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Abstract

In many real-world reinforcement learning applications, access to the environ-1

ment is limited to a fixed dataset, instead of direct (online) interaction with the2

environment. When using this data for either evaluation or training of a new pol-3

icy, accurate estimates of discounted stationary distribution ratios — correction4

terms which quantify the likelihood that the new policy will experience a certain5

state-action pair normalized by the probability with which the state-action pair6

appears in the dataset — can improve accuracy and performance. In this work,7

we propose an algorithm, DualDICE, for estimating these quantities. In contrast8

to previous approaches, our algorithm is agnostic to knowledge of the behavior9

policy (or policies) used to generate the dataset. Furthermore, it eschews any10

direct use of importance weights, thus avoiding potential optimization instabilities11

endemic of previous methods. In addition to providing theoretical guarantees, we12

present an empirical study of our algorithm applied to off-policy policy evaluation13

and find that our algorithm significantly improves accuracy compared to existing14

techniques.15

1 Introduction16

Reinforcement learning (RL) has recently demonstrated a number of successes in various domains,17

such as games [31], robotics [1], and conversational systems [15, 24]. These successes have often18

hinged on the use of simulators to provide large amounts of experience necessary for RL algorithms.19

While this is reasonable in game environments, where the game is often a simulator itself, and some20

simple real-world tasks can be simulated to an accurate enough degree, in general one does not have21

such direct or easy access to the environment. Furthermore, in many real-world domains such as22

medicine [32], recommendation [25], and education [30], the deployment of a new policy, even just23

for the sake of performance evaluation, may be expensive and risky. In these applications, access24

to the environment is usually in the form of off-policy data [46], logged experience collected by25

potentially multiple and possibly unknown behavior policies.26

State-of-the-art methods which consider this more realistic setting — either for policy evaluation27

or policy improvement — often rely on estimating (discounted) stationary distribution ratios or28

corrections. For each state and action in the environment, these quantities measure the likelihood29

that one’s current target policy will experience the state-action pair normalized by the probability30

with which the state-action pair appears in the off-policy data. Proper estimation of these ratios can31

improve the accuracy of policy evaluation [27] and the stability of policy learning [16, 18, 28, 47]. In32

general, these ratios are difficult to compute, let alone estimate, as they rely not only on the probability33

that the target policy will take the desired action at the relevant state, but also on the probability that34

the target policy’s interactions with the environment dynamics will lead it to the relevant state.35

Several methods to estimate these ratios have been proposed recently [16, 18, 27], all based on the36

steady-state property of stationary distributions of Markov processes [19]. This property may be37
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expressed locally with respect to state-action-next-state tuples, and is therefore amenable to stochastic38

optimization algorithms. However, these methods possess several issues when applied in practice:39

First, these methods require knowledge of the probability distribution used for each sampled action40

appearing in the off-policy data. In practice, these probabilities are usually not known and difficult41

to estimate, especially in the case of multiple, non-Markovian behavior policies. Second, the loss42

functions of these algorithms involve per-step importance ratios (the ratio of action sample probability43

with respect to the target policy versus the behavior policy). Depending on how far the behavior44

policy is from the target policy, these quantities may have large variance, and thus have a detrimental45

effect on stochastic optimization algorithms.46

In this work, we propose Dual stationary DIstribution Correction Estimation (DualDICE), a new47

method for estimating discounted stationary distribution ratios. It is agnostic to the number or type48

of behavior policies used for collecting the off-policy data. Moreover, the objective function of49

our algorithm does not involve any per-step importance ratios, and so our solution is less likely to50

be affected by their high variance. We provide theoretical guarantees on the convergence of our51

algorithm and evaluate it on a number of off-policy policy evaluation benchmarks. We find that52

DualDICE can consistently, and often significantly, improve performance compared to previous53

algorithms for estimating stationary distribution ratios.54

2 Background55

We consider a Markov Decision Process (MDP) setting [39], in which the environment is specified56

by a tuple M = 〈S,A,R, T, β〉, consisting of a state space, an action space, a reward function,57

a transition probability function, and an initial state distribution. A policy π interacts with the58

environment iteratively, starting with an initial state s0 ∼ β. At step t = 0, 1, · · · , the policy produces59

a distribution π(·|st) over the actions A, from which an action at is sampled and applied to the60

environment. The environment stochastically produces a scalar reward rt ∼ R(st, at) and a next61

state st+1 ∼ T (st, at). In this work, we consider infinite-horizon environments and the γ-discounted62

reward criterion for γ ∈ [0, 1). It is clear that any finite-horizon environment may be interpreted63

as infinite-horizon by considering an augmented state space with an extra terminal state which64

continually loops onto itself with zero reward.65

2.1 Off-Policy Policy Evaluation66

Given a target policy π, we are interested in estimating its value, defined as the normalized expected67

per-step reward obtained by following the policy:68

ρ(π) := (1− γ) · E
[ ∑∞

t=0 γ
trt | s0 ∼ β,∀t, at ∼ π(st), rt ∼ R(st, at), st+1 ∼ T (st, at)

]
. (1)

The off-policy policy evaluation (OPE) problem studied here is to estimate ρ(π) using a fixed set69

D of transitions (s, a, r, s′) sampled in a certain way. This is a very general scenario: D can be70

collected by a single behavior policy (as in most previous work), multiple behavior policies, or an71

oracle sampler, among others. In the special case where D contains entire trajectories collected by72

a known behavior policy µ, one may use importance sampling (IS) to estimate ρ(π). Specifically,73

given a finite-length trajectory τ = (s0, a0, r0, . . . , sH) collected by µ, the IS estimate of ρ based74

on τ is estimated by [38]: (1− γ)
(∏H−1

t=0
π(at|st)
µ(at|st)

)(∑H−1
t=0 γtrt

)
. Although many improvements75

exist [e.g., 13, 21, 38, 50], importance-weighting the entire trajectory can suffer from exponentially76

high variance, which is known as “the curse of horizon” [26, 27].77

To avoid exponential dependence on trajectory length, one may weight the states by their long-term78

occupancy measure. First, observe that the policy value may be re-expressed as,79

ρ(π) = E(s,a)∼dπ,r∼R(s,a)[r] ,

where80

dπ(s, a) := (1− γ)
∑∞
t=0 γ

t Pr (st = s, at = a | s0 ∼ β,∀t, at ∼ π(st), st+1 ∼ T (st, at)) , (2)

is the normalized discounted stationary distribution over state-actions with respect to π. One may81

define the discounted stationary distribution over states analogously, and we slightly abuse notation82

by denoting it as dπ(s); note that dπ(s, a) = dπ(s)π(a|s). If D consists of trajectories collected by a83

behavior policy µ, then the policy value may be estimated as,84

ρ(π) = E(s,a)∼dµ,r∼R(s,a)

[
wπ/µ(s, a) · r

]
,
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where wπ/µ(s, a) = dπ(s,a)
dµ(s,a) is the discounted stationary distribution correction. The key challenge85

is in estimating these correction terms using data drawn from dµ.86

2.2 Learning Stationary Distribution Corrections87

We provide a brief summary of previous methods for estimating the stationary distribution corrections.88

The ones that are most relevant to our work are a suite of recent techniques [16, 18, 27], which are all89

essentially based on the following steady-state property of stationary Markov processes:90

dπ(s′) = (1− γ)β(s′) + γ
∑
s∈S

∑
a∈A d

π(s)π(a|s)T (s′|s, a), ∀s′ ∈ S, (3)
where we have simplified the identity by restricting to discrete state and action spaces. This identity91

simply reflects the conservation of flow of the stationary distribution: At each timestep, the flow out92

of s′ (the LHS) must equal the flow into s′ (the RHS). Given a behavior policy µ, equation 3 can be93

equivalently rewritten in terms of the stationary distribution corrections, i.e., for any given s′ ∈ S,94

E(st,at,st+1)∼dµ
[

TD(st, at, st+1 | wπ/µ)
∣∣ st+1 = s′

]
= 0 , (4)

where95

TD(s, a, s′ | wπ/µ) := −wπ/µ(s′) + (1− γ)β(s′) + γwπ/µ(s) · π(a|s)
µ(a|s)

,

provided that µ(a|s) > 0 whenever π(a|s) > 0. The quantity TD can be viewed as a temporal differ-96

ence associated with wπ/µ. Accordingly, previous works optimize loss functions which minimize97

this TD error using samples from dµ. We emphasize that although wπ/µ is associated with a temporal98

difference, it does not satisfy a Bellman recurrence in the usual sense [3]. Indeed, note that equation 399

is written “backwards”: The occupancy measure of a state s′ is written as a (discounted) function of100

previous states, as opposed to vice-versa. This will serve as a key differentiator between our algorithm101

and these previous methods.102

2.3 Off-Policy Estimation with Multiple Unknown Behavior Policies103

While the previous algorithms are promising, they have several limitations when applied in practice:104

• The off-policy experience distribution dµ is with respect to a single, Markovian behavior policy µ,105

and this policy must be known during optimization. In practice, off-policy data often comes from106

multiple, unknown behavior policies.107

• Computing the TD error in equation 4 requires the use of per-step importance ratios108

π(at|st)/µ(at|st) at every state-action sample (st, at). Depending on how far the behavior policy109

is from the target policy, these quantities may have high variance, which can have a detrimental110

effect on the convergence of any stochastic optimization algorithm that is used to estimate wπ/µ.111

