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Abstract

In deep convolutional neural networks (CNNs), lo-
cal pooling operation is a key building block to effec-
tively downsize feature maps for reducing computation
cost as well as increasing robustness against input varia-
tion. There are several types of pooling operation, such as
average/max-pooling, from which one has to be manually
selected for building CNNs. The optimal pooling type would
be dependent on characteristics of features in CNNs and
classification tasks, making it hard to find out the proper
pooling module in advance. In this paper, we propose a
flexible pooling method which adaptively tunes the pooling
functionality based on input features without manually fix-
ing it beforehand. In the proposed method, the parameter-
ized pooling form is derived from a probabilistic perspective
to flexibly represent various types of pooling and then the
parameters are estimated by means of global statistics in the
input feature map. Thus, the proposed local pooling guided
by global features effectively works in the CNNs trained in
an end-to-end manner. The experimental results on large-
scale image classification tasks demonstrate that the pro-
posed pooling method produces favorable performance in
various deep CNNs.

1. Introduction

Deep convolutional neural networks (CNNs) are suc-
cessful models for high-performance image recogni-
tion [18, 32, 12]. While some techniques such as Batch-
Normalization [16] and DropOut [33] are fundamental to
properly train the deep models, from the architectural view-
point, the CNNs mainly comprise three basic operations of
convolution, activation and spatial pooling. The activation
functions, especially rectified-linear unit (ReLU) [26] and
its variants [24, 11], are applied to non-linearly transform
the neuron responses. The convolution is a crucial opera-
tion to extract effective features from an input image by the
learned filters [43, 4, 40]. The local convolution is expanded
to fully-connected (FC) one [18] which performs globally.

In a similar way to the convolution, there are two types
of spatial pooling in terms of receptive field, local or global
ones. The global pooling effectively substitutes for the FC

in some CNNs [22, 12, 34] through spatially compressing
the (last) feature map of space-channel tensor into the fea-
ture vector of channel dimensionality which is finally fed
into classification layers. Practically speaking, the average-
pooling is mainly applied to globally aggregate features,
though some pooling forms are also investigated in [17].

In contrast to the global pooling, local pooling opera-
tion is a key building block commonly employed in most
CNNs to efficiently reduce spatial resolution with increas-
ing robustness against variations in input images, such as
translation. The local pooling also stems from the biolog-
ical insight [15]. According to the biologically-inspired
model [31], various types of deep CNNs [18, 32, 34] em-
ploy local max-pooling for downsizing the feature maps,
while average-pooling is also applied to CNNs [20]. On
the other hand, some models [12, 40] achieve the same ef-
fect of downsizing by means of strided convolution which
is also regarded as a pooling following the convolution of
1-striding [45]. Therefore, in contrast to convolution op-
eration, there are several ways, such as avg/max, to imple-
ment the pooling operation and it is hard to manually choose
the optimal pooling type; it is determined based on the em-
pirical performance, requiring huge amounts of effort in a
trial and error approach. Thus, it motivates us to optimize
the type of pooling function in an end-to-end training, as is
done for convolution filters or leaky-ReLU parameters [11].

Toward trainable pooling operation, it is necessary to
address two issues regarding (1) how to formulate various
types of local pooling function and (2) what kind of data to
use for determining the pooling type. Diverse pooling func-
tionality has to be represented by a simple and unified form,
and the pooling operation in the form should be adaptively
tuned based on the input features even on a test phase, since
the optimal pooling type is related to the characteristics of
input features [1]. Thus, the trainable pooling demands such
a dynamic and flexible formulation. In addition, the op-
timal pooling functionality would be determined based on
the global characteristics of input features beyond local re-
ceptive field. The local and global pooling have been dis-
cussed separately as above, and there is no fusion between
them; the local pooling function so far deals with only local
features in the receptive field [30, 21].

In this work, we propose a novel trainable local pool-
ing function guided by the global features beyond the local
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ones. We first formulate the pooling function based on the
maximum entropy principle [25] to flexibly represent var-
ious types of pooling functions with trainable parameters.
The type of pooling functionality is effectively controlled
by the parameters. Then, we leverage global feature statis-
tics to estimate the parameters of the flexible pooling func-
tion. In the proposed pooling method, the parameters are
not directly trained in a static form but dynamically deter-
mined by means of the global features, in contrast to the
other parametric (trainable) pooling methods [30, 21]. Our
main contributions are three folds: (1) we theoretically de-
rive the parameterized pooling function which flexibly de-
scribes various types of pooling, (2) incorporate the global
features into the pooling operation through adaptively es-
timating the pooling parameters, and (3) perform thorough
experiments on large-scale datasets to present the effective
pooling form by analyzing the method from various aspects,
while showing the favorable performance in comparison
with the other methods.

