

∑
s∈S

νk(s)

tk
+
∑
s∈S

νk(s)

(
gk −

∑
a∈As

r(s, a)πk(s, a)︸ ︷︷ ︸
:=∆′k(s)

)
(28)

Note that we can associate a continuous piece-wise constant function uk : S 7→ R to the discrete
vector hk ∈ RS : uk(s) := hk(I(s)), ∀s ∈ S. Since event Fd holds,

−r(s, a) ≤ dk(s, a)− rk(s, a) + (p(·|s, a)− p̂k(·|s, a))
T
uk.

Note that we cannot replace dk by bk (and invoke event Fb(uk) instead of Fd) since uk is correlated
with p̂k. By definition rk(s, a) = ragk (I(s), a) = r̂k(s, a)− bk(s, a) and therefore,

∆′k(s) ≤ gk −
∑
a∈As

πk(s, a)

(
r̂k(s, a)︸ ︷︷ ︸

:=r̂agk (I(s),a)

+p̂k(·|s, a)Tuk

)

+
∑
a∈As

πk(s, a)

(
bk(s, a)︸ ︷︷ ︸

:=bk(I(s),a)

+dk(s, a) + p(·|s, a)Tuk

) (29)

A direct consequence of the stopping condition used by SCOPT (see Thm. 18 of Fruit et al. [1]) is
that: ∀J ∈ I,∣∣∣∣gk + hk(J)−

∑
ai∈A×{1,2}

πk(J, ai)
(
r̂ag+k (J, ai)− p̂ag+k (·|J, ai)Thk

) ∣∣∣∣ ≤ rmax

tk
(30)

Recall that by definition: πk(J, a) = πk(J, a1) + πk(J, a2), r̂ag+k (J, ai) ≤ r̂agk (J, a) (since we have
r̂ag+
k (J, a1) = r̂agk (J, a) and r̂ag+

k (J, a2) = 0) and p̂agk (·|J, a) = p̂ag+k (·|J, ai). We can thus write:∑
a∈A

r̂agk (J, a)πk(J, a) =
∑
a∈A

∑
i∈{1,2}

r̂agk (J, a)πk(J, ai) ≥
∑

ai∈A×{1,2}

r̂ag+k (J, ai)πk(J, ai)

and
∑
a∈A

πk(s, a)p̂agk (·|J, a) =
∑

a∈A×{1,2}

πk(J, ai)p̂
ag+
k (·|J, ai)

(31)

As in (19), we can easily show that p̂k(·|s, a)Tuk = p̂agk (·|s, a)Thk. Plugging the two inequal-
ities of (31) into (30), the fact that uk(s) = hk(I(s)), r̂k(s, a) = r̂agk (I(s), a), and πk(s, a) =
πk(I(s), a), we obtain:

∀s ∈ S, gk −
∑
a∈A

πk(s, a)

(
r̂k(s, a) + p̂k(·|s, a)Tuk

)
≤ −uk(s) +

rmax

tk
(32)

Combining (32) with (29) we obtain

∆′k(s) ≤
∑
a∈As

πk(s, a)

(
dk(s, a) + bk(s, a)︸ ︷︷ ︸

≤dk(s,a)

+p(·|s, a)Tuk

)
− uk(s) +

rmax

tk
(33)

Note that dk(s, a) ≥ bk(s, a) for any (s, a) ∈ S ×A since the term φIak (see Eq. 21) contains a
√
S

dependence that is not present in βIak . Since the dominant term is given by dk(s, a), we will consider
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the following (loose) upper-bound dk(s, a) + bk(s, a) ≤ 2dk(s, a) in the remaining of the proof.
Gathering (28) and (33) we can now state that

∆k ≤
∑
s

νk(s)

((∑
a

πk(s, a)p(·|s, a)Twk

)
− wk(s)

)
︸ ︷︷ ︸

:=∆p
k

+ 2
∑
s,a

νk(s)πk(s, a)dk(s, a) + 2rmax

∑
s∈S

νk(s)

tk

(34)

where wk = uk − (mins{uk(s)}+ maxs{uk(s)})/2 is obtained by “recentering” uk around 0 so
that ‖wk‖∞ = sp (wk) /2 ≤ c/2. Then, similarly to what is done by Jaksch et al. [11, Sec. 4.3.2]
and Fruit et al. [1, App. F.7, pg. 32], we have

∆p
k =

tk+1−1∑
t=tk

(∑
a

πk(st, a)

∫
p(s′|st, a)wk(s′)ds′

)
− wk(st+1)︸ ︷︷ ︸

:=Xt

+

tk+1−1∑
t=tk

wk(st+1)− wk(st)

=

tk+1−1∑
t=tk

Xt + wk(stk+1)− wk(stk)︸ ︷︷ ︸
≤sp(wk)≤c

Given the filtration Ft = σ (s1, a1, r1, . . . , st+1), Xt is an MDS since |Xt| ≤ c and E[Xt|Ft−1] = 0
since πkt is Ft−1-measurable. By using Azuma’s inequality we have that with probability at least
1− δ

5 :

∀T ≥ 1,

kT∑
k=1

∆p
k ≤ 2c

√
T ln

(
5T

δ

)
+ ckT (35)

with kT ≤ SA log2

(
8T
SA

)
when T ≥ SA (see App. C.2 in [11]).