The method we derive below will be free of the aforementioned issues, avoiding unnecessary112

requirements on the form of the off-policy data collection as well as explicit uses of importance113

ratios. Rather, we consider the general setting whereD consists of transitions sampled in an unknown114

fashion. Since D contains rewards and next states, we will often slightly abuse notation and write not115

only (s, a) ∼ dD but also (s, a, r) ∼ dD and (s, a, s′) ∼ dD, where the notation dD emphasizes that,116

unlike previously, D is not the result of a single, known behavior policy. The target policy’s value117

can be equivalently written as,118

ρ(π) = E(s,a,r)∼dD
[
wπ/D(s, a) · r

]
, (5)

where the correction terms are given by wπ/D(s, a) := dπ(s,a)
dD(s,a)

, and our algorithm will focus on119

estimating these correction terms. Rather than relying on the assumption that D is the result of a120

single, known behavior policy, we instead make the following regularity assumption:121

Assumption 1 (Reference distribution property). For any (s, a), dπ(s, a) > 0 implies dD(s, a) > 0.122

Furthermore, the correction terms are bounded by some finite constant C:
∥∥wπ/D∥∥∞ ≤ C.123

3 DualDICE124

We now develop our algorithm, DualDICE, for estimating the discounted stationary distribution125

corrections wπ/D(s, a) = dπ(s,a)
dD(s,a)

. In the OPE setting, one does not have explicit knowledge of126

the distribution dD, but rather only access to samples D = {(s, a, r, s′)} ∼ dD. Similar to the TD127

methods described above, we also assume access to samples from the initial state distribution β. We128

begin by introducing a key result, which we will later derive and use as the crux for our algorithm.129
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3.1 The Key Idea130

Consider optimizing a (bounded) function ν : S ×A→ R for the following objective:131

min
ν:S×A→R

J(ν) :=
1

2
E(s,a)∼dD

[
(ν − Bπν) (s, a)2

]
− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] , (6)

where we use Bπ to denote the expected Bellman operator with respect to policy π and zero reward:132

Bπν(s, a) = γEs′∼T (s,a),a′∼π(s′)[ν(s′, a′)]. The first term in equation 6 is the expected squared133

Bellman error with zero reward. This term alone would lead to a trivial solution ν∗ ≡ 0, which can134

be avoided by the second term that encourages ν∗ > 0. Together, these two terms result in an optimal135

ν∗ that places some non-zero amount of Bellman residual at state-action pairs sampled from dD.136

Perhaps surprisingly, as we will show, the Bellman residuals of ν∗ are exactly the desired distribution137

corrections:138

(ν∗ − Bπν∗) (s, a) = wπ/D(s, a). (7)
This key result provides the foundation for our algorithm, since it provides us with a simple objective139

(relying only on samples from dD, β, π) which we may optimize in order to obtain estimates of the140

distribution corrections. In the text below, we will show how we arrive at this result. We provide one141

additional step which allows us to efficiently learn a parameterized ν with respect to equation 6. We142

then generalize our results to a family of similar algorithms and lastly present theoretical guarantees.143

3.2 Derivation144

A Technical Observation We begin our derivation of the algorithm for estimating wπ/D by pre-145

senting the following simple technical observation: For arbitrary scalars m ∈ R>0, n ∈ R≥0, the146

optimizer of the convex problem minx J(x) := 1
2mx

2 − nx is unique and given by x∗ = n
m . Using147

this observation, and letting C be some bounded subset of R which contains [0, C], one immediately148

sees that the optimizer of the following problem,149

min
x:S×A→C

J1(x) :=
1

2
E(s,a)∼dD

[
x(s, a)2

]
− E(s,a)∼dπ [x(s, a)] , (8)

is given by x∗(s, a) = wπ/D(s, a) for any (s, a) ∈ S ×A. This result provides us with an objective150

that shares the same basic form as equation 6. The main distinction is that the second term relies on151

an expectation over dπ , which we do not have access to.152

Change of Variables In order to transform the second expectation in equation 8 to be over the153

initial state distribution β, we perform the following change of variables: Let ν : S ×A→ R be an154

arbitrary state-action value function that satisfies,155

ν(s, a) := x(s, a) + γEs′∼T (s,a),a′∼π(s′)[ν(s′, a′)], ∀(s, a) ∈ S ×A. (9)

Since x(s, a) ∈ C is bounded and γ < 1, the variable ν(s, a) is well-defined and bounded. By
applying this change of variables, the objective function in 8 can be re-written in terms of ν, and this
yields our previously presented objective from equation 6. Indeed, define,

βt(s) := Pr (s = st | s0 ∼ β, ak ∼ π(sk), sk+1 ∼ T (sk, ak) for 0 ≤ k < t) ,

to be the state visitation probability at step t when following π. Clearly, β0 = β. Then,156

E(s,a)∼dπ [x(s, a)] = E(s,a)∼dπ
[
ν(s, a)− γEs′∼T (s,a),a′∼π(s′)[ν(s′, a′)]

]
= (1− γ)

∞∑
t=0

γtEs∼βt,a∼π(s)
[
ν(s, a)− γEs′∼T (s,a),a′∼π(s′)[ν(s′, a′)]

]
= (1− γ)

∞∑
t=0

γtEs∼βt,a∼π(s) [ν(s, a)]− (1− γ)

∞∑
t=0

γt+1Es∼βt+1,a∼π(s) [ν(s, a)]

= (1− γ)Es∼β,a∼π(s) [ν(s, a)] .

The Bellman residuals of the optimum of this objective give the desired off-policy corrections:157

(ν∗ − Bπν∗)(s, a) = x∗(s, a) = wπ/D(s, a). (10)
Equation 6 provides a promising approach for estimating the stationary distribution corrections, since158

the first expectation is over state-action pairs sampled from dD, while the second expectation is over159

β and actions sampled from π, both of which we have access to. Therefore, in principle we may160

solve this problem with respect to a parameterized value function ν, and then use the optimized ν∗ to161

deduce the corrections. In practice, however, the objective in its current form presents two difficulties:162
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• The quantity (ν − Bπν)(s, a)2 involves a conditional expectation inside a square. In general,163

when environment dynamics are stochastic and the action space may be large or continuous, this164

quantity may not be readily optimized using standard stochastic techniques. (For example, when165

the environment is stochastic, its Monte-Carlo sample gradient is generally biased.)166

• Even if one has computed the optimal value ν∗, the corrections (ν∗−Bπν∗)(s, a), due to the same167

argument as above, may not be easily computed, especially when the environment is stochastic or168

the action space continuous.169

Exploiting Fenchel Duality We solve both difficulties listed above in one step by exploiting170

Fenchel duality [42]: Any convex function f(x) may be written as f(x) = maxζ x · ζ − f∗(ζ),171

where f∗ is the Fenchel conjugate of f . In the case of f(x) = 1
2x

2, the Fenchel conjugate is given172

by f∗(ζ) = 1
2ζ

2. Thus, we may express our objective as,173

min
ν:S×A→R

J(ν) := E(s,a)∼dD
[

max
ζ

(ν − Bπν) (s, a) ·ζ− 1

2
ζ2
]
−(1−γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] .

By the interchangeability principle [8, 41, 43], we may replace the inner max over scalar ζ to a max174

over functions ζ : S ×A→ R and obtain a min-max saddle-point optimization:175

min
ν:S×A→R

max
ζ:S×A→R

J(ν, ζ) := E(s,a,s′)∼dD,a′∼π(s′)
[
(ν(s, a)− γν(s′, a′))ζ(s, a)− ζ(s, a)2/2

]
− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] . (11)

Using the KKT condition of the inner optimization problem (which is convex and quadratic in ζ),176

for any ν the optimal value ζ∗ν is equal to the Bellman residual, ν − Bπν. Therefore, the desired177

stationary distribution correction can then be found from the saddle-point solution (ν∗, ζ∗) of the178

minimax problem in equation 11 as follows:179

ζ∗(s, a) = (ν∗ − Bπν∗)(s, a) = wπ/D(s, a). (12)

Now we finally have an objective which is well-suited for practical computation. First, unbiased180

estimates of both the objective and its gradients are easy to compute using stochastic samples from181

dD, β, and π, all of which we have access to. Secondly, notice that the min-max objective function182

in equation 11 is linear in ν and concave in ζ . Therefore in certain settings, one can provide guarantees183

on the convergence of optimization algorithms applied to this objective (see Section 3.4). Thirdly,184

the optimizer of the objective in equation 11 immediately gives us the desired stationary distribution185

corrections through the values of ζ∗(s, a), with no additional computation.186

3.3 Extension to General Convex Functions187

Besides a quadratic penalty function, one may extend the above derivations to a more general class of188

convex penalty functions. Consider a generic convex penalty function f : R→ R. Recall that C is a189

bounded subset of R which contains the interval [0, C] of stationary distribution corrections. If C is190

contained in the range of f ′, then the optimizer of the convex problem, minx J(x) := m · f(x)− n191

for n
m ∈ C, satisfies the following KKT condition: f ′(x∗) = n

m . Analogously, the optimizer x∗ of,192

min
x:S×A→C

J1(x) := E(s,a)∼dD [f(x(s, a))]− E(s,a)∼dπ [x(s, a)] , (13)

satisfies the equality f ′(x∗(s, a)) = wπ/D(s, a).193

With change of variables ν := x+ Bπν, the above problem becomes,194

min
ν:S×A→R

J(ν) := E(s,a)∼dD [f((ν − Bπν) (s, a))]− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] . (14)