2. Related Works
The spatial pooling originates from the biological work

about complex cells in the mammalian visual cortex [15].
Then, the importance of max-pooling has been discussed in
some neuroscientific works through analyzing/mimicking
the primary visual cortex area V1 [28, 29, 31].

The pooling is also applied for rather practical purpose
to aggregate features locally to build the local image de-
scriptors, such as SIFT [23] and HOG [5], via average-
pooling. In the framework of bag-of-words [3], the spa-
tial pooling is applied globally to aggregate word codes as-
signed to the local descriptors toward effective image repre-
sentation. While average-pooling is widely applied to count
words, max-pooling also works well in conjunction with
sparse coding techniques [1, 41].

In the literature of neural networks, a pooling technique
is applied either to summarize neuron activations across
channel in a multi-layered perceptron (MLP) or to down-
size spatial resolution in a convolutional neural network
(CNN). In the channel pooling, Lp-norm is discussed from
the viewpoint of signal recovery [2] and is extended to
the trainable one through learning the parameter p [9] to
smoothly transit from average (p = 1) to max (p =∞) op-
eration. The trainable Lp pooling is also related to MAX-
OUT [7] which performs inter-channel max-pooling.

The local spatial pooling is widely applied to deep CNNs
for gradually downsizing the feature maps with increasing
computation efficiency and robustness. While the average
pooling is employed in some CNNs [20], the max pooling
becomes a popular choice for deep CNNs [18, 32, 34] ac-
cording to the biologically-inspired model of HMAX [31].
Nonetheless, in building CNNs, it is necessary to deter-
mine the type of pooling, average or max, and the opti-

mal pooling type would be dependent on the recognition
tasks and/or characteristics of the input features [1]. There
are works [42, 21, 30] to address the problem by filling
the gap between these two pooling operations, with simi-
lar motivation to ours. The average and max pooling func-
tions can be simply integrated in a convex combination
with one weighting parameter which is randomly selected
in [42] or trained based on the local features by [21]. To
mitigate the artifacts caused by downsizing, the image pro-
cessing techniques are also applied to the pooling [39, 30].
Wavelet pooling [39] employs the wavelet to compress a
feature map accurately with less artifacts. The detailed
preserving pooling (DPP) [30] is also proposed based on
the image downscaling technique [38] to formulate a para-
metric pooling function as an intermediate operation be-
tween average and max. The proposed method is close to
those methods [21, 30] but is clearly different in the fol-
lowing two points; the parametric pooling function is de-
rived in a theoretical way based on maximum entropy prin-
ciple [25] to flexibly represent various types of pooling in-
cluding average/max-pooling (Sec. 3), and the parameters
are dynamically estimated from the global features beyond
the local receptive field of the pooling (Sec. 4).

From the probabilistic viewpoint, stochastic approaches
are applied to the local spatial pooling function [44, 45,
42] for introducing randomness into the CNNs as in
DropOut [33]. In contrast to the deterministic pooling men-
tioned above, the stochastic methods randomly pick up a
neuron activation in the receptive field throughout an end-
to-end training. We also discuss the connection between the
proposed method and the stochastic pooling in Sec. 3.3.

3. Parameterized Pooling Function
The local spatial pooling is generally formulated as fol-

lows. Given an input feature map X ∈ RH×W×C , the c-th
channel output Y cp at the pixel p is computed by applying
the spatial pooling to the c-th channel feature map as

Y cp =
∑
q∈Rp

Wcp(q,X)Xc
q , (1)

s.t. Wcp(q,X) ≥ 0, ∀q ∈ Rp,
∑
q∈Rp

Wcp(q,X) = 1, ∀p, c,

where Rp is a set of pixel positions in the receptive field
(neighborhood) of the pixel p, and Wcp is a weighting func-
tion to represent the type of pooling. For example, average-
pooling [20] is realized by Wcp(q,X) = 1

|Rp| in disre-
gard of both the position q and the features X , and max-
pooling [32] is represented by Wcp(q

∗,X) = 1, Wcp(q 6=
q∗,X) = 0 where q∗ = argmaxq∈Rp X

c
q , while skip-

ping [12] is simply given by Wcp(q = p,X) = 1, Wcp(q 6=
p,X) = 0. Thus, designing pooling operation results in
how to formulate the weighting function Wcp.



3.1. Maximum entropy principle

In this work, based on the constraints in (1), we regard
the weighing function Wcp as a probability density function,
and from the probabilistic perspective, formulate the fol-
lowing optimization problem for Wcp:

max
W

∑
q∈Rp

−W(q) log[W(q)] + λ̃W(q)Xq − ηW(q) log
[
W(q)

ρ̃q

]
,

(2)

s.t. W(q) ≥ 0,
∑
q∈Rp

W(q) = 1, (3)

where we omit in W the notations of p, c and X for sim-
plicity and introduce regularization parameters λ̃ ∈ R and
η > 0 as well as position prior distribution {ρ̃q}q∈Rp

. The
first term of (2) is derived from the maximum entropy prin-
ciple [25] which is a natural assumption to determine the
probability densities. In addition, two regularizations re-
garding the output Y cp (1) and the position are introduced
in the second and the third terms, respectively. The second
term intends to make the output Y = W(q)Xq more dis-
tinctive via maximization (λ̃ > 0) or minimization (λ̃ < 0).
And, the weighing W should be close to the predefined po-
sition priors {ρ̃q} via minimizing Kullback–Leibler diver-
gence in the third term.

