Supplement: Error Correcting Output Codes
Improve Probability Estimation and Adversarial
Robustness of Deep Neural Networks

Gunjan Verma Ananthram Swami
CCDC Army Research Laboratory CCDC Army Research Laboratory
Adelphi, MD 20783 Adelphi, MD 20783
gunjan.verma.civ@mail.mil ananthram.swami.civ@mail.mil

1 Experiments

1.1 Training

All models (e.g, all the models shown in Table 1 of the main text, except for Madry’s model) are
trained for E' epochs using the Adam optimizer and a learning rate of 3e—4, where £ = 150 for
MNIST and E = 400 for CIFAR10. To prevent overfitting, we employ two simple procedures. One,
we add zero-mean Gaussian noise with standard deviation 0.3 for MNIST and 0.032 for CIFAR10,
respectively, to every pixel. Also, instead of training on the original images, we train instead on
images of the form (1 — a)x + ayy where x is the original image and y is a randomly chosen image
from the training set. We set a = 0.3 for MNIST and o = 0.032 for CIFAR10. These values of «
are chosen simply to be equal to the corresponding parameter € used in the L., PGD attack. This
latter procedure intuitvely appears to be a useful form of data augmentation for adversarial machine
learning contexts (though we find it provides minimal benefit against adversarial attack; the low
accuracies against PGD attack for the Softmax and Logistic models results on MNIST demonstrate
this). For CIFAR10, we also use standard data augmentation (e.g., rotating and shifting images). For
Softmax models, we use the standard cross-entropy loss. For Logistic models, we use the binary
cross-entropy loss (equivalently, the logistic loss) on a per output neuron (bit) basis. For Tanh models,
which operate with Hadamard codes containing 4/ — 1 elements (instead of the usual 1 and 0), we
use the (SVM) hinge loss on a per output neuron basis.

1.2 Adversarial attack

In order to generate adversarial attacks on our models, we use the CleverHans 3.0.1 software [[1]].
In all cases, we use the default values of attack parameters with changes noted herein; when we
do change attack parameters, we always do so as to make the attack strictly stronger. We use
the projected gradient descent (PGD) attack [2] for L., based attacks, which has a parameterized
maximum pixel-wise distortion which we denote by ¢; in this paper we use € = 0.3 for MNIST and
e =0.031 (2%5) for CIFAR10. We use 500 iterations per PGD attack for MNIST and 200 iterations
for CIFAR10. For L attacks we use the Carlini-Wagner (CW) algorithm [3] with a learning rate
of 1e—3 and 10 binary search steps. Benign accuracy is calculated on the entire test set. For PGD
attacks, we use 2000 test set examples to compute adversarial accuracy. For CW attacks, we use 100
test set examples; we use fewer examples for CW as it is a significantly slower attack to execute.
“Random” attacks involve simply generating inputs with pixels independently and uniformly sampled
from [0, 1]. The blind-spot attack (BSA) [4] of Table 2 in the main text simply applies the CW attack
to a scaled version of the input ax wherea ~ 1, o < 1.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

i

[

I

1| F, Conv || F, Conv

3,3 3,3 :

: St(ri de) 1 Sfri de) 5 Dense || Dense |\ Dense
!

[

i

[

Figure S1: Architecture of “Standard” models. The processing flow is from left to right. The notation
inside each box indicates the layer description; e.g. the left-most box indicates that input is convolved
with F7 filters of shape 3 x 3 with stride 1. The yellow dashed rectangle indicates that the components
within it are repeated ?; times in succession in the architecture. The solid blue color indicates
the component is repeated Ro times in succession. After the first 2 convolutional components, the
network is followed by 3 dense (i.e., fully connected) layers. The final dense layer consists of D3
neurons with linear activation. For MNIST, we use Ry = 3, Ry = 1, F} = 64, D, = 128, Dy = 64,
D3 = N where N is the output codeword size. For CIFAR10, we use R; = 3, Ry = 2, F} = 64,
Dy =128, Dy = 64, D3 = N where N is the output codeword size.

I ~ |
1] F. Conv | | D, D,
_________ i (232) I |Dense| |Dense
] i , Stride 1 i
Ta N\ N ™ <
I ~N |
I I [F,Conv], D D
I| F,Conv || F,Conv |1 | 22 |, Den15e Denzse
I G33) (33) |1 | stide1],
| Stride1 || Stride2 | '\ ~
I e ~N |
: : 1| F,Conv | D, D,
| (2_'2) | |Dense| |Dense
1\ J_ J | Stride 1
[1 T\ /!
_________ | ~ |
I F, Conv | | D, D,
| (2_'2) | |Dense| |Dense
Stride 1 |
A J
L]

Figure S2: Architecture of “Ensemble” models. The processing flow is from left to right. The
notation inside each box indicates the layer description; e.g. the left-most box indicates that input is
convolved with I filters of shape 3 x 3 with stride 1. The yellow dashed rectangle indicates that
the components within it are repeated R; times in succession in the architecture. The solid blue
color indicates the component is repeated Ro times in succession. After the first 2 convolutional
components, the network splits into four branches. Each branch applies convolution and densely
connected layers. Finally, a neuron with linear activation outputs the logit (shown as a circle). To
output IV bits, this entire unit is replicated K times and each is separately trained. The final layer
contains 4 neurons in this figure for illustration purposes; in general it will contain % bits if N is
a multiple of 4 and we set K = 4; else, the final layer is comprised of % bits and we set K = 2.
The intuition behind the branching is to help de-correlate the errors made by the output bits, since
no parameters are shared across branches. For MNIST, we use R; = 3, Ro = 1, F} = 32, Fb =4,
D1 =].6, D2 = 8. For CIFARlO, WeE use R1 = 3, RQ = 2, F1 = 64, F2 = 16, D1 = 16, D2 =&.