Applying Fenchel duality to f in this objective further leads to the following saddle-point problem:195

min
ν:S×A→R

max
ζ:S×A→R

J(ν, ζ) := E(s,a,s′)∼dD,a′∼π(s′) [(ν(s, a)− γν(s′, a′))ζ(s, a)− f∗(ζ(s, a))]

− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] . (15)

By the KKT condition of the inner optimization problem, for any ν the optimizer ζ∗ν satisfies,196

f∗′(ζ∗ν (s, a)) = (ν − Bπν)(s, a). (16)

Therefore, using the fact that the derivative of a convex function f ′ is the inverse function of the197

derivative of its Fenchel conjugate f∗′, our desired stationary distribution corrections are found by198

computing the saddle-point (ζ∗, ν∗) of the above problem:199

ζ∗(s, a) = f ′((ν∗ − Bπν∗)(s, a)) = f ′(x∗(s, a)) = wπ/D(s, a). (17)
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Amazingly, despite the generalization beyond the quadratic penalty function f(x) = 1
2x

2, the200

optimization problem in equation 15 retains all the computational benefits that make this method very201

practical for learning wπ/D(s, a): All quantities and their gradients may be unbiasedly estimated202

from stochastic samples; the objective is linear in ν and concave in ζ, thus is well-behaved; and203

the optimizer of this problem immediately provides the desired stationary distribution corrections204

through the values of ζ∗(s, a), without any additional computation.205

This generalized derivation also provides insight into the initial technical result: It is now clear206

that the objective in equation 13 is the negative Fenchel dual (variational) form of the Ali-Silvey207

or f -divergence, which has been used in previous work to estimate divergence and data likelihood208

ratios [33]. Despite their similar formulations, we emphasize that the aforementioned dual form of209

the f -divergence is not immediately applicable to estimation of off-policy corrections in the context210

of RL, due to the fact that samples from distribution dπ are unobserved. Indeed, our derivations211

hinged on two additional key steps: (1) the change of variables from x to ν := x + Bπν; and (2)212

the second application of duality to introduce ζ. Due to these repeated applications of duality in our213

derivations, we term our method Dual stationary DIstribution Correction Estimation (DualDICE).214

3.4 Theoretical Guarantees215

In this section, we consider the theoretical properties of DualDICE in the setting where we have216

a dataset formed by empirical samples {si, ai, ri, s′i}
N
i=1 ∼ dD,

{
si0
}N
i=1
∼ β, and target actions217

a′i ∼ π(s′i), a
i
0 ∼ π(si0) for i = 1, . . . , N .1 We will use the shorthand notation ÊdD to denote an218

average over these empirical samples. Although the proposed estimator can adopt general f , for219

simplicity of exposition we restrict to f(x) = 1
2x

2. We consider using an algorithm OPT (e.g.,220

stochastic gradient descent/ascent) to find optimal ν, ζ of equation 15 within some parameterization221

families F ,H, respectively. We denote by ν̂, ζ̂ the outputs of OPT . We have the following guarantee222

on the quality of ν̂, ζ̂ with respect to the off-policy policy estimation (OPE) problem.223

Theorem 2. (Informal) Under some mild assumptions, the mean squared error (MSE) associated224

with using ν̂, ζ̂ for OPE can be bounded as,225

E
[(

ÊdD
[
ζ̂ (s, a) · r

]
− ρ(π)

)2]
= Õ

(
εapprox (F ,H) + εopt + 1√

N

)
, (18)

where the outer expectation is with respect to the randomness of the empirical samples and OPT ,226

εopt denotes the optimization error, and εapprox (F ,H) denotes the approximation error due to F ,H.227

The sources of estimation error are explicit in Theorem 2. As the number of samples N increases, the228

statistical error N−1/2 approaches zero. Meanwhile, there is an implicit trade-off in εapprox (F ,H)229

and εopt. With flexible function spaces F and H (such as the space of neural networks), the230

approximation error can be further decreased; however, optimization will be complicated and it is231

difficult to characterize εopt. On the other hand, with linear parameterization of (ν, ζ), under some232

mild conditions, after T iterations we achieve provably fast rate, O (exp (−T )) for OPT = SVRG233

and O
(
1
T

)
for OPT = SGD, at the cost of potentially increased approximation error. See the234

Appendix for the precise theoretical results, proofs, and further discussions.235

4 Related Work236

Density Ratio Estimation Density ratio estimation is an important tool for many machine learning237

and statistics problems. Other than the naive approach, (i.e., the density ratio is calculated via esti-238

mating the densities in the numerator and denominator separately, which may magnify the estimation239

error), various direct ratio estimators have been proposed [44], including the moment matching ap-240

proach [17], probabilistic classification approach [4, 7, 40], and ratio matching approach [22, 33, 45]241

The proposed DualDICE algorithm, as a direct approach for density ratio estimation, bears some242

similarities to ratio matching [33], which is also derived by exploiting the Fenchel dual representation243

of the f -divergences. However, compared to the existing direct estimators, the major difference lies244

in the requirement of the samples from the stationary distribution. Specifically, the existing estimators245

require access to samples from both dD and dπ , which is impractical in the off-policy learning setting.246

Therefore, DualDICE is uniquely applicable to the more difficult RL setting.247

1For the sake of simplicity, we consider the batch learning setting with i.i.d. samples as in [48]. The results
can be easily generalized to single sample path with dependent samples (see Appendix).
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Off-policy Policy Evaluation The problem of off-policy policy evaluation has been heavily studied248

in contextual bandits [12, 49, 52] and in the more general RL setting [14, 21, 26, 29, 34, 36, 37, 50, 51].249

Several representative approaches can be identified in the literature. The Direct Method (DM) learns250

a model of the system and then uses it to estimate the performance of the evaluation policy. This251

approach often has low variance but its bias depends on how well the selected function class can252

express the environment dynamics. Importance sampling (IS) [38] uses importance weights to correct253

the mismatch between the distributions of the system trajectory induced by the target and behavior254

policies. Its variance can be unbounded when there is a big difference between the distributions of255

the evaluation and behavior policies, and grows exponentially with the horizon of the RL problem.256

Doubly Robust (DR) is a combination of DM and IS, and can achieve the low variance of DM and no257

(or low) bias of IS. Other than DM, all the methods described above require knowledge of the policy258

density ratio, and thus the behavior policy. Our proposed algorithm avoids this necessity.259

5 Experiments260

We evaluate our method applied to off-policy policy evaluation (OPE). We focus on this setting261

because it is a direct application of stationary distribution correction estimation, without many262

additional tunable parameters, and it has been previously used as a test-bed for similar techniques [27].263

In each experiment, we use a behavior policy µ to collect some number of trajectories, each for some264

number of steps. This data is used to estimate the stationary distribution corrections, which are then265

used to estimate the average step reward, with respect to a target policy π. We focus our comparisons266

here to a TD-based approach [16] and weighted step-wise IS (as described in [27]), which we and267

others have generally found to work best relative to common IS variants [30, 38]. See the Appendix268

for additional results and implementation details.269

We begin in a controlled setting with an evaluation agnostic to optimization issues, where we find270

that, absent these issues, our method is competitive with TD-based approaches (Figure 1). However,271

as we move to more difficult settings with complex environment dynamics, the performance of TD272

methods degrades dramatically, while our method is still able to provide accurate estimates (Figure 2).273

Finally, we provide an analysis of the optimization behavior of our method on a simple control task274

across different choices of function f (Figure 3). Interestingly, although the choice of f(x) = 1
2x

2 is275

most natural, we find the empirically best performing choice to be f(x) = 2
3 |x|

3/2. All results are276

summarized for 20 random seeds, with median plotted and error bars at 25th and 75th percentiles.277

5.1 Estimation Without Function Approximation278
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Figure 1: We perform OPE on the Taxi domain [10]. The plots show log RMSE of the estimator
across different numbers of trajectories and different trajectory lengths (x-axis). For this domain,
we avoid any potential issues in optimization by solving for the optimum of the objectives exactly
using standard matrix operations. Thus, we are able to see that our method and the TD method are
competitive with each other.

We begin with a tabular task, the Taxi domain [10]. In this task, we evaluate our method in a manner279

agnostic to optimization difficulties: The objective 6 is a quadratic equation in ν, and thus may280

be solved by matrix operations. The Bellman residuals (equation 7) may then be estimated via an281

empirical average of the transitions appearing in the off-policy data. In a similar manner, TD methods282

for estimating the correction terms may also be solved using matrix operations [27]. In this controlled283

setting, we find that, as expected, TD methods can perform well (Figure 1), and our method achieves284

competitive performance. As we will see in the following results, the good performance of TD285

methods quickly deteriorates as one moves to more complex settings, while our method is able to286

maintain good performance, even when using function approximation and stochastic optimization.287
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Figure 2: We perform OPE on control tasks. Each plot shows the estimated average step reward over
training and different behavior policies (higher α corresponds to a behavior policy closer to the target
policy). We find that in all cases, our method is able to approximate these desired values well, with
accuracy improving with a larger α. On the other hand, the TD method performs poorly, even more
so when the behavior policy µ is unknown and must be estimated. While on Cartpole it can start
to approach the desired value for large α, on the more complicated Reacher task (which involves
continuous actions) its learning is too unstable to learn anything at all.