(2) can be solved by introducing the Lagrange multipli-
ers αq ≥ 0 and β ∈ R for the non-netativity and unit-sum
constraints in (3) to provide the derivative w.r.t. W(q) as

−(1+η)(1+log[W(q)]) +λ̃Xq +η log[ρ̃q] +αq +β = 0, (4)

which leads to the following form of W,

W(q) = exp
{ 1

1 + η
(λ̃Xq + η log[ρ̃q] + αq + β)− 1

}
(5)

=
exp(λXq + ρq)∑

q′∈Rp
exp(λXq′ + ρq′)

, (6)

where αq = 0 due to the positivity of (5) and the KKT
condition, and β is defined so as to satisfy the unit-sum
constraint. We also reparameterize λ = λ̃

1+η ∈ R and
ρq = η

1+η log[ρ̃q] + ε with some constant ε to let ρq ∈ R
without loss of generality. The weighting function W is de-
composed into W(q) ∝ exp(λXq) exp(ρq) which comprises
two kinds of weights regarding feature X and spatial posi-
tion q, as in the bilateral filter [35]. Finally, we obtain the
parameterized pooling function by

Y cp =

∑
q∈Rp

Xc
q exp(λ

cXc
q + ρcq−p)∑

q∈Rp
exp(λcXc

q + ρcq−p)
, (7)

where we make the parameters independent of the position
p and dependent only on the channel c. Namely, the pooling

function contains the parameters of λ = {λc}Cc=1 ∈ RC
and ρ = {ρcq−p}Cc=1,q∈Rp

∈ RC|Rp| where ‘q−p’ means the
relative position from p in the receptive field Rp. Thereby,
the parameters are shared across any position p at that layer.

3.2. Derivative

The derivatives of the pooling function (7) is given by

∂Y cp
∂Xc

q

=
exp(λcXc

q + ρcq−p)∑
q′∈Rp

exp(λcXc
q′ + ρcq′−p)

{
1 + λ(Xc

q − Y cp )
}
,

(8)

∂Y cp
∂λ

=

∑
q∈Rp

(Xc
q − Y cp )2 exp(λXc

q + ρcq−p)∑
q′∈Rp

exp(λcXc
q′ + ρcq′−p)

, (9)

∂Y cp
∂ρq

=
(Xc

q − Y cp ) exp(λXc
q + ρcq−p)∑

q′∈Rp
exp(λcXc

q′ + ρcq′−p)
, (10)

where we consider the derivatives w.r.t. the input feature
Xc
q as well as the two parameters λc and ρcq−p, all of which

can be trained through back-propagation in an end-to-end
manner. The parameter λc is updated by (9) based on the
variance of the features, adapting to the scale of the fea-
tures. On the other hand, the derivative (8) is summed up
to 1 on the receptive field q ∈ Rp, as is the case with the
standard pooling such as avg/max-pooling. The update is
distributed over the receptive field according to the contri-
bution measured by

exp(λcXc
q+ρ

c
q−p)∑

q′∈Rp
exp(λcXc

q′+ρ
c
q′−p)

, suppressing

the features that are significantly smaller than the average
Y cp , as in Lateral inhibition [8], to let the network extract
diverse features.

3.3. Discussion

Flexibility. The pooling function (7) parameterized by λ
and ρ flexibly describes various types of pooling func-
tions; average and max pooling are produced by {λ =
0, ρq−p = 0} and {λ → ∞, ρq−p = 0}, respectively, while
{λ = 0, ρq−p = δq−p} leads to skipping. In addition, we
can also realize min-pooling by {λ→ −∞, ρq−p = 0}. The
position prior, which endows the pooling with local posi-
tion sensitivity, can also be related to a wavelet filter in the
Wavelet pooling [39]. Such a flexibility of the parametric
pooling (7) is a key property for adaptively controlling the
pooling type via the global features (Sec. 4).
Softmax. Without position priors, i.e., ρ = 0, the pool-
ing (7) corresponds to the α-softmax [19], which is men-
tioned in the literature of neuroscience [29, 27] and in the
framework of bag-of-words [1]. And, the parameter λ
is connected to the scaling factor in L2-normalized soft-
max [37] and to the temperature of softmax in the other
literatures [13, 10]; λ is a reciprocal of the temperature,
λ = 1