1.3 Standard architecture

Figure [ST|shows the architecture for “Standard” models (in the nomenclature of Table 1 of the main
text). This is essentially a vanilla convolutional neural network architecture.

1.4 Ensemble model architecture

Figure [S2] illustrates the basic architecture used for experiments with “ensemble” models (those
ending in “Ens” in Table 2 of the main text). The caption therein contains the details. This neural
network outputs the logits corresponding to 4 “bits” of the output code. More generally, for a
codeword with IV bits which is a multiple of 4 (all Hadamard codes), an ensemble of 4 unique
instantiations of the network in Figure|S2|are learned; else 2 unique instantiations are learned. The
reason for learning in this way (as opposed to learning all [V output neurons in a single network, as
is conventionally done) is to reduce dependence across output bits as discussed in the main text. In
particular, we find empirically that this setup leads to better performance on “Random” attacks as
well as reduces the probability that the model is (incorrectly) certain on adversarial examples. It is
of course also possible to learn in other variations, for example to learn one bit per network (for a
total of NV networks). Each of these designs has a tradeoff between how “dependent” bits are and
the number of parameters used. Note that it may seem that since we are learning multiple networks,
we will require a very large number of parameters. However, this is not necessarily the case; this is
because each constituent network solves a smaller classification problem than a conventional DNN.
Therefore, the constituent networks used in our method can use fewer parameters per network.

1.5 Figures

Here we show some randomly selected samples of adversarial examples on the TanhEns16 model.
We attack with PGD, € = 0.3 the TanhEns16 model and sample from adversarial examples with
probability > 0.9 (Figure[S3), or with probability < 0.25 (Figure[S4). The key point to take away
from these figures is that the decisions (classifications as well as probabilities assigned) made by the
model are “reasonable” and ones a human would likely agree with. While assessing the quality of
probabilities produce by a model is largely a subjective exercise, these figures, along with Figure 3 in
the main text lend support to the notion that the TanhEns16 produces good probability estimates.

1.6 Time Complexity

Since our method only involves changing the output encoding, our training times are comparable
to those for training a conventional DNN of the same architecture. Our method adds no overhead.
Instead of learning a single network predicting N bits, we learn 4 networks each predicting % bits.
This generally increases training time by a constant factor if no parallelization is used. However,
since there are no interdependencies between constituent networks, trivial parallelization across cores
or GPUs is achievable and can result in effectively faster training. If longer codes are desired, one
can simply train additional networks and augment them to existing learned models.

References

[1] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin, C. Xie, Y. Sharma,
T. Brown, A. Roy, A. Matyasko, V. Behzadan, K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li,
R. Sheatsley, A. Garg, J. Uesato, W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber, and
R. Long, “Technical report on the cleverhans v2.1.0 adversarial examples library,” arXiv preprint
arXiv:1610.00768, 2018.

[2] A.Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 IEEE
Symposium on Security and Privacy, 2017, pp. 39-57.

[4] H. Zhang, H. Chen, Z. Song, D. Boning, I. S. Dhillon, and C.-J. Hsieh, “The limitations of
adversarial training and the blind-spot attack,” arXiv preprint arXiv:1901.04684, 2019.

(b

Figure S3: High confidence adversarial examples. We plot one randomly selected adversarial
example from each true class label (0 - 9) under PGD(e = 0.3) attack of 2000 test examples that are
misclassified with high confidence (probability > 0.9) by the TanhEns16 model. No high-confidence
adversarial attacks on classes 1,5 were found in the attack. (a) True: 0. Predicted: 7. (b) True: 2.
Predicted: 7.(c) True: 3. Predicted: 5. (d) True: 4. Predicted: 9. (e) True: 6. Predicted: 0. (f). True:
7. Predicted: 9. (g). True: 8. Predicted: 4. (h). True: 9. Predicted: 4. The example in (h) is likely
mislabeled in the test set. In all cases, it seems plausible (from a human perceptual viewpoint) why
the model might be confident about the predicted class.

10 10

() (2)

10

®

Figure S4: Low confidence adversarial examples. We plot one randomly selected adversarial
example from each true class label (0 - 9) under PGD(e = 0.3) attack of 2000 test examples that are
misclassified with low confidence (probability < 0.25) by the Tanh(16) model. No low-confidence
example of class 2 was found in the attack. (a) True: 0. Predicted: 7.(b) True: 1. Predicted: 6. (c)
True: 3. Predicted: 1. (d) True: 4. Predicted: 6. (e). True: 5. Predicted: 3. (f). True: 6. Predicted:
8. (g). True: 7. Predicted: 2. (h). True: 8. Predicted: 5. (i). True: 9. Predicted: 8. In all cases, the
numbers are confusing for a human too, so the low confidences are “understandable”.

	Experiments
	Training
	Adversarial attack
	Standard architecture
	Ensemble model architecture
	Figures
	Time Complexity