5.2 Control Tasks288

We now move on to difficult control tasks: A discrete-control task Cartpole and a continuous-control289

task Reacher [6]. In these tasks, observations are continuous, and thus we use neural network function290

approximators with stochastic optimization. Figure 2 shows the results of our method compared to291

the TD method. We find that in this setting, DualDICE is able to provide good, stable performance,292

while the TD approach suffers from high variance, and this issue is exacerbated when we attempt to293

estimate µ rather than assume it as given. See the Appendix for additional baseline results.294

5.3 Choice of Convex Function f295
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p = 1.25 p = 1.5 p = 2 p = 3 p = 4 TD IS

Figure 3: We compare the OPE error when using different forms of f to estimate stationary distri-
bution ratios with function approximation, which are then applied to OPE on a simple continuous
grid task. In this setting, optimization stability is crucial, and this heavily depends on the form of
the convex function f . We plot the results of using f(x) = 1

p |x|
p for p ∈ [1.25, 1.5, 2, 3, 4]. We also

show the results of TD and IS methods on this task for comparison. We find that p = 1.5 consistently
performs the best, often providing significantly better results.

We analyze the choice of the convex function f . We consider a simple continuous grid task where an296

agent may move left, right, up, or down and is rewarded for reaching the bottom right corner of a297

square room. We plot the estimation errors of using DualDICE for off-policy policy evaluation on this298

task, comparing against different choices of convex functions of the form f(x) = 1
p |x|

p. Interestingly,299

although the choice of f(x) = 1
2x

2 is most natural, we find the empirically best performing choice to300

be f(x) = 2
3 |x|

3/2. Thus, this is the form of f we used in our experiments for Figure 2.301

6 Conclusions302

We have presented DualDICE, a method for estimating off-policy stationary distribution corrections.303

Compared to previous work, our method is agnostic to knowledge of the behavior policy used to304

collect the off-policy data and avoids the use of importance weights in its losses. These advantages305

have a profound empirical effect: our method provides significantly better estimates compared to TD306

methods, especially in settings which require function approximation and stochastic optimization.307

Future work includes (1) incorporating the DualDICE algorithm into off-policy training, (2) further308

understanding the effects of f on the performance of DualDICE (in terms of approximation error of309

the distribution corrections), and (3) evaluating DualDICE on real-world off-policy evaluation tasks.310

8



References311

[1] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub312

Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous313

in-hand manipulation. arXiv preprint arXiv:1808.00177, 2018.314

[2] András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with315

bellman-residual minimization based fitted policy iteration and a single sample path. Machine316

Learning, 71(1):89–129, 2008.317

[3] Richard Ernest Bellman. Dynamic Programming. Dover Publications, Inc., New York, NY,318

USA, 2003.319

[4] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for differing320

training and test distributions. In Proceedings of the 24th international conference on Machine321

learning, pages 81–88. ACM, 2007.322

[5] Stephane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration Inequalities: A323

Nonasymptotic Theory of Independence. Oxford University Press, 2016.324

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,325

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.326

[7] Kuang Fu Cheng, Chih-Kang Chu, et al. Semiparametric density estimation under a two-sample327

density ratio model. Bernoulli, 10(4):583–604, 2004.328

[8] Bo Dai, Niao He, Yunpeng Pan, Byron Boots, and Le Song. Learning from conditional329

distributions via dual embeddings. arXiv preprint arXiv:1607.04579, 2016.330

[9] Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song.331

Sbeed: Convergent reinforcement learning with nonlinear function approximation. arXiv332

preprint arXiv:1712.10285, 2017.333

[10] Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value function334

decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.335

[11] Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance336

reduction methods for policy evaluation. In Proceedings of the 34th International Conference337

on Machine Learning-Volume 70, pages 1049–1058. JMLR. org, 2017.338

[12] Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning.339

arXiv preprint arXiv:1103.4601, 2011.340

[13] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust341

off-policy evaluation. arXiv preprint arXiv:1802.03493, 2018.342

[14] Raphael Fonteneau, Susan A. Murphy, Louis Wehenkel, and Damien Ernst. Batch mode343

reinforcement learning based on the synthesis of artificial trajectories. Annals of Operations344

Research, 208(1):383–416, 2013.345

[15] Jianfeng Gao, Michel Galley, and Lihong Li. Neural approaches to Conversational AI. Founda-346

tions and Trends in Information Retrieval, 13(2–3):127–298, 2019.347

[16] Carles Gelada and Marc G Bellemare. Off-policy deep reinforcement learning by bootstrapping348

the covariate shift. AAAI, 2018.349

[17] Arthur Gretton, Alex J Smola, Jiayuan Huang, Marcel Schmittfull, Karsten M Borgwardt, and350

Bernhard Schöllkopf. Covariate shift by kernel mean matching. In Dataset shift in machine351

learning, pages 131–160. MIT Press, 2009.352

[18] Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. In Proceedings of the353

34th International Conference on Machine Learning-Volume 70, pages 1372–1383. JMLR. org,354

2017.355

9



[19] W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.356

1970.357

[20] David Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded358

vapnik-chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232,359

1995.360

[21] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.361

In Proceedings of the 33rd International Conference on Machine Learning, pages 652–661,362

2016.363

[22] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct364

importance estimation. Journal of Machine Learning Research, 10(Jul):1391–1445, 2009.365

[23] Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of366

least-squares policy iteration. Journal of Machine Learning Research, 13(Oct):3041–3074,367

2012.368

[24] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep369

reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.370

[25] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of371

contextual-bandit-based news article recommendation algorithms. In Proceedings of the fourth372

ACM international conference on Web search and data mining, pages 297–306. ACM, 2011.373

[26] Lihong Li, Rémi Munos, and Csaba Szepesvàri. Toward minimax off-policy value estimation.374

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics,375

pages 608–616, 2015.376

[27] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon:377

Infinite-horizon off-policy estimation. In Advances in Neural Information Processing Systems,378

pages 5356–5366, 2018.379

[28] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient380

with state distribution correction. In Proceedings of the Thirty-Fifth Conference on Uncertainty381

in Artificial Intelligence, 2019. To appear.382

[29] A. Mahmood, H. van Hasselt, and R. Sutton. Weighted importance sampling for off-policy383

learning with linear function approximation. In Proceedings of the 27th International Conference384

on Neural Information Processing Systems, 2014.385

[30] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic. Offline386

policy evaluation across representations with applications to educational games. In Proceedings387

of the 2014 international conference on Autonomous agents and multi-agent systems, pages388

1077–1084. International Foundation for Autonomous Agents and Multiagent Systems, 2014.389

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan390

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint391

arXiv:1312.5602, 2013.392

[32] Susan A Murphy, Mark J van der Laan, James M Robins, and Conduct Problems Prevention Re-393

search Group. Marginal mean models for dynamic regimes. Journal of the American Statistical394

Association, 96(456):1410–1423, 2001.395

[33] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence func-396

tionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information397

Theory, 56(11):5847–5861, 2010.398

[34] C. Paduraru. Off-policy Evaluation in Markov Decision Processes. PhD thesis, McGill Univer-399

sity, 2013.400

[35] D Pollard. Convergence of Stochastic Processes. David Pollard, 1984.401

10



[36] D. Precup, R. Sutton, and S. Dasgupta. Off-policy temporal difference learning with function402

approximation. In Proceedings of the 18th International Conference on Machine Learning,403

pages 417–424, 2001.404

[37] D. Precup, R. Sutton, and S. Singh. Eligibility traces for off-policy policy evaluation. In405

Proceedings of the 17th International Conference on Machine Learning, pages 759–766, 2000.406

[38] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department407

Faculty Publication Series, page 80, 2000.408

[39] Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming.409

1994.410

[40] Jing Qin. Inferences for case-control and semiparametric two-sample density ratio models.411

Biometrika, 85(3):619–630, 1998.412

[41] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science413

& Business Media, 2009.414

[42] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.415

[43] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic416
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A Pseudocode444

Algorithm 1 DualDICE

Inputs: Convex function f and its Fenchel conjugate f∗, off-policy data D̂ =

{(s(i), a(i), r(i), s′(i))}Ni=1, sampled initial states β̂ = {s(i)0 }Mi=1, target policy π, networks
νθ1(·, ·), ζθ2(·, ·), learning rates ην , ηζ , number of iterations T , batch size B.
for t = 1, . . . , T do

Sample batch {(s(i), a(i), r(i), s′(i))}Bi=1 from D̂.
Sample batch {s(i)0 }Bi=1 from β̂.
Sample actions a′(i) ∼ π(s′(i)), for i = 1, . . . , B.
Sample actions a(i)0 ∼ π(s

(i)
0 ), for i = 1, . . . , B.

Compute empirical loss Ĵ = 1
B

∑B
i=1(νθ1(s(i), a(i)) − νθ1(s′(i), a′(i)))ζθ2(s(i), a(i)) −

f∗(ζθ2(s(i), a(i)))− (1− γ)νθ1(s
(i)
0 , a

(i)
0 ).

Update θ1 ← θ1 − ην∇θ1 Ĵ .
Update θ2 ← θ2 + ηζ∇θ2 Ĵ .

end for
Return ζθ2(·, ·).

B Additional Results445
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Figure 4: We perform OPE on control tasks using our method compared to a number of additional
baselines: doubly-robust (DR), in which one learns a value function in order to reduce the variance of
an IS estimate of the evaluation; direct method (DM), in which one learns a model of the dynamics
and reward of the environment and performs Monte Carlo rollouts using the model in order to estimate
the value of the target policy; and Qπ , in which one learns Qπ values via Bellman error minimization
over the off-policy data, and uses the initial values (1 − γ) ·Qπ(s0, a0) as estimates of the policy
value (these estimates are below −0.4 for Reacher, α = 0).