T . In those methods, the temperature is tuned by
hand to properly transfer the network structure in [13] and



is discriminatively learned based on labeled data for fine-
tuning the confidence of the classifier in [10] or for improv-
ing the classification performance in the l2-normalized soft-
max [37]. In contrast, we naturally derive the parameter λ
from the optimization problem (2) based on the maximum
entropy principle. Through controlling the two terms of the
entropy and the significance of the output in (2), the pa-
rameter λ plays a role in smoothly switching the pooling
functionality from average to extreme ones (min/max). In
addition, the proposed method is distinctive in that the pool-
ing parameters λ and ρ in (7) are adaptively determined by
means of global features as described in Sec. 4.
Probabilistic viewpoint. As described in Sec. 3.1, the
pooling (7) outputs the probabilistic mean of the local fea-
tures according to the probability density function W in (6).
On the other hand, the stochastic pooling [44] picks up
the feature from the receptive field {Xc

q}q∈Rp
according

to the probability proportional to the non-negative feature
values, pq ∝ Xc

q , which is related to (6). For small λc

and ρ = 0, we can approximate exp(λcXc
q ) ≈ 1 + λcXc

q ,
and thereby the pooling weights (6) result in the form of
W(q) ≈ 1+λcXc

q

|Rp|+λc
∑

q′∈Rp
Xc

q′
corresponding to the biased

probability of [44]. And, we can say that the form (6) is
more flexible since it is applicable to any features while the
stochastic pooling [44] accepts only non-negative features
produced such as by ReLU.

4. Global Feature Guidance
We leverage the global features to estimate the parame-

ters of λ and ρwhich control the type of pooling function in
(7) operating locally on the receptive field {Xc

q}q∈Rp . For
that purpose, the pooling parameters λ and ρ are regarded
as variables rather than static parameters to be optimized in
the training. We let the variables be dependent on the input
featuresX ∈ RH×W×C and thus described by the mapping
λ = f(X) and ρ = g(X). Following the methodology in
squeeze-and-excitation (SE) [14], the mapping functions f
and g are designed by means of the multilayer perceptron
(MLP) applied to the global feature statistics (Fig. 1);

λ = f(X;U ,Vλ) (11)

= s
(
Vλ ReLU(U [t({X1

p}∀p), · · · , t({XC
p }∀p)]>)

)
, (12)

where we consider one hidden layer of D neurons with
ReLU and the function t computes k types of statistics per
channel over the inputs {Xc

p}
(H,W )
p=(1,1) and s is an element-

wise non-linear activation function; for example, we can set
t to a global averaging function (k = 1) and s to a sigmoid
function as in [14]. The similar MLP is applied for ρ by
g(X;U ,Vρ) which shares U with f, though the activation
s may be different. Thus, in the proposed pooling, called
global feature guided pooling (GFGP), the MLP weights

pooling
parameters

: global average pooling

: sigmoid function

Typical Setting

#param

(Eq.7)

Eq.7 without position prior
,  #param

Figure 1. Global Feature Guided Pooling (GFGP).

U ∈ RD×kC ,Vλ ∈ RC×D and Vρ ∈ R|Rp|C×D are the
targets to be optimized in an end-to-end training.

In the proposed method, the key point is to deal with
the pooling parameters as variables to be mapped from the
global features by (11). Thus, from that viewpoint, it con-
trasts with the other methods, as follows.
Constant. The pooling with pre-fixed constant λ produces
such as avg-pooling (λ = 0), max-pooling (λ =∞) and the
intermediate one between them [1] (0 < λ < ∞). In con-
trast to those pre-fixed pooling, the proposed method deter-
mines the type of pooling adaptively based on data without
manually tuning it, as in the parameterized pooling [30, 21].
Parameter. In [30], the pooling parameters are directly
trained in an end-to-end manner. Thus, the trained pool-
ing types could be varied across both channels and lay-
ers adaptively unlike the above-mentioned constant pool-
ing. However, the pooling types, i.e., pooling parameters,
are fixed once trained, for a test phase. On the other hand,
the proposed pooling is dynamically dependent on the input
features X via the mapping (11); that is, the same pool-
ing layer works differently according to the input features,
which exhibits distinctiveness compared to the previous pa-
rameterized pooling [30].
Locality. While the gated pooling [21] also estimates the
gating parameter via the features yet locally, the function-
ality of the proposed pooling is determined based on the
global characteristics of input features and works in the
local receptive field. Thus, we can say that the proposed
method incorporates both local and global information into
the pooling. The pooling is generally applied to downsize
the spatial resolution of an input feature map, inevitably
loosing (spatial) information, and the global information in
the proposed pooling would compensate it for improving
performance.

5. Experimental Results
We evaluate the performance of the proposed method

by embedding it into the deep CNNs trained on large-scale
datasets for image classification [6, 47]. The classification



performance is measured by single-crop top-1 and top-5 er-
ror rates (%) on the validation set of dataset.