C.4.2 Bounding the exploration bonus and summing up visit counts

Using again a martingale argument and Azuma’s inequality (see Lem.7 and App. F.6 in [1]), since
dk(s, a) ≤ 2c+ rmax ≤ 3 max{c, rmax}, we obtain with probability at least 1− δ

5 , that for all T ≥ 1

m∑
k=1

∑
s,a

νk(s)πk(s, a)dk(s, a) ≤
m∑
k=1

∑
s,a

νk(s, a)dk(s, a) + 6 max{c, rmax}
√
T ln

(
5T

δ

)
(36)

We now gather inequalities (36), (35) into inequality (34) summed over all the episodes k which
yields that with probability at least 1− 4δ

5 (for T ≥ SA):

m∑
k=1

∆k ≤ 8 max{c, rmax}
√
T ln

(
5T

δ

)
+ cSA log2

(
8T

SA

)

+ 2rmax

∑
s∈S

νk(s)

tk︸ ︷︷ ︸
=O(SA ln(T )) [1, App. F.7]

+2

m∑
k=1

∑
s,a

νk(s, a)dk(s, a)
(37)

Let φsak as defined in Eq. 21, then
m∑
k=1

∑
s,a

νk(s, a)dk(s, a) ≤
m∑
k=1

∑
s,a

νk(s, a)rmaxβ
sa
k︸ ︷︷ ︸

see App. F.7 [1]

+c

m∑
k=1

∑
s,a

νk(s, a)φsak︸ ︷︷ ︸
see App. F.7 [1]

+ 2c

m∑
k=1

∑
s,a

νk(s, a)

Nk(s, a) + 1
+ (c+ rmax)︸ ︷︷ ︸
≤2 max{c,rmax}

ρLS
−αT

(38)
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We recall that [see e.g., 1, App. F.7]

rmax

m∑
k=1

∑
s,a

νk(s, a)βsak = Õ(rmax

√
SAT ) and c

m∑
k=1

∑
s,a

νk(s, a)φsak = Õ(cS
√
AT + cS2A).

Similarly to what is done in [1, Eq. 58-60], we can write, ∀T ≥ 1

m∑
k=1

∑
s,a

νk(s, a)

Nk(s, a) + 1
= O (SA ln(T )) (39)

C.4.3 Completing the proof

Summing up all the contributions, we arrive at the conclusion that there exists a numerical constant χ
such that with probability at least 1− δ, for all T ≥ 1, SCCAL+ has a regret bounded by

∆(SCCAL+, T ) ≤χ ·
(

max {rmax, c}
(
S

√
AT ln

(
T

δ

)
+ S2A ln2

(
T

δ

)
+ ρLS

−αT

))

We now set S =
(
αρL

√
T
A

)1/(α + 1)

so that

∆(SCCAL+, T ) = Õ

(
max{rmax, c}

(
max

{
α

1/(α + 1), α−
α/(1 + α)

}
︸ ︷︷ ︸

≤2, ∀α≥0

×

× ρ1/(α + 1)

L A
α/(2α + 2)T

(α + 2)/(2α + 2) + α
2/(1 + α)︸ ︷︷ ︸
≤2, ∀α≥0

ρ
2/(1 + α)

L A
α/(1 + α)T

1/(1 + α)

))

Finally, when T ≥ ρ2/α
L A, the regret of SCCAL+ is bounded by

∆(SCCAL+, T ) = Õ
(

max{rmax, c}ρ
1/(α + 1)

L A
α/(2α + 2)T

(α + 2)/(2α + 2)

)
.

D Finite MDPs: the analysis of SCAL+

In this section we analyse SCAL+ by leveraging the results provided for the continuous state case.
We define the bonus bk and state a lemma analogue to Lem. 4 and Lem. 6 combined (which among
other things, implies that SCAL+ is optimistic at each episode k). Finally, we provide the proof of the
regret bound stated in Thm. 1.

D.1 High probability bound using the exploration bonus (proof of Lem. 1)

To begin with, we introduce two variants of bonus that will be used for the regret proof (analogue to
the bonuses used for continuous state spaces):

bk(s, a) := c ·min

{
βsak +

1

Nk(s, a) + 1
; 2

}
+ rmax ·min {βsak ; 1}

dk(s, a) := c ·min

{
φsak +

1

Nk(s, a) + 1
; 2

}
+ rmax ·min {βsak ; 1}

(40)

where βsak is defined as in Eq. 3 and

φsak := 2

√√√√ (Γ(s, a)− 1) ln
(

40S2AN+
k (s,a)

δ

)
N+
k (s, a)

+
4S

N+
k (s, a)

ln

(
40S2AN+

k (s, a)

δ

)
Notice that compared to bk, dk explicitly depends on the number of states S and next states Γ. Also,
dk(s, a) ≥ bk(s, a) for any (s, a) ∈ S × A. In the continuous case we could also have considered
the number of next states Γ(s, a) in the (true) aggregated MDP. However, this quantity is not very
informative so we decided (for sake of clarity) to upper-bound it by the number of intervals |I| = S.
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Lemma 8. Let (g∗, h∗) be a solution of the optimality equation Lh∗ = h∗+g∗ such that sp (h∗) ≤ c.
With probability at least 1− δ

5 , for all T ≥ 1 and k ≥ 1, for any (s, a) ∈ S ×A and for any v ∈ RS
s.t. sp (v) ≤ c we have:

(a) bk(s, a) ≥
∣∣∣rk(s, a)− r(s, a) + (p̂k(·|s, a)− p(·|s, a))

T
h∗
∣∣∣

(b) dk(s, a) ≥
∣∣∣rk(s, a)− r(s, a) + (p̂k(·|s, a)− p(·|s, a))

T
v
∣∣∣

where bk and dk are defined as in Eq. 40. Events (a) and (b) hold individually with probability 1− δ
5

and not simultaneously.

