Thinning for Accelerating the Learning of
Point Processes
(Supplementary Material)

Lemma 3.2 (Thinned intensities). Let F and G be the full history and thinned history with respect to
a p-thinned process Ny, (t). Let 3 be the internal history of N(t). The following equalities hold:

(1) A5 (1) = pAT(t);
(2) AJ(t) = pE [N (1)IS].

Proof. For (1), it can be obtained by taking expectation on both side of dN, (t) = By ¢)dN(t):

A7 (t) = EdNyp (t) = EBn (o dN(t) = A% (1). (1)

For (2), Theorem 7.13 in [2] gives a solution to recover the point process given the thinned history be
the following conditional expectation:

"
EN()IS] = N, () + 1TPJ dAS (s). @)

Ee;;l, /\g’ is the G-compensator of the p-thinned process, which equals to /\g (t) = f; ?\g (s)ds.
urther,

I L. E[N(t+s)—N(t)G]
E [A¢(1)[S] = lim e

o EINp(t+8)—N,(DIS]  1—p. g
_ilg%) ds + P Ap ()

— NS (1) + I*TPAS (t)

where the desired result follows. ]

Lemma 4.1 (Thinning for parameter estimation of NHPP). Consider an NHPP N(t) with determin-
istic intensity A(t;0), t > 0, 8 € RY. If there exists an invertible linear operator A : RY — R< satis-
fing A(t; A8) = pA(t; 0), then the M-estimator on thinned history can be written as 03¢ = A7199

such that E [VR(@H) \9] LN 0, as the number of realizations n — oo.
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Proof. From Theorem 7.13 in [2] we have,

BR8] = B LT H(t:05¢) [dNp (t) = pA(t: Boc)dt/] |

(7 ~ .
= — | H(t:05¢) [dNp(t) — A(t; 6g)dt]
P Jo
1 (7 < .
=3 H(t; 09¢) [dNp (1) — A(t; 05)dt + A(t; 05)dt — At; Og)dt]
JO
1 rT

H(t: 85¢) [A(t; 0)dt — A(t; 6g)dt] = 0.

"l

The last step is due to the asymptotic normality of M-estimator ([1]]) that ég LN 05 as the number of
realizations n — oo. O

Theorem 4.3 (Thinning for parameter estimation of decouplable intensities). Consider a point
process N(t) with decouplable intensity. If there exist invertible linear operators A and B sat-
isfying BE[m“(t)IS] = mg (t), where mg (t) is the component of thinned intensity )\g (t), and
pB~'g(t;0) = g(t;.A8), then the M-estimator on thinned history can be written as 3¢ = A~ ég

such that E [VR(@H)\S] LN 0, as the number of realizations n — oo. Particularly, if N¥(t;0) is
linear, then A = prl.

Proof. The proof is similar with the NHPP one. Be definition we have,

A 1 i H A H a
B[RI850)1] = B | {HO(t:Bac) [N, (1)~ pA*[1:8ac)at] [

_ ;LTE {Hg{(t;é?{)lg}E {de(t) _p)\?f(t;éf}{)dt’g}

By the definition of stochastic integral, it suffices to show that N, (t) — [ pAT(t; 04¢)dt asymptoti-
cally converges to a martingale in probability.

E{dN, (6) — pA*(t:850)dt[S } = g(t:0") m (1) — pg(t: 6c)"E [m* (1)/S]
= [g(t;6") —pB~'g(t; By¢)]  mI (1)
= [g(t;6") — g(t; Aex)] m9 (1)
= [g(t;ﬂ )—g(t;es)] m9(t)
Since ég L Gg as the number of realizations n — oo, and g is continuous with respect to 6,
[g(t; 0*) —g(t; ég)] ' m9(t) L 0, which is the desired result. O

Theorem 5.1 (Thinning for gradient estimation). Let N(t) be a point process with decouplable
intensity N (t;0) = g(t;0)"mI(t) in Eq. (4). If there exist invertible linear operators A and B
satisfying BE [m}f(t)|9] = mg (t), where mg (t) is the component of thinned intensity ?\g’ (t), and
pBlg(t;0) = g(t;.A0), then

(1) E[VR(8)S] < 1/pA~'VR,(AB), for R is LSE;

(2)E[VR(0)IG] < A~'VR,(A0), for Ris MLE.
Particularly, if the intensity is deterministic, i.e., mj{(t) = 1, both equalities hold.