5.1. Ablation study

We analyze the proposed pooling method (7, 11) on Im-
ageNet classification [6]. It is applied to the deep CNN of
VGG-13 [32] which is slightly modified from the original
model [32] by introducing Batch-Normalization [16] and
reducing the number of channels in the FC layers from 4096
to 2048. The CNN contains five local max-pooling layers
with the pool size of 2×2 and (2, 2)-striding to downsize the
feature map resolution by a factor of 2. We replace all the
local pooling layers by the proposed method and train the
CNN by following the learning protocol provided in Mat-
ConvNet [36]. Unless otherwise noted, the proposed pool-
ing method is implemented by the default setting (Fig. 1)
which applies the sigmoid s and the global average pooling
t({Xc

p}) = 1
HW

∑(H,W )
p=(1,1)X

c
p to the MLP of D = C

2 with-
out position priors ρ = 0; these are discussed in Sec. 5.1.2.

5.1.1 Global feature guiding model

We clarify how the proposed scheme of global feature guid-
ance (Sec. 4) contributes to improving the pooling. As men-
tioned in Sec. 4, we can consider the three types of the pool-
ing function regarding λ in (7) ; we apply constant λ = 1
as the simplest way, directly train the parametric λ as in the
trainable pooling [30], and estimate the variable λ from the
global features by the proposed GFGP (11). As shown in
Table 1a, the methods that learn λ as parameter and vari-
able work well to improve performance, and particularly
the GFGP leveraging the global information to variable λ
via (11) outperforms the others by a large margin. Then,
the importance of the global information in GFGP is ver-
ified through the comparison with the method that applies
(11) locally; that is, in (11), t is set to a local average pool-
ing on the 2×2 receptive field to produce the variable λcp for
each output Y cp . Note that this local method also employs
the same MLP model composed of the parameters U and
Vλ of the same size as in the GFGP (11). The performance
comparison in Table 1b demonstrates that the global method
(GFGP) is superior to the local one, validating the effective-
ness of the global information in the pooling method.

While the position prior was turned off (ρ = 0) in the
above analysis, we here apply the full GFGP estimating
two variables of λ and the position priors ρ; in this case
of 2× 2 pool size, the position priors are described by four-
dimensional variable per channel resulting in ρ ∈ R4C . Ta-
ble 1c shows that the full method is comparable to the sim-
ple method of ρ = 0. The sensibility to the local position
via the priors ρ might prevent the pooling from increasing
robustness against translation. Similar results are found in
the Wavelet pooling [39] which applies wavelet filters re-

Table 1. Performance analysis for global feature guidance. The
performance of the proposed GFGP is highlighted by bold fonts.

(a) Pooling type w.r.t. λ in (7) under ρ = 0 original
λ Constant Parameter Variable (GFGP) max-pool

Top-1 29.82 29.56 28.57 30.02
Top-5 10.40 10.26 9.65 10.27

(b) Receptive field in (11)
t global avg local avg

Top-1 28.57 29.02
Top-5 9.65 9.92

(c) Position prior
Variable λ λ, {ρq}q
Top-1 28.57 28.62
Top-5 9.65 9.57

lated to the position prior (Sec. 3.3) and produces compa-
rable performance with the simple average pooling. Thus,
in this work, we apply the simple GFGP without priors ρ
in (7) which contains only C-dimensional variable λ to be
estimated by (11).

5.1.2 MLP model in GFGP

Next, we analyze the MLP model (12) to map the global
features into the pooling parameters {λc}Cc=1.
Global statistics t. There are three standard models of
global average (avg), standard deviation (std) and max
for the statistics t, which are compared in Table 2a; note
that the statistics of avg+std produce doubled feature di-
mensionality (k = 2 in Fig. 1) compared to the others
(k = 1). The simple global avg exhibits favorable per-
formance, while max would be less suitable to these dense
feature maps [1] and be vulnerable to outliers in the less
discriminative features at the shallower layers.
MLP architecture. Table 2b compares the MLPs of var-
ious numbers of hidden nodes D as well as the single lay-
ered perceptron (SLP) of s(Ut(X)). Under the same num-
ber of total parameters, C2, the MLP- 12 outperforms the
SLP due to the non-linearity of the MLP mapping. Though
MLP-1 doubling the number of hidden nodesD slightly im-
proves the performance, the MLP- 12 is favorable based on
the trade-off between performance and computation cost.
Activation function s. The range of λ is restricted via
the activation function s, for which we can consider four
types of functions; sigmoid 1

1+exp(−x) ∈ [0, 1], softplus
log(1 + exp(x)) ∈ [0,+∞], hyperbolic tangent (tanh)
exp(x)−exp(−x)
exp(x)+exp(−x) ∈ [−1, 1], and identity x ∈ [−∞,+∞].
Note that the latter two functions might push the pooling
toward min-pooling via λ < 0. The scale of λ is bounded
by tanh and sigmoid functions, letting the scale factor in (7)
rely on the features X which would be properly trained in
an end-to-end manner; if the features are normalized, the
scale factor should be embedded into λ as in [37]. We
can see in Table 2c that the sigmoid and softplus functions
work well, producing non-negative λ to push the pooling
(7) toward avg/max-pooling. This result implies that the
min-pooling suppressing the feature channel degrades per-



Table 2. Performance comparison across various settings in the
MLP model (12).