Proof. We consider the discrete case as a special sub-case of the continuous one considered in Lem. 4.
As explained in Sec. C.1.3, for the discrete case we can even use an independence argument based
on the “stack of samples” idea [27, Sec. 4.4]. However, for sake the sake of brevity, we re-use the
same MDS argument exploited in the continuous case. The main difference is that in the discrete
case we do not need state aggregation and thus we replace every interval with a singleton function,
i.e., I(s) = s, ∀s ∈ S . Define w := h∗ − (min{h∗}+ max{h∗})/2 such that w ∈ [−c/2, c/2]. We
decompose p̂k − p into (p̂k − pk) + (pk − p). As done in Eq. 14 (App. C.1.2), we can write that∣∣(p̂k(·|s, a)− pk(·|s, a))Tw

∣∣ ≤ ∣∣∣∣ Nk(s, a)

Nk(s, a) + 1
− 1

∣∣∣∣ ‖pk(·|s, a)‖1︸ ︷︷ ︸
=1

‖w‖∞︸ ︷︷ ︸
≤c/2

+
|w(s)|

Nk(s, a) + 1

≤ c

2

(
1− Nk(s, a)

Nk(s, a) + 1
+

1

Nk(s, a) + 1

)
=

c

Nk(s, a) + 1

(41)

In order to bound the term depending on (pk − p) we use the same MDS argument as in App. C.1.3.
You can consider r equivalent to r̃ defined in the continuous case since:

r̃k(s, a) =
1

Nk(I(s)︸︷︷︸
:=s

, a)

∑
x∈I(s)︸︷︷︸

:=s

Nk(x, a)r(x, a) = r(s, a).

Similarly, we can prove that p̃k(s′|s, a) = p(s′|s, a). Then, we consider the same adapted sequences,
stopping times and predictable processes except from the fact that intervals are replaced by singletons
(i.e., discrete states). As a consequence, (an analogue of) Lem. 11 holds. By following the same steps
as in App. C.1.3, we can prove that with probability at least 1− δ

10 (individually), for all k ≥ 1 and
(s, a) ∈ S ×A

|rk(s, a)− rk(s, a)| ≤ rmax

√√√√7 ln
(

20SAN+
k (s,a)

δ

)
N+
k (s, a)

:= rmaxβ
sa
k

∣∣∣(pk(·|s, a)− p(·|s, a)
)T
h∗
∣∣∣ ≤ c

√√√√ ln
(

20SAN+
k (s,a)

δ

)
N+
k (s, a)

:= cβsak

where we recall the N+
k (s, a) := max{1, Nk(s, a)}. We now consider the concentration of (p̂k −

p)Tv for which we need to use Freedman’s inequality (see Thm. 4). Similarly to what done before, let
z = v − (min{v}+ max{v})/2 such that (p̂k − p)Tv = (p̂k − p)Tz. We start noticing that, Eq. 24
holds for the discrete case where we replace the adapted sequence 1 (sτl+1 ∈ I) by 1 (sτl+1 = s′)

and the conditional variance Vk(J) by Vk(s′) =
∑Nk(s,a)
l=1 1 (τl < tk)V

(
1 (sτl+1 = s′)

∣∣Gl−1

)
.

Furthermore, V
(
1 (sτl+1 = s′)

∣∣Gl−1

)
= (1− p(s′|s, a))p(s′|s, a) and

Vk(s′) =

Nk(s,a)∑
l=1

(1− p(s′|sτl , aτl))p(s′|sτl , aτl) ≤ Nk(s, a)(1− p(s′|s, a))p(s′|s, a)

As done in [1, App. F.7] we use Cauchy-Schwartz inequality to write that∑
s′∈S

√
p(s′|s, a)(1− p(s′|s, a)) =

∑
s′∈S: p(s′|s,a)>0

√
p(s′|s, a)(1− p(s′|s, a)) ≤

√
Γ(s, a)− 1
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where we recall that Γ(s, a) := ‖p(·|s, a)‖0 is the support of p in (s, a). Then, as done in Lem. 6,
we have that for any vector z ∈ [−c/2, c/2], with probability at least 1− δ

10 (after taking an union
bound over S ×A) for all (s, a) ∈ S ×A and k ≥ 1∣∣∣(pk(·|s, a)− p(·|s, a)

)T
z
∣∣∣ ≤ ‖z‖∞∑

s′∈S
|pk(s′|s, a)− p(s′|s, a)|

≤ c

2N+
k (s, a)

∑
s′∈S

(
2

√
Vk(s′) ln

(
4Nk(s, a)

δ

)
+ 4 ln

(
4Nk(s, a)

δ

))

≤ c


√√√√ (Γ(s, a)− 1) ln

(
48SAN+

k (s,a)

δ

)
N+
k (s, a)

+
4S

N+
k (s, a)

ln

(
48SAN+

k (s, a)

δ

)
We can also write with probability 1 that:∣∣(p̂k(·|s, a)− p(·|s, a))Tw

∣∣ ≤ p̂k(·|s, a)Tw + p(·|s, a)Tw ≤ 2c

So we can take the minimum between the two upper-bounds. We also know that the difference in
reward is bound by rmax.