C Experimental Details446

C.1 Taxi447

For the Taxi domain, we follow the same protocol as used in [27]. In this tabular, exact solve setting,448

the TD methods [16] are equivalent to their kernel-based TD method. We fix γ to 0.995. The behavior449

and target policies are also taken from [27] (referred in their work as the behavior policy for α = 0).450

In this setting, we solve for the optimal empirical ν exactly using matrix operations. Since [27]451

perform a similar exact solve for |S| variables wπ/µ(s), for better comparison we also perform our452

exact solve with respect to |S| variables ν(s). Specifically, one may follow the same derivations453

for DualDICE with respect to learning wπ/µ. The final objective will require knowledge of the454

importance weights π(a|s)/µ(a|s).455

C.2 Control Tasks456

We use the Cartpole and Reacher tasks as given by OpenAI Gym [6]. In these tasks we use COP-457

TD [16] for the TD method ([27] requires a proper kernel, which is not readily available for these458
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tasks). When assuming an unknown µ, we learn a neural network policy µ̂ using behavior cloning,459

and use its probabilities for computing importance weights π(a|s)/µ(a|s). All neural networks are460

feed-forward with two hidden layers of dimension 64 and tanh activations.461

We modify the Cartpole task to be infinite horizon: We use the same dynamics as in the original task462

but change the reward to be −1 if the original task returns a termination (when the pole falls below463

some threshold) and 1 otherwise. We train a policy on this task until convergence. We then define the464

target policy π as a weighted combination of this pre-trained policy (weight 0.7) and a uniformly465

random policy (weight 0.3). The behavior policy µ for a specific 0 ≤ α ≤ 1 is taken to be a weighted466

combination of the pre-trained policy (weight 0.55 + 0.15α) and a uniformly random policy (weight467

0.45− 0.15α). We use γ = 0.99, which yields an average step reward of ≈ 0.8 for π and ≈ 0.1 for468

µ with α = 0. We generate an off-policy dataset by running the behavior policy for 200 epsiodes,469

each of length 250 steps. We train each stationary distribution correction estimation method using the470

Adam optimizer with batches of size 2048 and learning rates chosen using a hyperparameter search471

(the optimal learning rate found for either method was ≈ 0.003).472

For the Reacher task, we train a deterministic policy until convergence. We define the target policy473

π as a Gaussian with mean given by the pre-trained policy and standard deviation given by 0.1.474

The behavior policy µ for a specific 0 ≤ α ≤ 1 is taken to be a Gaussian with mean given by the475

pre-trained policy and standard deviation given by 0.4− 0.3α. We use γ = 0.99, which yields an476

average step reward of ≈ −0.12 for π and ≈ −0.50 for µ with α = 0. We generate an off-policy477

dataset by running the behavior policy for 1000 epsiodes, each of length 40 steps. We train each478

stationary distribution correction estimation method using the Adam optimizer with batches of size479

2048 and learning rates chosen using a hyperparameter search (the optimal learning rate found for480

either method was ≈ 0.0001).481

C.3 Continuous Grid482

For this task, we create a 10× 10 grid which the agent can traverse by moving left/right/up/down.483

The observations are the x, y coordinates of the square the agent is on. The reward at each step is484

given by exp{−0.2|x− 9| − 0.2|y − 9|}. We use γ = 0.995. The target policy π is taken to be the485

optimal policy for this task plus 0.1 weight on uniform exploration. The behavior policy µ is taken486

to be the optimal policy plus 0.7 weight on uniform exploration. We train using batches of size the487

Adam optimizer with batches of size 512 and learning rates 0.001 for ν and 0.0001 for ζ.488

D Proofs489

We provide the proof for Theorem 2. We first decompose the error in Section D.1. Then, we analyze490

the statistical error and optimization error in Section D.2 and Section D.4, respectively. The total491

error will be discussed in D.3.492

Although the proposed estimator can use any general convex function f , as a first step towards a493

more complete theoretical understanding, we consider the special case of f(x) = 1
2x

2. Clearly, f (·)494

now is η-strongly convex with η = 1. Under Assumption 1, we need only consider ‖ν‖∞ ≤ C,495

which implies that ‖ν − Bπν‖∞ ≤
1+γ
1−γC, and that f(x) is κ-Lipschitz continuous with κ = 1+γ

1−γC.496

Similarly, f∗(y) = 1
2y

2 is L-Lipschitz continuous with L = C on ‖w‖∞ ≤ C. The following497

assumption will be needed.498

Assumption 3 (MDP regularity). We assume the observed reward is uniformly bounded, i.e.,499

‖r̂ (s, a)‖∞ ≤ Cr for some constant Cr > 0. It follows that the reward’s mean and variance500

are both bounded in [−Cr, Cr].501

For convenience, the objective function of DualDICE is repeated here:502

J(ν, ζ) = E(s,a,s′)∼dD,a′∼π(s′)
[
(ν(s, a)− γν(s′, a′))ζ(s, a)− ζ(s, a)2/2

]
− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] .

We will also make use of the objective in the form prior to introduction of ζ, which we denote as503

J(ν):504

J(ν) =
1

2
E(s,a)∼dD

[
(ν − Bπν)(s, a)2

]
− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] .

13



Let Ĵ(ν, ζ) denotes the empirical surrogate of J(ν, ζ) with optimal solution as (ν̂∗, ζ̂∗). We denote505

ν∗F = arg minν∈F J (ν) and ν∗ = arg minν∈S×A→R J (ν). We denote L(ν) = maxζ∈H J(ν, ζ)506

and L̂(ν) = maxζ∈H Ĵ(ν, ζ) as the primal objectives, and `(ζ) = minν∈F J(ν, ζ), ˆ̀(ζ) =507

minν∈F Ĵ(ν, ζ) as the dual objectives. We apply some optimization algorithm OPT for optimizing508

Ĵ(ν, ζ) with samples {si, ai, ri, s′i}
N
i=1 ∼ dD,

{
si0
}N
i=1
∼ β, and target actions a′i ∼ π(s′i), a

i
0 ∼509

π(si0) for i = 1, . . . , N . We denote the outputs of OPT by (ν̂, ζ̂).510

D.1 Error Decomposition511

Let512

R (s, a) = E·|s,a [r] .

Observe that513

ρ(π) = EdD
[
wπ/D(s, a) ·R(s, a)

]
.

We begin by considering the estimation error induced by using (ν̂ − B̂π ν̂)(s, a) as estimates of514

wπ/D(s, a), where B̂π denotes the empirical Bellman backup with respect to samples from dD, π.515

We will subsequently reconcile this with the true implementation of DualDICE, which uses ζ̂(s, a) as516

estimates of wπ/D(s, a).517

The mean squared error of the policy value estimate when using (ν̂−B̂π ν̂)(s, a) in place ofwπ/D(s, a)518

can be decomposed as519 (
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

]
− EdD

[
wπ/D(s, a) ·R(s, a)

])2
(19)

=
(
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

]
− ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) ·R(s, a)

]
(20)

+ÊdD
[(
ν̂ − B̂π ν̂

)
(s, a) ·R(s, a)

]
− ÊdD

[(
ν̂∗ − B̂π ν̂∗

)
(s, a) ·R(s, a)

]
+ÊdD

[(
ν̂∗ − B̂π ν̂∗

)
(s, a) ·R(s, a)

]
− EdD

[
wπ/D(s, a) ·R(s, a)

] )2
≤ 4

(
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

]
− ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) ·R(s, a)

])2
︸ ︷︷ ︸

εr

(21)

+4
(
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) ·R(s, a)

]
− ÊdD

[(
ν̂∗ − B̂π ν̂∗

)
(s, a) ·R(s, a)

])2
︸ ︷︷ ︸

ε1

(22)

+4
(
ÊdD

[(
ν̂∗ − B̂π ν̂∗

)
(s, a) ·R(s, a)

]
− EdD

[
wπ/D(s, a) ·R(s, a)

])2
︸ ︷︷ ︸

ε2

. (23)

The first term, εr, is induced by the randomness in observed reward, and we have520

εr ≤
(
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · (r̂ (s, a)− r (s, a))

])2
≤
(

1 + γ

1− γ

)2

C2
(
ÊdD [r̂ (s, a)]− ÊdD [r (s, a)]

)2
,

which will be discussed in section D.2.521

We consider the ε1 as522

ε1 ≤ C2
r

∥∥∥(ν̂ − B̂π ν̂)− (ν̂∗ − B̂π ν̂∗)∥∥∥2
D̂
≤ C2

r

∥∥∥ζ̂ − ζ̂∗∥∥∥2D̂ +
∥∥∥(ν̂∗ − B̂π ν̂∗)− (ν̂ − B̂π ν̂)∥∥∥2

D̂︸ ︷︷ ︸
ε̂opt


which is the error induced by optimization OPT .523
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For the last term ε2, we have524

ε2 ≤ 2
(
ÊdD

[(
ν̂∗ − B̂π ν̂∗

)
(s, a) · r(s, a)

]
− EdD [(ν̂∗ − Bπ ν̂∗) (s, a) · r(s, a)]

)2
︸ ︷︷ ︸

εstat

+2
(
EdD [(ν̂∗ − Bπ ν̂∗) (s, a) · r(s, a)]− EdD

[
wπ/D(s, a) · r(s, a)