(a) Global statistics t
Statistics avg avg+std max

Top-1 28.57 28.56 28.93
Top-5 9.65 9.70 10.01

(b) Mapping architecture
Architecture SLP MLP- 1

4
MLP- 1

2
MLP-1

size of U C × C C
4
× C C

2
× C C × C

size of V - C × C
4

C × C
2

C × C
Top-1 28.72 28.80 28.57 28.36
Top-5 9.71 9.83 9.65 9.51

(c) Activation function s

s sigmoid softplus tanh identity
Range of λ [0, 1] [0,+∞] [−1, 1] [−∞,+∞]

Top-1 28.57 28.63 28.96 28.70
Top-5 9.65 9.75 9.75 9.80

formance, while avg/max-pooling excites the feature chan-
nel to favorably improve the performance. The best perfor-
mance is produced by the sigmoid which properly limits the
range of λ as well as excludes the min-pooling.

5.1.3 Effectiveness by increased number of parameter

Our pooling layer is efficiently computed due to the global
average pooling followed by the MLP as in SE [14], com-
putation cost of which might be further improved such as
by grouped convolution [40] and channel shuffling [46].

As to the network size, the proposed pooling method in-
troduces only C2 additional parameters per pooling layer,
as shown in Table 2b. From the viewpoint of the increased
number of network parameters, we show the effectiveness
of the proposed method in comparison with the other types
of layers that adds the same number of parameters; NiN [22]
based on 1 × 1 conv, ResNiN which adds an identity path
to the NiN module as in ResNet [12], and squeeze-and-
excitation (SE) [14], whose detailed structures are shown
in the supplementary material. For fair comparison, these
methods are implemented by using the same MLP- 12 as
ours (Table 2b) of C2 parameters and are embedded so
as to work on the feature map fed into the (original) max
pooling layer; note that those comparison modules do not
provide the functionality of downsizing feature map. The
performance results are shown in Table 3, demonstrating
that the proposed pooling method benefits from the addi-
tional parameters most effectively. And, it should be noted
that for further improving performance, the proposed pool-
ing method could work in conjunction with these modules
that enhance the discriminativity of the feature map without
pooling functionality.

Table 3. Performance comparison under the same number of addi-
tional parameters, C2 per pooling layer.

Model NiN [22] ResNiN [22] SE [14] Ours
Top-1 30.61 29.12 29.24 28.57
Top-5 10.80 10.04 10.03 9.65

Table 4. Performance analysis regarding depths where the pro-
posed pooling substitutes for the original max-pooling. ‘X’ in-
dicates the replacement by the proposed one, while ‘-’ means the
original max-pooling.

Pooling layer (Depth) Error rate (%)
1st 2nd 3rd 4th 5th Top-1 Top-5

(i) X - - - - 30.01 10.47
(ii) X X - - - 29.68 10.38
(iii) X X X - - 29.43 10.24
(iv) X X X X - 29.08 9.89
(v) X X X X X 28.57 9.65
(vi) - X X X X 28.69 9.61
(vii) - - X X X 29.04 9.83
(viii) - - - X X 28.92 9.90
(ix) - - - - X 29.71 10.17

5.1.4 Depth

We investigate the effect of our pooling method in terms
of the depth where it is embedded. In this experiment,
the method replaces some of the max-pooling layers in
VGG-13, while in the other experiments the CNN is fully
equipped with the proposed method at all the pooling layers.
The performance results in Table 4 show that our method
at the deeper layers contributes to performance improve-
ment more effectively; removing the proposed pooling at
the shallower layers (Table 4vi∼viii) degrades performance
only slightly. The deeper layers produce the more discrim-
inative features on which the flexible pooling works well.
Thus, it would be effective to apply the proposed pooling
method only at the deeper layers, for suppressing the in-
crease of parameters in CNNs.