In order to prove optimism we start noticing that the bonus bk(s, a) (see Lem. 8) implies that
L̂kh

∗ ≥ Lh∗. As a consequence, we can use Prop. 3 to show that g+
k ≥ g∗ (same arguments as in

with continuous state space).

D.2 Regret Proof of SCAL+ (proof of Thm. 1).

The regret proof follows the same steps as for SCCAL+. The main difference resides in the fact that
there is no need of state aggregation, thus simplifying the proof.

Proof sketch. In the following, all inequalities should be interpreted up to minor approximations
and in high probability.Let νk(s, a) be the number of visits in (s, a) during episode k and m be the
total number of episodes. Using Lem. 1, we have:

∆(SCAL+, T ) .
m∑
k=1

∑
s,a

νk(s, a)
(
gk −

∑
a

r(s, a)πk(s, a)
)

(42)

where gk, hk and πk are respectively the gain, bias and policy returned by SCOPT [1]. SCOPT ensures
that: gk+hk(s) '∑a πk(s, a)

(
r̂k(s, a) + p̂k(·|s, a)Thk

)
. By plugging this inequality into (42) we

obtain two terms: rk(s, a)− r(s, a) + bk(s, a) and (p̂k(·|s, a)− es)Thk. We can then introduce the
true probability (p̂k(·|s, a)−p(·|s, a))Thk+(p(·|s, a)−es)Thk. Since sp (hk) ≤ c, the second term
is of order Õ(c

√
T+cSA) when summed over S ,A and episodes k [1, Eq. 56]. On the other hand, the

term (p̂k(·|s, a)−p(·|s, a))Thk is the dominant term of the regret and represents the error of using the
estimated p̂k in place of p in SCOPT. To bound this term we first compare the difference (p̂k−pk)ᵀhk
which is not bigger than c/(Nk(s, a) + 1). The remaining term is thus (pk − p)Thk (recall that pk
is the MLE of p). Since hk depends on pk, we cannot apply Hoeffding-Azuma inequality as done
in the proof of Lem. 1. Instead we bound separately ‖pk(·|s, a)− p(·|s, a))‖1 .

√
Γ(s, a)βsak and

sp (hk) ≤ c which eventually introduce a
√

Γ factor. It is worth pointing out that Γ only appears due
to statistical fluctuations that we cannot control, and not from the optimism (i.e., exploration bonus)
that is explicitly encoded in the algorithm. For the reward we have |r(s, a) − r(s, a)| ≤ rmaxβ

sa
k .

As a consequence, we can approximately write that:

∆(SCAL+, T ) .
m∑
k=1

∑
s,a

νk(s, a)πk(s, a)
(
bk(s, a)︸ ︷︷ ︸
≤dk(s,a)

+ (c
√

Γ(s, a) + rmax)βsak + c/(Nk(s, a) + 1)︸ ︷︷ ︸
:=dk(s,a)

)
The remaining terms can be bounded as in [1].
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Input: Confidence δ ∈]0, 1[, rmax, I, A, c ≥ 0, ρL and α
Initialization: Observe intial state s0 and set s = s0, a = a0, q0(s, a) = c for all (s, a)
For times t = 1, 2, ... do
1. at ∈ arg maxa{qt(st, a)}
2. Execute at, obtain reward rt, and observe next state st+1 (st = I(st), st+1 = I(st+1)).
3. αt = c+1

c+Nt(st,at)

4. Asynchronous update of the Q-function

qt+1(st, at) = qt(st, at) + αt

(
rt + bt(st, at) + max

a∈A
{qt(st+1, a)} − qt(st, at)− qt(s, a)

)
qt+1(s, a) = qt(s, a), ∀(s, a) 6= (st, at)

5. qt+1(st, at) = min{c, qt+1(st, at)}.
6. Increment counters Nt+1(s, a) := Nt(s, a) + 1 ((s, a) = (st, at)) for all s, a.

Figure 3: RVIQ-UCB for continuous state (smooth) problems.

Additional details. By using the optimism of M̂+
k , the stopping condition of SCOPT and the

relationships between M̂+
k and M̂k (see Eq. 31), we can prove Eq. 34 for the discrete case. Note that

the analysis of the cumulative contribution of the term dk(s, a) and bk(s, a) will lead to the following
terms Õ(c

√
ΓSAT ) and Õ(c

√
SAT ), respectively. Since the dominant term is the one associated to

dk, even in this case we upper-bound bk by dk.

From this point, we follow the same steps as in Sec. C.4. The only difference resides in Eq. 37 where
the term (c+ rmax)ρLS

−αT disappears since it depends on aggregation and/or smoothness. Finally,
the regret bound in Thm. 1 follows by noticing that the order of the term

∑m
k=1

∑
s,a νk(s, a)φsak is

Õ(
√∑

s,a Γ(s, a)AT + S2A).

As a consequence, there exists a numerical constant χ such that at least with probability 1− δ our
algorithm SCAL+ has a regret bounded by

∆(SCAL+, T ) ≤χ

max {rmax, c}

√√√√(∑
s,a

Γ(s, a)

)
T ln

(
T

δ

)
+ S2A ln2

(
T

δ

)
E Experiments

We start describing the variants of Q-learning we considered in the experiments Then we report the
configurations of algorithms and MDPs.