])2
≤ 2εstat + 2 (EdD [(ν̂∗ − Bπ ν̂∗) (s, a) · r(s, a)]− EdD [(ν∗ − Bπν∗) (s, a) · r(s, a)])

2
. (due to equation 17)

For the first term εstat, which is due to finite samples, we will bound in section D.2.525

For the second term, we have526

(EdD [(ν̂∗ − Bπ ν̂∗) (s, a) · r(s, a)]− EdD [(ν∗ − Bπν∗) (s, a) · r(s, a)])
2

≤ EdD
[
r (s, a)

2 · ((ν̂∗ − Bπ ν̂∗) (s, a)− (ν∗ − Bπν∗) (s, a))
2
]

≤ C2
r ‖(ν̂∗ − Bπ ν̂∗)− (ν∗ − Bπν∗)‖2D

≤ 2C2
r

η
(J (ν̂∗)− J (ν∗)) ,

where the last inequality comes from the η-strongly convexity of f and the optimality of ν∗.527

We then consider the error between J(ν̂∗) and J(ν∗), which can be decomposed as528

J (ν̂∗)− J (ν∗) = J (ν̂∗)− J (ν∗F ) + J (ν∗F )− J (ν∗)

= J (ν̂∗)− L (ν̂∗) + L (ν̂∗)− L (ν∗F ) + L (ν∗F )− J (ν∗F ) + J (ν∗F )− J (ν∗) .

We bound this expression term-by-term from the right. For the term J (ν∗F )− J (ν∗), we have529

J (ν∗F )− J (ν∗) = ED [f (ν∗F − Bπν∗F )− f (ν∗ − Bπν∗)]− Eβπ [ν∗F − ν∗]
≤ κ ‖ν∗F − ν∗‖D,1 + κ ‖Bπ (ν∗F − ν∗)‖D,1 + ‖ν∗F − ν∗‖βπ,1
≤ max

(
κ+ κ ‖Bπ‖D,1 , 1

)(
‖ν∗F − ν∗‖D,1 + ‖ν∗F − ν∗‖βπ,1

)
≤ max

(
κ+ κ ‖Bπ‖D,1 , 1

)
· εapprox (F) ,

where εapprox (F) := supν∈S×A→R infν∈F

(
‖νF − ν‖D,1 + ‖νF − ν‖βπ,1

)
, due to the approxi-530

mation with F for ν.531

For the term L (ν∗F )− J (ν∗F ), we have by definition that532

L (ν∗F )− J (ν∗F ) = max
ζ∈H

J (ν∗F , ζ)− max
ζ∈S×A→R

J (ν∗F , ζ) ≤ 0

For the term L(ν̂∗)− L(ν∗F ),533

L(ν̂∗)− L(ν∗F ) = L(ν̂∗)− L̂(ν̂∗) + L̂(ν̂∗)− L̂(ν∗F ) + L̂(ν∗F )− L(ν∗F )

≤ L(ν̂∗)− L̂(ν̂∗) + L̂(ν∗F )− L(ν∗F )

≤ 2 sup
ν∈F

∣∣∣L(ν)− L̂(ν)
∣∣∣

= 2 sup
ν∈F

∣∣∣∣max
ζ∈H

J (ν, ζ)−max
ζ∈H

Ĵ (ν, ζ)

∣∣∣∣
≤ 2 sup

ν∈F,ζ∈H

∣∣∣Ĵ (ν, ζ)− J (ν, ζ)
∣∣∣

= 2 · εest (F) ,

where in the first inequality we have used the fact that L̂(ν̂∗)− L̂(ν∗F ) ≤ 0 due to the optimality of534

ν̂∗, and in the last step εest (F) := supν∈F,ζ∈H

∣∣∣Ĵ (ν, ζ)− J (ν, ζ)
∣∣∣.535
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For the term J (ν̂∗)− L (ν̂∗), we have536

J (ν̂∗)− L (ν̂∗) = max
ζ∈S×A→R

J (ν̂∗, ζ)−max
ζ∈H

J (ν̂∗, ζ)

≤
(
L+

1 + γ

1− γ
C

)
‖ζ∗H − ζ∗‖D,1︸ ︷︷ ︸
≤εapprox(H)

,

where εapprox (H) := supζ∈S×A→R infζ∈H

(
‖ζH − ζ‖D,1 + ‖ζH − ζ‖βπ,1

)
, due to the approxi-537

mation withH for ζ.538

Finally, we can decompose the squared error as539 (
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r̂(s, a)

]
− ρ(π)

)2
≤ 16C2

r

η

(
max

(
κ+ κ ‖Bπ‖D,1 , 1

)
εapprox (F) +

(
L+

1 + γ

1− γ
C

)
εapprox (H)

)
+ 4εr + 8εstat +

32C2
r

η
εest (F) + 4ε̂opt. (24)

Remark (Dual OPE estimator): We now reconcile the above derivations with the use of ζ̂(s, a)
as estimates of wπ/D(s, a). Note that in the implementation of DualDICE we use the estimator,

ÊdD
[
ζ̂ (s, a) · r

]
for off-policy policy evaluation. In this case, the error can be decomposed as540 (

ÊdD
[
ζ̂ (s, a) · r

]
− EdD

[
wπ/D(s, a) ·R(s, a)

])2
(25)

≤ 2
(
ÊdD

[
ζ̂ (s, a) · r

]
− ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

])2
(26)

+2
(
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

]
− EdD

[
wπ/D(s, a) ·R(s, a)

])2
. (27)

The second term above is the same as given in equation 19. The first term can be rewritten as,541 (
ÊdD

[
ζ̂ (s, a) · r

]
− ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

])2
≤ C2

r

∥∥∥ζ̂ − (ν̂ − B̂π ν̂)∥∥∥2
D̂
,

which can be bounded as follows:542 ∥∥∥ζ̂ − (ν̂ − B̂π ν̂)∥∥∥2
D̂

=
∥∥∥ζ̂ − ζ̂∗ + ζ̂∗ −

(
ν̂∗ − B̂π ν̂∗

)
+
(
ν̂∗ − B̂π ν̂∗

)
−
(
ν̂ − B̂π ν̂

)∥∥∥2
D̂

(28)

≤ 4
∥∥∥ζ̂ − ζ̂∗∥∥∥2

D̂
+ 4

∥∥∥(ν̂∗ − B̂π ν̂∗)− (ν̂ − B̂π ν̂)∥∥∥2
D̂

+ 4
∥∥∥ζ̂∗ − (ν̂∗ − B̂π ν̂∗)∥∥∥2

D̂

where the first two terms correspond to optimization error ε̂opt, and the last to approximation error543

due to parametrization.544

Specifically, when the output of our algorithm ζ̂ (s, a) =
(
ν̂ − B̂π ν̂

)
(s, a) for ∀ (s, a) ∈ D̂, the545

extra term vanishes, and the error is the same as in equation 19.546

D.2 Statistical Error547

We analyze the statistical error εr, εstat and εest (F) in this section. We discussed in batch learning548

setting with i.i.d. samples [48]. However, by exploiting blocking technique in Proposition 15 of [53],549

following [2, 23, 9], all the sample complexity we provided can be easily generalized for single550

β-mixing sample path, i.e., {si, ai, ri, s′i}
N
i=1 is strictly stationary and mixing in an exponential rate551

with parameter b, χ > 0 if βm = O (exp (−bm−χ)), which we omit for the sake of exposition552

simplicity.553
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Bounding εr. Recall that R (s, a) = E·|s,a [r], so554

E [εr] ≤
(

1 + γ

1− γ

)2

C2E

( 1

N

N∑
i=1

ri − E

[
1

N

N∑
i=1

ri

])2


=

(
1 + γ

1− γ

)2

C2V

(
1

N

N∑
i=1

ri

)

≤ 1

N

(
1 + γ

1− γ

)2

C2 sup
s,a

V (r|s, a) = O
(

1

N

)
. (29)

Since r (s, a) and r̂ (s, a) is bounded, we can also obtain high-probability deviation bounds using555

standard concentration inequalities [5].556

Bounding εest (F). By definition, we have

εest (F) = sup
ν∈F,ζ∈H

∣∣∣Ĵ (ν, ζ)− J (ν, ζ)
∣∣∣ ,

which can be bounded using a covering-number argument outlined below.557

We will need Pollard’s tail inequality that relates maximum deviation to the covering number of a558

function class:559

Lemma 4. [35] Let G be a permissible class of Z → [−M,M ] functions and {Zi}Ni=1 are i.i.d. sam-560

ples from some distribution. Then, for any given ε > 0,561

P

(
sup
g∈G

∣∣∣∣∣ 1

N

N∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > ε

)
≤ 8E

[
N1

( ε
8
,G, {Zi}Ni=1

)]
exp

(
−Nε2

512M2

)
.

The covering number can then be bounded in terms of the function class’s pseudo-dimension:562

Lemma 5. [Corollary 3, [20]] For any set X , any points x1:N ∈ XN , any class F of functions on
X taking values in [0,M ] with pseudo-dimension DF <∞, and any ε > 0,

N1

(
ε,F , x1:N

)
≤ e (DF + 1)

(
2eM

ε

)DF
.

With the above technical lemmas, we are ready to bound εest (F).563

Lemma 6 (Statistical error εest (F)). Under Assumption 1, if f∗ is L-Lipschitz continuous, with at
least probability 1− δ,

εest (F) = O

√ logN + log 1
δ

N

 .