5.2. Analysis of variable λ

We then analyze the contents of λ produced by (11) in
the proposed GFGP. At each local pooling layer, the pro-
duced {λc}Cc=1 are distributed over [0, 1] due to the sigmoid
activation s and we quantize the distribution into three-
dimensional histogram of three bins as shown in Fig. 3.
Since the sum of the histogram counts is constantly C,
the three-dimensional histograms are lying on 2-simplex as
shown in Fig. 2; we randomly picked up 10,000 samples
from the ImageNet dataset and feed-forward them through
the trained VGG-13 to obtain 10,000 histogram vectors at
each pooling layer. At the first layer, one can see various
types of the distribution of λ which are spread diversely
around the center1. It indicates that the optimal pooling

1The center point corresponds to the uniform distribution of {λc}Cc=1.
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Figure 2. Visualization of the distribution of {λc}Cc=1 produced by (11) where C is the number of channel at each pooling layer. The
distribution of C samples {λc}Cc=1 is quantized into three bins to form three-dimensional histogram (Fig. 3) which lies on 2-simplex.
Each point indicates each distribution (histogram of three bins) and is colored by assigning to RGB-channels the frequencies on the three
histogram bins at the first layer. The center point (’×’) means a uniform distribution. This figure is best viewed in color.

types vary from sample to sample. On the other hand, at
the deeper layers, the distribution of λ is somehow biased,
and in particular, the last fifth layer exhibits high bias to-
ward the pooling type of either average or max. The last
pooling layer receives discriminative features which might
require the distinctive pooling type such as average/max-
pooling. It would lead to the effectiveness of the proposed
pooling at the deeper layers as discussed in Sec. 5.1.4.

Then, to measure the dependency of λ on the object cat-
egories, we show in Table 5a the Fisher discriminant score
by applying the Fisher discriminant analysis to the three-
dimensional histogram vectors which are provided with the
class labels. All the layers exhibit low discriminant scores,
indicating that the produced λ are less dependent on object
categories. Actually, in Fig. 3 which shows examples of the
distribution of λ, we can see clear difference between two
samples belonging even to the identical ImageNet category.

We also analyze the relationship between layers in terms
of λ. Each sample image produces the distributions of λ at
respective layers, and the correlation coefficients between
layers are computed by canonical-correlation analysis over
the three-dimensional histogram vectors. As shown in Ta-
ble 5b, although the adjacent two layers exhibit relatively
high correlations, they are generally low, showing less cor-
relation among the layers.

Thus, we can conclude that it is important to produce the
variable λ at each layer for each sample without sharing it
across layers nor considering class categories.

5.3. Comparison to the other methods

Finally, the proposed method is compared with the other
pooling methods on several deep CNNs. We first consider
the CNNs of VGG-16 [32] which contains five local max-
pooling layers and VGG-16-mod [17] of four local max-
pooling layers and one global average-pooling; all the lo-
cal max-pooling layers are implemented with 2 × 2 pool
size and (2, 2)-striding. We replace those local pooling with
the other types of pooling for comparison: skip pooling im-
plemented by the convolution with (2, 2)-striding, average-
pooling, two types of stochastic pooling methods [44, 45],

1st layer 2nd layer 3rd layer 4th layer 5th layer
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Figure 3. Examples of the distributions of {λc}Cc=1. The distribu-
tion is quantized into a histogram of three bins over [0, 1]. These
two histograms are produced by two image samples belonging to
the identical ImageNet category.

Table 5. Statistics for the distribution of λ. (a) The higher score
means the higher class-dependent distribution of λ. (b) The higher
correlation indicates the closer connection regarding the distribu-
tion of λ between two layers.

(a) Fisher discriminant score
1st layer 2nd layer 3rd layer 4th layer 5th layer
0.1395 0.2021 0.1854 0.2276 0.1610

(b) Correlation coefficient
1st layer 2nd layer 3rd layer 4th layer 5th layer

1st - 0.4400 0.2451 0.1739 0.1445
2nd - - 0.3172 0.2165 0.1771
3rd - - - 0.3454 0.2581
4th - - - - 0.3795

three trainable pooling methods of DPP [30], Gated pool-
ing [21] and our pooling (7) of parametric λ, and the pro-
posed GFGP which applies (11) to the pooling (7). The
deep CNNs are trained on ImageNet dataset in the same
way as in Sec. 5.1; the detailed procedures to embed the
proposed pooling into CNNs and train them are shown in
the supplementary material.

The performance results are shown in Table 6a. The
skip pooling which depends on the local position is infe-
rior to the others due to the position sensitivity discussed in
Sec. 5.1.1. And, the stochastic approaches [44, 45] are less
effective and especially the S3-pooling [45] which renders
further randomness to the pooling is unsuitable for this task



on large-scale dataset. Such a randomness in pooling would
hamper training of the networks, and the deterministic way
works on the large-scale dataset which contains large varia-
tion in training images with enough data augmentation. The
proposed GFGP favorably outperforms the standard pooling
methods as well as the sophisticated ones [30, 21].