E.1 RVI Q-learning

Relative Value Iteration is defined as
vn+1(s) = max

a

{
r(s, a) + p(·|s, a)Tvn − v(s)

}
where s is an arbitrary but fixed state. Under mild conditions, vn converges to the solution of the
Bellman optimality equation Lh = h + ge with h(s) = g (i.e., vn(s) → g) [17]. This approach
suggests a way of defining a relative Q-factor iteration algorithm which is defined as:

qn+1(s, a) = r(s, a)− qn(s, a) +
∑
s′

p(s′|s, a) max
a′
{qn(s′, a′)}

with (s, a) arbitrary but fixed.

The asynchronous RVI Q-learning algorithm [17] is a variant of Q-learning defined for average
reward problems. At each iteration n it computes an asyncronous update of the estimated Q-function
of the current state action pair (sn, an) by using the observed transition and reward:

qn+1(s, a) = qn(s, a)+αn(s, a)

(
rn+1 + max

a∈A
{qn(s′n, a)} − qn(s, a)− f(qn)

)
·1 ((s, a) = (sn, an))
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Figure 4: Distribution of the optimal bias span
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Figure 5: Expected cumulative regret on 50 randomly generated MDPs. For each MDP we performed
5 runs for each algorithm.

where sn+1 ∼ p(·|sn, an) and rn+1 ∼ r(sn, an) and f is a Lipschitz function such that f(e) = 1
and f(x + ce) = f(x) + c (see [17, Asm. 2.2]). In this work we consider f(q) = q(s, a). This
algorithm is guaranteed to converge asymptotically under standard assumptions [17]. Note that
maxaQ(s, a) is an estimate of the bias function h(s) and q(s, a) an estimate of the gain.

RVIQ performs exploration by using an ε-greedy strategy. In all the experiments we use

εt+1 =
ε0√

Nt(st, at)
and αt =

1√
Nt(st, at)

where ε0 = 20 in order to force random exploration at the beginning of the experiment. Another
parameter of RVIQ is the initial value used to fill the q-table. We consider both q0 = 0 and q0 = c.
Q-learning with q0 = c is known as Optimistic Q-learning [29].

Finally, we use RVIQ to design an algorithm for exploration-exploitation inspired by the model-
free approaches for finite-horizon problems [9]. We use an exploration bonus bt(s, a) = c ·
min {βsat + ρLS

−α; 2}+ rmax ·min {βsat + ρLS
−α; 1}. The algorithm is reported in 3. We believe

this is a reasonable algorithm but we want to stress that we do not have any theoretical guarantee for
the regret of this algorithm. The design of a model-free algorithm for efficient exploration-exploitation
in average reward is an open problem.

Note that in the experiments we set s and a to the first observed state and performed action.
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Figure 6: Cumulative regret in the Garnet domain with Γ = 30.

E.2 Garnet

Garnet [20] is a family of randomly generated MDPs. The distribution over MDPs can be controlled
by three parameters: number of states (i.e., S = |S|), number of actions (i.e., A = |A|) and branching
factor (i.e., Γ). In the experiments we consider S = 200, A = 3 and Γ ∈ {5, 144}.
As we have seen in the main paper, the span of the optimal bias function plays an important role in the
performance of the algorithms. As shown in Fig. 4, the distribution of the bias span has relatively long
tails in the case of Γ = 5. In order to be more robust we evaluate the performance of the algorithms
on the MDP with median bias span. The median bias span is 1.07 and 1.59 for Γ = 144 and Γ = 5,
respectively. Her, we additionally report the performance of the algorithms when Γ = 30 (see Fig. 6).
This confirms that SCAL+ is able to exploit the tighter optimism and achieve a lower regret.

In the main paper we have reported the cumulative regret for the median MDP. Fig. 5 shows the
expected cumulative regret w.r.t. the MDP distribution (in this case we use c = 3.5). As expected, the
algorithms show the same behavior observed for the median MDP.

E.3 Continuous RiverSwim

RiverSwim [7] is a classical domain for testing exploration algorithms for discrete problems. It is a
stochastic chain having 6 states and 2 actions (left and right). The optimal policy is to always perform
right. We preserve the idea of the domain but we generalize it to a continuous state space S = [0, 6].
The domain is not episodic (the agent is never reset) and the initial position is s0 = 0. At each time
step the agent can move left or right by a factor dx = 0.1. The transitions are stochastics:

f(s, left) = max{0, s− dx− σε}

f(s, right) =


max{0, s− dx− σε} w.p. 0.05

s w.p. 0.6

min{6, s+ dx+ σε} w.p. 0.35

f(0, right) =

{
0 w.p. 0.4

max{0, dx+ σε} w.p. 0.6

f(6, right) =

{
min{6− dx− σε, 6} w.p. 0.4

6 w.p. 0.6

where ε ∼ N (0, 1) and σ = dx/2. The reward is zero everywhere except in s = 0 and s = 6
(r(0, left) = 0.01 and r(6, right) = 1).