Proof. By definition of stochastic integral, we have

.
E[VR(0)|G] :IE{L HP(t; 0) [dN(t) — A% (t; 0)dt] ’9}

T T
_E {J H%(t;e)dN(t)‘g} _E {J H“(t;e)ﬁ(t;e)dt}g}
0 0



Here the second term can be bounded by,
E {H™(t;0)A7(t;0)dt|G} > E {H™(t;0)|G} E {A\*(t;0)dt|G}

According to the definition of forward stochastic integral, the first term can be written as,

T T
E{j H“(t;e)dN(tns}:J E {H*(t;:0)/} E{aN(1)|S)

0 0
Let’s look at these components one by one. The condition of the theorem yields,

E {A"(t;0)dt|G} = g(t;0) "E[m”(t)|G] dt
=pBlg(t;0)'mI(t)dt
=g(t;.40) TmI (t)dt
=A9(t; A40)dt (3)
and,
1
E{dN(t)[G} = —dN, (). “)
P
If R is LSE, then we have,
E[H*(1:0)|3] = VE[3*(1;0)I5]
_ Ve%g(t;AG)ng(t)
= A*lv%g(t;Ae)ng(t)

= A""H(t: A0) (&)
Thus, combining Eq.(3).@) and (@) yields,

.
E[VR(0)IG] < %A*IL HY (t:46) [dN,, (t) — AJ(t:.A0)dt]

= %A*IVRP (A0).

If R is MSE, then we have,
E[Hﬂ(t;6)|9] :VE[logAH(t;e)lg}

> Vo log {g(t;AG)ng(t)]

=A"Vlog {g(t;Ae)ng(t)}

= A"'HJ (t;.A6) (6)
Combining Eq.(3) and Eq.(6) yields the second conclusion,

E[VR(0)IG] < %A" JOT HY (t:.40) [dNy, (t) — AJ (t:.40)dt]
= A"'VR,(A0).

The proof ends here. O

Theorem 5.2 (Variance of gradient estimation). Ler VRS (0) and VR (0) be the p-thinned and sub-
interval gradient at ©, where VRS () = 1/pA~'VR, (AO) for LSE and VRS (0) = A~'VR, (AB)
for MLE. The variance of p-thinned gradient is no greater than that of sub-interval gradient:

V[vfﬁ(e)} < V{VRe(G)]. %



Proof. For the RHS, using the law of total variance yields,
V{VRg(e)] - E{V[VRg(S)IEF] } n V{E[VRe(e)m }

The first term can be rewritten as,
1— T :
E{V[VRg(G)IH’]} = TPE {J H*(t;0) [dN(t) — A“(t;e)dt]}
0
1 — 2
— —pE[VR(e)} ,
P

The second term can be written as,
V{E[VR@(e)m} = V[VR(0)].
Thus, the total variance of VR (0) can be written as,

_ 2

V{VRe(e)] - ITPJE{VR(G)] +V[VR(0)].
Then we consider the LHS, by the definition of variance,

N . 2 . 2

V[VRS(G)} - E[VR%)] - [EVRS (e)} . ®)

Apply Theorem ??, we have,
. 2 2
[EVR%@)} > [EVR(G)} . )

For LSE, since quadratic function is convex, we obtain E[Hg (’t;fle)}2 < E[HM(t; 9)]2. This
equivalence also holds for MLE, we omit the proof, since it can be proved similarly. Further, we
obtain,

550117 L g [ ys 5 1T
E[VRS(0)] =54 ]EHO HE (£ (40) [N, (1) — AF (A0)at] | (4™
T
:]%A"]EH HY (t; (A40) [dN,, (1) — AS(t;05)dt + AS (t; 05)dt — AS (t;40) dt] }Z(A—l)T
0
1 T g
:]DZ.A'IE{J HY (t;.40) [de(t)—?\g(t;e*g)dt]} (A HT+
0
1 T ?
EA*‘JE {J HY (t;.40) [AJ (t: A0%) — A (t:.46)] dt} (AT (10)
0

The first term,
T 2
—A7'E J HY (t:.46) [de(t)—Ag(t;eg)dt]} (AT
T 2
_AlE{J [HY(t:.A0)] de(t)}(Al)T
T " )
J [H7(t;0)] de(t)}

) JT [H¥(t;0)]* dN(t) (11)
P Jo

The second term,
1 T g
?A*IE {JO HY (t:.40) [AJ (t:.A05) — AY (t: A0)] dt} (A~HT

2
<1E{
P

JT HY(£;0) A (t;050) — AT (t;0)] dt} (12)
0



Substituting Eq. (TT) and (I2)to Eq. [T0]yields
2

P Jo 0
-5
2
~E[VR(O)] . (13)
Combine Eq.(T3)) and Eq.(T0) to Eq.(8),

V[vfﬁ(e)} < %E[VR(G)}

E{Vﬁg(ﬂ)]z < 1IEJT [H?(t;0)]” dN(t) + %E {JT HPC(t;0) [A%(t; 05¢) — A(: 0)] dt}
2

JT HY(£;0) [dN(t) — A7 (t; 05.) dt] }
0

g [EVR(Q)F
2

1— 2
— " Pg

P

1—
_1-pg

P

= V|VR(0)],

[VR(G)] +E[VR(9)}2— [H«:VR(@)}

[VR(G)F + V[VR(0)]

which is the desired result. O
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