We then evaluate the pooling methods on the deeper
CNNs of ResNet-50 [12] and ResNeXt-50 [40]. These
models contain one skip pooling of (2, 2)-striding at the first
convolution layer, followed by max-pooling with 3×3 pool
size and (2, 2)-striding, and three skip pooling of (2, 2)-
striding in the three ResBlocks, respectively; there are to-
tally five local pooling layers to be replaced with the other
pooling methods. In these deeper CNNs, the (original)
skip-pooling is again inferior even to the simple avg/max-
pooling as in Table 6a. The performance is considerably
improved by the proposed GFGP with (7); on ResNet, it
is superior even to the further deeper CNN of ResNet-101
which produces 22.48% (top-1) and 6.43% (top-5).

In addition to the above performance comparison, we
also extends the previous trainable pooling methods [30, 21]
by applying the global feature guidance (Sec. 4) to esti-
mate the trainable parameters via the mapping (11); the
DPP [30] contains two parameters per channel while the
Gated pooling [21] has one parameter per channel. Our ex-
tension2 favorably boosts the performance as shown in Ta-
ble 6, demonstrating the generality of the GFGP approach
(Fig. 1) .

The proposed method is also evaluated on the Places-365
dataset [47] for scene classification, the different task from
the object recognition in the ImageNet. We apply the same
CNN models as in Table 6 by replacing all the local pool-
ing layers with our GFGP as well. The performance results
in Table 7 demonstrate the effectiveness of the proposed
method on the task of scene classification, which shows the
applicability of the proposed pooling to versatile tasks.

As shown in the above experimental results, the pro-
posed method generally boosts the performance of deep
CNNs by simply replacing the local pooling layers. Since
the proposed method operates only on the pooling layers, it
is noteworthy that the method could favorably work with the
techniques applied to refine the feature map, as discussed in
Sec. 5.1.3.

6. Conclusion
In this paper, we have proposed a flexible pooling

method adaptively tuned based on input features. The pro-
posed method is composed of both a parameterized pooling
function derived from the probabilistic perspective of max-
imum entropy principle and an adaptive way to estimate the

2As suggested in the papers [30, 21], we employ a exponential activa-
tion function for s in the GFGP-DPP, while the sigmoid is applied to s in
the GFGP-Gated. The other settings in (11) are the same as our GFGP.

Table 6. Performance comparison on ImageNet dataset [6]. The
pooling method marked by ∗ is the original setting in the CNN
model; skip∗ in (b) indicates the original setting without manipu-
lating any pooling layers in the models.

(a) VGG-based models
VGG-16 [32] VGG-16-mod [17]

Pooling top-1 top-5 top-1 top-5

si
m

pl
e skip 29.60 10.16 26.00 8.26

avg 28.44 9.53 25.50 8.01

st
oc

ha
st

ic

max∗ 27.94 9.25 25.66 7.97
stochastic [44] 28.66 9.67 25.74 8.18

S3 [45] 35.38 13.76 29.45 10.46

tr
ai

na
bl

e DPP [30] 28.39 9.45 25.55 8.04
Gate [21] 28.06 9.38 25.20 8.01

(7) of parametric λ 27.92 9.19 25.42 7.94

ou
rs

GFGP with (7) 27.17 8.77 24.63 7.50
GFGP with DPP [30] 28.03 9.23 25.08 7.81
GFGP with Gate [21] 27.36 9.00 24.82 7.48

(b) ResNet-based models
ResNet [12] ResNeXt [40]

Pooling top-1 top-5 top-1 top-5

si
m

pl
e skip∗ 23.53 7.00 22.69 6.65

avg 22.61 6.52 22.14 6.35
tr

ai
na

bl
e max 22.99 6.71 22.20 6.24

DPP [30] 22.52 6.63 21.84 5.98
Gate [21] 22.27 6.33 21.63 5.99

ou
rs

GFGP with (7) 21.79 5.95 21.35 5.74
GFGP with DPP [30] 22.66 6.60 21.79 6.02
GFGP with Gate [21] 22.20 6.26 21.45 5.81

Table 7. Performance comparison on Places-365 dataset [47].
(a) VGG-based models

VGG-16 [32] VGG-16-mod [17]
Pooling top-1 top-5 top-1 top-5
max∗ 46.25 15.95 45.44 15.11

GFGP with (7) 45.99 15.46 45.33 14.96

(b) ResNet-based models
ResNet [12] ResNeXt [40]

Pooling top-1 top-5 top-1 top-5
skip∗ 44.88 14.62 44.52 14.36

GFGP with (7) 44.07 13.94 44.25 13.94

parameters by means of the global feature statistics. The pa-
rameters in the pooling function flexibly controls the pool-
ing type toward such as average and max-pooling. And, the
global information is effectively incorporated into the local
pooling function through adaptively tuning the pooling type
(parameters) based on the input global features. We per-
formed thorough experiments to present an effective form
of the proposed pooling method and demonstrate favorable
performance on large-scale image classification tasks using
ImageNet and Places-365 datasets.
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