In the ContinuousRiverSwim the state space is one-dimensional and we use 50 bins (ρL = α = 1).
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E.4 Ship Steering

The task is to steer a ship, which is cruising at constant speed, to a goal in minimum time [21]. The
task is made not trivial by the presence of different water currents around the goal. The continuous
state and action spaces are described by the 2-dimensional ship position and the scalar heading
(S ⊆ R3). The following equations describes the continuous motion of the ship

ẋ = C(cos(φ)− y), ẏ = C sin(φ)

where φ is the ship heading. The start location is (x0, y0) = (3.66,−1.86) and the goal region has a
radius of 0.2 km and the center is in (0, 0). The speed is C = 0.01 km/h. The action is the steering
angle (in degree) w.r.t. the current heading. The action set is A = {−20,−10,−5, 0, 5, 10, 20}.
Control decisions are made every 25s, at which time the ship changes heading instantaneously, but
the change is affected by noise:

φt+1 = φt + (at + εt) ·
2π

360

where εt is drawn uniformly from [−2, 2]. The state space is bounded as S ⊆ [0, 6]×[−2, 2]×[−π, π].
The position of the ship is always clipped to this space. If the ship reaches position x = 0 but it is not
in the goal (i.e., y > 0.2 or y < −0.2), the ship is reset to position (5.5, 0).

In ShipSteering we use 8 bins for each state variable leading to 512 discrete states. Note that this
discretization generates an MDP that is not communicating.

E.5 Mountain Car

We consider the standard MountainCar [22]. The state space is two-dimensional and we use 29 bins
for each dimension leading to 637 states after removing non-reachable states (ρL = 5 and α = 1).
We consider c = 0.5.

We report the results in Fig. 7 averaged over 50 runs. We report also max and min observed values.
As mentioned in the main paper, RVIQ is unstable. Also in this case is able to learn with one type of
initialization (here q0 = 0) while shows high variance when initialized optimistically. SCCAL+ is
constantly the most stable algorithm.

F Results of probability theory

F.1 Reminder

We start by recalling some well-known properties of filtrations, stopping times and martingales [30,
Chapter 2]. For simplicity, we use “a.s.” to denote “almost surely” (i.e., with probability 1). In
this section, we consider a probability space (Ω,F ,P). We call filtration any increasing (for the
inclusion) sequence of sub-σ-algebras of F i.e., (Fn)n∈N where ∀n ∈ N, Fn ⊆ Fn+1 ⊆ F . We
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denote byF∞ := ∪n∈NFn. For any sub-σ-algebra G ⊆ F , we say that a real-valued random variable
(r.v.) X : Ω→ Rd is G-measurable if for all borel sets B ∈ B

(
Rd
)
, X−1(B) ∈ G. We say that X is

G-integrable if it is G-measurable and E
[
|X|
]
< +∞ (componentwise). We call stochastic process

any sequence of r.v. (Xn)n∈N. We say that the stochastic process (Xn)n∈N is adapted to the filtration
(Fn)n∈N if for all n ∈ N, Xn is Fn-measurable. In this case, the sequence (Xn,Fn)n∈N is called an
adapted sequence. If in addition, Xn is integrable for all n ∈ N then we say that (Xn,Fn)n∈N is an
integrable adapted sequence. We say that a stochastic process (Xn)n∈N is almost surely:

1. increasing (resp. strictly increasing) if for all n ≥ N , P (Xn ≤ Xn+1) = 1 (respectively
P (Xn < Xn+1) = 1),

2. bounded if there exists a universal constant K such that for all n ∈ N, P (Xn < K) = 1,

Definition 2 (Conditional expectation). Let X be an F -integrable r.v. with values in Rd. Let G ⊆ F
be a sub-σ-algebra of F . The conditional expectation of X given G (denoted E

[
X
∣∣G]) is the

(a.s. unique) r.v. that is G-integrable and satisfies:

∀A ∈ G, E
[
1 (A) · E

[
X
∣∣G]] = E

[
1 (A) ·X

]
Proposition 4 (Law of total expextations). Let X be an F -integrable r.v. with values in Rd. For any
sub-σ-algebra G ⊆ F , E

[
E
[
X
∣∣G]] = E

[
X
]
.

Proposition 5. Let X be an F-integrable real-valued r.v. and G ⊆ F a sub-σ-algebra. For any
G-integrable real-valued r.v. Y s.t. Y X is also integrable we have E

[
Y X

∣∣G] = Y E
[
X
∣∣G].

Definition 3 (Stopping time). A random variable τ : Ω→ N ∪ {+∞} is called stopping time w.r.t.
a filtration (Fn)n∈N if for all n ∈ N, {τ = n} ∈ Fn.

Definition 4 (σ-algebra at stopping time). Let τ be a stopping time. An event prior to τ is any event
A ∈ F∞ s.t. A ∩ {τ = n} ∈ Fn for all n ∈ N. The set of events prior to τ is a σ-algebra denoted
Fτ and called σ-algebra at time τ :

Fτ := {A ∈ F∞ : ∀n ∈ N, A ∩ {τ = n} ∈ Fn}
Proposition 6. Let τ1 and τ2 be two stopping times w.r.t. the same filtration (Fn)n∈N s.t. τ1 ≤ τ2
a.s. Then Fτ1 ⊆ Fτ2 .

Definition 5 (Stopped Process). Let (Xn,Fn)n∈N be an adapted sequence with values inRd. If τ is
a stopping time w.r.t. the filtration (Fn)n∈N, then the process stopped at time τ (denoted by Xτ ) is
the r.v. defined as:

∀ω ∈ Ω, Xτ (ω) :=
∑
n∈N

Xn(ω) · 1 (τ(ω) = n) (i.e., X∞(ω) = 0 by convention)

Proposition 7. Xτ –the process stopped at time τ– is Fτ -measurable.