Proof. Denote hν,ζ (s, a, s′, a′, s0, a0) = (ν(s, a) − γν(s′, a′))ζ(s, a) − f∗(ζ(s, a)) − (1 −564

γ) ν(s0, a0), we use lemma 4 with Z = S ×A× S ×A︸ ︷︷ ︸
dDπ

×S ×A︸ ︷︷ ︸
βπ

, Zi =
(
si, ai, s

′
i, a
′
i, s

i
0, a

i
0

)
565

and G = hF×H.566

We first show that ∀hν,ζ ∈ G is bounded. Recall ν ∈ F and ζ ∈ H are bounded by 1
1−γC and C,567

then, hν,ζ will be bounded by M1 = 1+γ
1−γC

2 + (1 + L)C + |f∗(0)|. Specifically,568

‖hν,ζ‖∞ ≤ (1 + γ) ‖ν‖∞ ‖ζ‖∞ + (1− γ) ‖ν‖∞ + ‖f∗ (ζ)‖∞

≤ 1 + γ

1− γ
C2 + C + ‖f∗ (ζ)− f∗(0)‖∞ + |f∗ (0)|

≤ 1 + γ

1− γ
C2 + C + L ‖ζ‖∞ + |f∗ (0)|

≤ 1 + γ

1− γ
C2 + C + LC + |f∗ (0)| .
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Thus,569

P

(
sup

ν∈F,ζ∈H

∣∣∣Ĵ (ν, ζ)− J (ν, ζ)
∣∣∣ ≥ ε) = P

(
sup

ν∈F,ζ∈H

∣∣∣∣∣ 1

N

N∑
i=1

hν,ζ (Zi)− E [hν,ζ ]

∣∣∣∣∣ ≥ ε
)

≤ 8E
[
N1

( ε
8
,G, {Zi}Ni=1

)]
exp

(
−Nε2

512M2
1

)
. (30)

We bound the distance in G,570

1

N

N∑
i=1

|hν1,ζ1 (Zi)− hν2,ζ2 (Zi)|

≤

(
L+ 1+γ

1−γC
)

N

N∑
i=1

|ζ1 (si, ai)− ζ2 (si, ai)|+
C

N

N∑
i=1

|ν1 (si, ai)− ν2 (si, ai)|

+
γC

N

N∑
i=1

|ν1 (s′i, a
′
i)− ν2 (s′i, a

′
i)|+

(1− γ)

N

N∑
i=1

∣∣ν1 (si0, a0i )− ν2 (si0, a0i )∣∣ ,
which leads to571

N1

((
L+

2 + γ − γ2

1− γ
C + (1− γ)

)
ε′,G, {Zi}Ni=1

)
≤ N1

(
ε′,H, {si, ai}Ni=1

)
N1

(
ε′,F , {si, ai}Ni=1

)
N1

(
ε′,F , {s′i, a′i}

N
i=1

)
N1

(
ε′,F ,

{
si0, a

i
0

}N
i=1

)
.

(31)

Applying lemma 5, we can bound the covering number. Denote the pseudo-dimension of F andH as
Dν and Dζ , then, we have

N1

((
L+

2 + γ − γ2

1− γ
C + (1− γ)

)
ε′,G, {Zi}Ni=1

)
≤ e4 (DF + 1)

3
(DH + 1)

(
4eM1

ε′

)3DF+DH

,

which implies572

N1

( ε
8
,G, {Zi}Ni=1

)
≤ e4 (DF + 1)

3
(DH + 1)

32
(
L+ 2+γ−γ2

1−γ C + (1− γ)
)
eM1

ε

3DF+DH

:= C1

(
1

ε

)D1

,

(32)

where C1 = e4 (DF + 1)
3

(DH + 1)
(

32
(
L+ 2+γ−γ2

1−γ C + (1− γ)
)
eM1

)D1

and D1 = 3DF +573

DH.574

Combine this result with equation 30, we immediately obtain the statistical error, i.e.,

P

(
sup

ν∈F,ζ∈H

∣∣∣Ĵ (ν, ζ)− J (ν, ζ)
∣∣∣ ≥ ε) ≤ 8C1

(
1

ε

)D1

exp

(
−Nε2

512M2
1

)
.

By setting ε =

√
C2(logN+log 1

δ )
N with C2 = max

(
(8C1)

2
D1 , 512M1D1, 512M1, 1

)
, we have

8C1

(
1

ε

)D1

exp

(
−Nε2

512M2
1

)
≤ δ.

575
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Bounding εstat. As ν̂∗ is a random variable, we need to bound the following instead:576

√
εstat

=
∣∣∣Ês,a,s′,a′ [(ν̂∗ (s, a)− γν̂∗ (s′, a′)) r(s, a)]− Es,a,s′,a′ [(ν̂∗ (s, a)− γν̂∗ (s′, a′)) r(s, a)]

∣∣∣
≤ sup

ν∈F

∣∣∣Ês,a,s′,a′ [(ν (s, a)− γν (s′, a′)) r(s, a)]− Es,a,s′,a′ [(ν (s, a)− γν (s′, a′)) r(s, a)]
∣∣∣ ,

which can be done using a similar argument as above.577

Lemma 7 (Statistical error εstat). Under Assumption 1, with at least probability 1− δ,

εstat = O
(

logN + log 1
δ

N

)
.

Proof. We first show that ∀ν ∈ H, (ν (s, a)− γν (s′, a′)) r (s, a) is bounded by M2 = 1+γ
1−γC

2, i.e.,

‖(ν − γν′) · r‖∞ ≤ (1 + γ)C ‖ν‖∞ ≤
1 + γ

1− γ
C2.

Then, we apply the lemma 4 with Z = S ×A× S ×A, Zi = (si, ai, s
′
i, a
′
i), and G = (ν − γν) · r,578

P
(

sup
ν∈F

∣∣∣ÊZ [(ν − B̂πν) · r]− E [(ν − Bπν) · r]
∣∣∣ ≥ ε) (33)

≤ 8E
[
N1

( ε
8
,G, {Zi}Ni=1

)]
exp

(
−Nε2

512M2
2

)
. (34)

Similarly, we have579

1

N

N∑
i=1

|(ν1 − γν1) · r (Zi)− (ν2 − γν2) · r (Zi)|

≤ C

N

N∑
i=1

|ν1 (si, ai)− ν2 (si, ai)|+
γC

N
|ν1 (s′i, a

′
i)− ν2 (s′i, a

′
i)| ,

leading to580

N1

(
(1 + γ)Cε′,G, {Zi}Ni=1

)
≤ N1

(
ε′,F , {si, ai}Ni=1

)
N1

(
ε′,F , {s′i, a′i}

N
i=1

)
. (35)

Applying lemma 5, we bound the covering number as581

N1

(
(1 + γ)Cε′,G, {Zi}Ni=1

)
≤ e2 (DF + 1)

2

(
2eM2

ε′

)2DF

, (36)

which implies

N1

( ε
8
,G, {Zi}Ni=1

)
≤ e2 (DF + 1)

2

(
16 (1 + γ)CeM2

ε

)2DF

:= C3

(
1

ε

)D2

,

with C3 := e2 (DF + 1)
2

(16 (1 + γ)CeM2)
D2 and D2 = 2DF .582

We achieve the statistical error bound, i.e.,583

P (
√
εstat ≥ ε) ≤ 8C3

(
1

ε

)D2

exp

(
−Nε2

512M2
2

)
. (37)

By setting ε =

√
C4(logN+log 1

δ )
N with C4 = max

(
(8C3)

2
D2 , 512M2D2, 512M2, 1

)
, we have

8C3

(
1

ε

)D2

exp

(
−Nε2

512M2
2

)
≤ δ.

Therefore, we have εstat = O
(

logN+log 1
δ

N

)
, with 1− δ probability.584
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D.3 Putting It All Together585

Theorem 2 Under Assumptions 1 and 3, with f (x) = 1
2x

2, the mean squared error of DualDICE’s586

estimate is bounded by587

E
[(

ÊdD
[
ζ̂ (s, a) · r

]
− ρ(π)

)2]
= Õ

(
εapprox (F ,H) + εopt + 1√

N

)
,

where E [·] is taken w.r.t. randomness both in the sampling of D ∼ dD and in the algorithm, Õ (·)588

ignores logarithmic factors, and the error terms are defined in equation 40.589

Proof. By equations 25 and 28, the error can be decomposed as590

E
[(

ÊdD
[
ζ̂ (s, a) · r

]
− EdD

[
wπ/D(s, a) ·R(s, a)

])2]
≤ 2E

[(
ÊdD

[
ζ̂ (s, a) · r

]
− ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

])2]
+2E

[(
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r

]
− EdD

[
wπ/D(s, a) ·R(s, a)

])2]
≤ 8C2

rE
[(∥∥∥ζ̂ − ζ̂∗∥∥∥2

D̂
+
∥∥∥(ν̂∗ − B̂π ν̂∗)− (ν̂ − B̂π ν̂)∥∥∥2

D̂

)]
+ 8C2

rE
[∥∥∥ζ̂∗ − (ν̂∗ − B̂π ν̂∗)∥∥∥2

D̂

]
+2E

[(
ÊdD

[(
ν̂ − B̂π ν̂

)
(s, a) · r̂(s, a)

]
− EdD

[
wπ/D(s, a) · r(s, a)

])2]
. (38)