Definition 6 (Martingale difference sequence). An adapted sequence (Xn,Fn)n∈N is a martingale
difference sequence (MDS for short) if for all n ∈ N, Xn is Fn-integrable and E

[
Xn+1|Fn

]
= 0

a.s.

Proposition 8 (Azuma’s inequality). Let (Xn,Fn)n∈N be an MDS such that |Xn| ≤ a a.s. for all
n ∈ N. Then for all δ ∈]0, 1[,

P

(
∀n ≥ 1,

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ a
√
n ln

(
2n

δ

))
≥ 1− δ

Proof. Azuma’s inequality states that:

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ a
√
n

2
ln

(
2

δ

))
≥ 1− δ

We can then choose δ ← δ
2n2 and take a union bound over all possible values of n ≥ 1. The result

follows by noting that
∑
n≥1

δ
2n2 < δ.
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Proposition 9 (Freedman’s inequality). Let (Xn,Fn)n∈N be an MDS such that |Xn| ≤ a a.s. for all
n ∈ N. Then for all δ ∈]0, 1[,

P

∀n ≥ 1,

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ 2

√√√√( n∑
i=1

V
(
Xi

∣∣Fi−1

))
· ln
(

4n

δ

)
+ 4a ln

(
4n

δ

) ≥ 1− δ

Proof. Freedman [31] showed that when a = 1:

P

(
∀n ≥ 1,

n∑
i=1

Xi ≥ ε,
n∑
i=1

V
(
Xi

∣∣Fi−1

)
≤ k

)
≤ exp

( −ε2

2k + 2ε/3

)
Since (−Xn,Fn)n∈N is also an MDS, the above inequality holds also in absolute value (with a
factor 2 appearing in front of the exponential term after taking a union bound). In order to reverse
the inequality (i.e., replace ε by δ), we can use the same technique as Cesa-Bianchi and Gentile
[32, Section 2]. Finally, to account for the case where a 6= 1 we can simply apply the result to
(Xn/a,Fn)n∈N.

F.2 A useful concentration with optional skipping

In this section we prove a very simple theorem inspired by Doob’s optional skipping [e.g., 28, Sec.
5.3, Lem. 4]. We start with useful definitions and lemmas.

Lemma 9. Let τ1 and τ2 be two stopping times w.r.t. the same filtration (Fn)n∈N. We say that
τ1 < τ2 a.s. if P ({τ1 < τ2} ∪ {τ1 = τ2 = +∞}) = 1. If τ1 < τ2 a.s. then Fτ1+1 ⊆ Fτ2 .

Proof. If τ1 < τ2 then τ1 + 1 ≤ τ2 since τ1 is an integer-valued r.v. If τ1 = τ2 = +∞ then
τ1+1 = +∞ and so τ1+1 = τ2. In conclusion, τ1+1 ≤ τ2 a.s. and so by Prop. 6,Fτ1+1 ⊆ Fτ2 .

Definition 7. We say that a sequence of stopping times (τm)m∈N w.r.t. (Fn)n∈N is strictly increasing
if τm < τm+1 a.s. for all m ≥ 0.

Lemma 10. Let (Xn,Fn)n∈N be a bounded adapted sequence and let (τm)m∈N be a strictly in-
creasing sequence of stopping times w.r.t. (Fn)n∈N. For all m ∈ N, define Ym := Xτm+1 −
E
[
Xτm+1

∣∣Fτm] and Gm := Fτm+1 . Then, (Ym,Gm)m∈N is an MDS.

Proof. By assumption, for any m ∈ N, τm < τm+1 a.s. and Prop. 6 implies that Fτm ⊆ Fτm+1 . As a
consequence, (Gm)m∈N = (Fτm+1)m∈N is a filtration. By Prop. 7 we know that Xτm+1 is Fτm+1-
measurable and Lem. 9 implies that Fτm+1 ⊆ Fτm+1 = Gm so Xτm+1 is Gm-measurable. Finally,
E
[
Xτm+1

∣∣Fτm] is Fτm -measurable by definition (see Def. 2). Therefore, Ym is Gm-measurable.

Since by assumption Xn is a.s. bounded (P (Xn < K) = 1 for all n ≥ 0), we can write a.s. (see
Def. 5)

∣∣Xτm+1

∣∣ =

∣∣∣∣∣
+∞∑
n=0

1 (τm + 1 = n) ·Xn

∣∣∣∣∣ ≤
+∞∑
n=0

1 (τm + 1 = n)·|Xn| ≤ K
+∞∑
n=0

1 (τm + 1 = n) = K

Thus, Xτm+1 is a.s. bounded hence integrable implying that E
[
Xτm+1

∣∣Fτm] is well-defined (see
Def. 2). Therefore, Ym is a.s. bounded and so integrable.

Finally, we can apply Prop. 5 and we obtain:

E
[
Ym+1

∣∣Gm] = E
[
Xτm+1 − E

[
Xτm+1

∣∣Fτm]∣∣∣Fτm] = E
[
Xτm+1

∣∣Fτm]− E
[
Xτm+1

∣∣Fτm] = 0

which concludes the proof.