We can bound the last term, E
[(

ÊdD
[(
ν̂ − B̂π ν̂

)
(s, a) · r̂(s, a)

]
− EdD

[
wπ/D(s, a) · r(s, a)

])2]
,

by straightforwardly combining equation 29, lemma 6 and lemma 7 into equation 24. Specifically, by
lemma 6, we have

E [εest (F)] =

√
C2logN + log 1

δ1

N
(1− δ1) + 2δ1M1 = O

(√
logN

N

)
,

by setting δ1 = 1√
N

. Similarly, we have

E [εstat] =
C4

(
logN + log 1

δ2

)
N

(1− δ2) + 2δ2M2 = O
(

logN

N

)
,

where the last equation comes from by setting δ2 = 1
N . Plug these results into equation 24, we have591

E
[(

ÊdD
[(
ν̂ − B̂π ν̂

)
(s, a) · r̂(s, a)

]
− EdD

[
wπ/D(s, a) · r(s, a)

])2]
≤ O (εapprox (F) + εapprox (H) + εopt) + Õ

(
1

N
+

√
1

N

)
, (39)

where εopt = E [ε̂opt], εapprox (F) := supν∈S×A→R infν∈F

(
‖νF − ν‖D,1 + ‖νF − ν‖βπ,1

)
, and592

εapprox (H) := supζ∈S×A→R infζ∈H

(
‖ζH − ζ‖D,1 + ‖ζH − ζ‖βπ,1

)
, due to the approximation593

with F for ν andH for ζ, respectively.594

The first term in equation 38, E
[(∥∥∥ζ̂ − ζ̂∗∥∥∥2

D̂
+ 8

∥∥∥(ν̂∗ − B̂π ν̂∗)− (ν̂ − B̂π ν̂)∥∥∥2
D̂

)]
, is also the595

optimization error εopt.596

The second term, E
[∥∥∥ζ̂∗ − (ν̂∗ − B̂π ν̂∗)∥∥∥2

D̂

]
, is due to the parametrization by F andH.597
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Define the approximation error598

εapprox (F ,H) = εapprox (F) + εapprox (H) + E
[∥∥∥ζ̂∗ − (ν̂∗ − B̂π ν̂∗)∥∥∥2

D̂

]
, (40)

combine equation 39 and the extra errors, we immediately have

E
[(

ÊdD
[
ζ̂ (s, a) · r̂ (s, a)

]
− EdD

[
wπ/D(s, a) · r(s, a)

])2]
= Õ

(
εapprox (F ,H) + εopt +

1√
N

)
,

which is the first conclusion.599

600

D.4 Optimization Error601

In this section, we characterize the optimization error ε̂opt. With different parametrizations for (F ,H)602

and different optimization algorithms for Ĵ (ν, ζ), the convergence rate of ε1 will be different. For603

general parametrization of (F ,H) as neural network, how to quantitively analyze the optimization604

error is still an open problem and out of the scope of this paper. We focus on the tabular, linear or605

kernel parametrization for (F ,H). Let (F ,H) are the family of linear models with basis function606

ψ (s, a) ∈ Rp. The tabular and kernel version can be easily generalized by treating ψ as indicator607

vectors or infinite dimension feature mapping, respectively, and we omit here. Then, we can608

parametrize ν (s, a) = wν
>ψ (s, a) and ζ (s, a) = wζ

>ψ (s, a) with wν , wζ ∈ Rp. Then, the609

optimization reduces to610

min
wν∈F

max
wζ∈H

Ĵ (wν , wζ) := w>ν Awζ −
1

N

N∑
i=1

f∗
(
wζ
>ψ (si, ai)H

)
− wν>b, (41)

where A = 1
N

∑N
i=1 (ψ (si, ai)− γψ (s′i, a

′
i))ψ

> (si, ai) ∈ Rp×p and b = (1−γ)
N

∑N
i=1 ψ

(
si0, a

i
0

)
.611

We have612

ε̂opt =
∥∥∥ζ̂ − ζ̂∗∥∥∥2

D̂
+
∥∥∥(ν̂∗ − B̂π ν̂∗)− (ν̂ − B̂π ν̂)∥∥∥2

D̂

≤ ‖Ψ‖22
∥∥ŵζ − ŵ∗ζ∥∥2 + ‖Φ‖22 ‖ŵν − ŵ

∗
ν‖

2

≤ max
(
‖Ψ‖22 + ‖Φ‖22

)(∥∥ŵζ − ŵ∗ζ∥∥2 + ‖ŵν − ŵ∗ν‖
2
)
, (42)

where Ψ = [ψ (si, ai)]
N
i=1 ∈ RN×p and Φ = [ψ (si, ai)− γψ (s′i, a

′
i)]
N
i=1 ∈ RN×p.613

In general case, the optimization 41 is convex-concave, therefore, the vanilla stochastic gradient614

descent converges in rateO
(

1√
T

)
in terms of the primal-dual gap. Specifically, we have f (x) = 1

2x
2,615

which will lead 1
N

∑N
i=1 f

∗ (wζ>ψ (si, ai)H
)

= ‖wζ‖2C with C = 1
N

∑N
i=1 ψ (si, ai)ψ

> (si, ai) ∈616

Rd×d. Under the assumption as [11],617

Assumption 8. A has full rank, C is strictly positive definite, and the feature vector ψ (s, a) is618

uniformly bounded.619

We discuss the optimization error εopt := E [ε1], where the E [·] w.r.t. the randomness in the algorithm,620

in two algorithms for equation 41,621

• SVRG We can easily verify that the T -step solution of SVRG,
(
ν̂T , ζ̂T

)
, converges to622 (

ν̂∗, ζ̂∗
)

in linear rateO (exp (−T )) in terms of E
[∥∥ŵTν − ŵ∗ν∥∥2 +

∥∥∥ŵTζ − ŵ∗ζ∥∥∥2] follow-623

ing [11], where the expectation w.r.t. the randomness in the SVRG. Specifically, we have624

625

ε̂opt = O (exp (−T )) . (43)

• SGD Although the optimization equation 41 is not strongly convex-concave, we can still626

prove O
(
1
T

)
convergence rate.627
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Lemma 9. Let the stepsize τt decay in O
(
1
t

)
, assume the norm of the stochastic gradient628

is bounded, under Assumption 8, we have629

ε̂opt = O
(

1

T

)
. (44)

Proof. Denote θ̂t =
[
ŵtν ,

1√
ρ ŵ

t
θ

]
and

Gt =

[
1 0
0 1√

ρ

]
·
[

0
√
ρÂt

−√ρÂ>t ρĈt

]
︸ ︷︷ ︸

Q̂

·
[
wtν
1√
ρw

t
ζ

]
−
[
b̂t
0

]

as the unbiased stochastic gradient with E [Gt] = gt, we have the update rule630

as θt+1 = θt − ΣtGt, Σt =

[
1 0
0 1√

ρ

]
σt We denote δt = 1

2

∥∥∥θ̂t − θ̂∗∥∥∥2 =631

1
2

[
‖ŵtν − ŵ∗ν‖

2
+ 1

ρ

∥∥∥ŵtζ − ŵ∗ζ∥∥∥2] and ∆t = E [δt]. Then, we have632

δt+1 =
1

2

∥∥∥θ̂t − ΣtGt − θ̂∗
∥∥∥2 ≤ δt +

1

2
σ2
t

(
1 +

1

ρ

)
‖Gt‖2 −

(
θ̂t − θ̂∗

)>
(ΣtGt) .

Take the expectation on both sides and E
[
‖Gt‖2

]
≤ K2,633

∆t+1 = ∆t +
σ2
t

2

(
1 +

1

ρ

)
K2 − E

[(
θ̂t − θ̂∗

)>
(Σtgt)

]
. (45)

As shown in [11], under Assumption 8 and set ρ =
8λmax(AC−1A)

λmin(C) , the matrix Q := E
[
Q̂
]

634

has positive real eigenvalue and635

λmax (Q) ≤ 9
λmax (C)
λmin (C)

λmax

(
AC−1A

)
, λmin (Q) ≥ 8

9
λmin

(
AC−1A

)
.

On the other hand, with the first-order optimality condition, we can show that Qθ̂∗ = b̂.636

Then, we have637

E
[(
θ̂t − θ̂∗

)>
(Σtgt)

]
= E

[(
θ̂t − θ̂∗

)>
Σ2
t

(
Qθ̂t − b̂

)]
= E

[(
θ̂t − θ̂∗

)>
Σ2
tQ
(
θ̂t − θ̂∗

)]
≥ 2λmin (Q)

(
1 +

1

ρ

)
σ2
t∆t.

Plug this into the equation 30, we obtain the recursion,638

∆t+1 ≤ ∆t+
σ2
t

2

(
1 +

1

ρ

)
K2−2λmin (Q)

(
1 +

1

ρ

)
σ2
t∆t ≤ (1− 2cσt) ∆t+

1 + 1
ρ

2
σ2
tK

2,

(46)
with c = λmin (Q)

(
1 + 1

ρ

)
. By setting σt > 1

2ct , ∆T = O
(
1
T

)
.639

640

Using the above results for linear parametrization, we can reach the following corollary of Theorem 2.641

Corollary 10. Under the conditions of Theorem 2 and with linear parametrization of (ν, ζ) and642

under Assumption 8, after T -iteration, we have ε̂opt = O (exp (−T )) for SVRG and ε̂opt = O
(
1
T

)
643

for SGD.644
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