Theorem 4. Let (Xn,Fn)n∈N be an adapted sequence a.s. bounded by a1 and let (τm)m∈N be
a strictly increasing sequence of stopping times w.r.t. (Fn)n∈N. If (Ym,Gm)m∈N is defined as in
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Lem. 10 then the following concentration inequalities hold:

P

(
∀m ≥ 1,

∣∣∣∣∣
m∑
i=1

Ym

∣∣∣∣∣ ≤ a1

√
m ln

(
2m

δ

))
≥ 1− δ

P

∀m ≥ 1,

∣∣∣∣∣
m∑
i=1

Ym

∣∣∣∣∣ ≤ 2

√√√√( m∑
i=1

V
(
Yi
∣∣Gi−1

))
· ln
(

4m

δ

)
+ 4a1 ln

(
4m

δ

) ≥ 1− δ

In particular for any sequence (Nk)k≥1 of F-measurable integer-valued r.v. Nk : Ω→ N \ {0} the
following inequality holds true

P

(
∀k ≥ 1,

∣∣∣∣∣
Nk∑
i=1

Ym

∣∣∣∣∣ ≤ a1

√
Nk ln

(
2Nk
δ

))
≥ 1− δ . . .

Proof. The concentration inequalities follow from Lem. 10 and Azuma’s and Freedman’s inequalities.
If the results hold for all n ∈ N and the r.v. Nk takes values in N, then the high probability event
holds for all Nk simulataneously.

F.3 In the regret proof

For any t ≥ 0, the σ-algebra induced by the past history of state-action pairs and rewards up to time
t is denoted Ft := σ (s1, a1, r1, . . . , st, at) where by convention F0 = σ (∅) and F∞ := ∪t≥0Ft.
Trivially, for all t ≥ 0, Ft ⊆ Ft+1 and the filtration (Ft)t≥0 is denoted by F. We recall that the
sequence (tk)k≥1 (starting times of episodes k ≥ 1) is formally defined by t1 := 1 and for all k ≥ 1,

tk+1 := 1 + inf

{
T ≥ t > tk :

t−1∑
u=tk

1(su ∈ I(s), au = a) ≥
tk−1∑
u=0

1(su ∈ I(s), au = a)

}
.

where by convention inf{∅} := T . It is immediate to see that for all t ≥ 0, {tk = t} ∈ Ft−1 ⊆ Ft
and so tk is a stopping time w.r.t. filtration F (see Def. 3).

The following lemma is used in App. C.1.3:

Lemma 11. For all l ≥ 1, we have:

1. E
[
w∗(sτl+1)

∣∣Gl−1

]
=
∫
S p(s

′|sτl , aτl)w∗(s′)ds′,
2. E

[
1 (sτl+1 ∈ J)

∣∣Gl−1

]
=
∫
J
p(s′|sτl , aτl)ds′,

3. and E
[
rτl(sτl , aτl)

∣∣Gl−1

]
= r(sτl , aτl).

Proof. To prove this result, we rely on the definition of conditional expectation (see Def. 2).
1) By Prop. 7, (sτl , aτl) is Gl−1-measurable (Gl−1 = Fτl ) and so

∫
S p(s

′|sτl , aτl)w∗(s′)ds′ is Gl−1-
measurable too. Moreover,

∣∣∫
S p(s

′|sτl , aτl)w∗(s′)ds′
∣∣ ≤ c/2 a.s. so

∫
S p(s

′|sτl , aτl)w∗(s′)ds′ is
also integrable (and therefore Gl−1-integrable).
2) We recall that for any stochastic process (Xt)t≥0, we use the convention thatX∞ = 0 a.s. implying
that Xτl =

∑+∞
t=0 Xt1 (τl = t) (see Def. 5). Usinng the law of total expectations (see Prop. 4) we

have that ∀A ∈ Gl−1,

E
[
1(A)× w∗(sτl+1)

]
=

+∞∑
t=0

E
[
1(A ∩ {τl = t})× w∗(sτl+1)

]
=

+∞∑
t=0

E
[
E
[
1(A ∩ {τl = t}︸ ︷︷ ︸

∈Ft

)× w∗(sτl+1︸ ︷︷ ︸
=st+1

)
∣∣∣Ft]]
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In the first equality, the fact that we can move the sum outside the expectation is a direct consequence
of the dominated convergence theorem (for series) since

+∞∑
t=0

E
[
1(A ∩ {τl = t})×

∣∣w∗(sτl+1)
∣∣] ≤ c/2 +∞∑

t=0

E
[
1(A ∩ {τl = t})

]
= c/2

+∞∑
t=0

P (A ∩ {τl = t}) = c/2 ·P(A) < +∞

Under event {τl = t} we have that sτl+1 = st+1 a.s. Moreover, A ∩ {τl = t} ∈ Ft since τl is a
stopping time (see Def. 4) so by Prop. 5 we can move it outside the conditional expectation and we
get:

E
[
1(A)× w∗(sτl+1)

]
=

+∞∑
t=0

E
[
1(A ∩ {τl = t})× E

[
w∗(st+1)

∣∣∣Ft]︸ ︷︷ ︸
=
∫
S p(s

′|st,at)w∗(s′)ds′

]

= E
[
1(A)×

+∞∑
t=0

1(τl = t)

∫
S
p(s′|st, at)w∗(s′)ds′︸ ︷︷ ︸

=
∫
S p(s

′|sτl ,aτl )w∗(s′)ds′ (see Def. 5)

]

= E
[
1(A)×

∫
S
p(s′|sτl , aτl)w∗(s′)ds′

]
This proves the first inequality (see Def. 2). The second and third equality can be proved using the
same technique.
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