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A. Proof of Theorem 1.1

A.1. Outline

We will prove Theorem 1.1 in two steps. First, we will show that the mean values of the
order parameters Rin, Qik and vk are given by the expressions used in the equations of motion
(Lemma A.1) and that they concentrate, i.e. that their variance is bounded by a term of order
N−2. This ensures that the leading-order of the average increment is captured by the ODE
of Theorem 1.1, and that the stochastic part of the increment of the order parameters can be
ignored in the thermodynamic limit N →∞. In other words, the two bounds ensure that the
stochastic Markov process converges to a deterministic process. To complete the proof, we use a
form of the coupling trick as described by Wang et al. [1].

A.2. First moments of the increment mµ

Throughout this paper, we use the convention that E indicates an average over all the random
variables that follow, while Eµ denotes the conditional expectation of all the random variables
that follow conditioned on the state of the Markov chain at step µ, mµ.

Lemma A.1. Under the same setting as Theorem 1.1, for all µ < NT , we have

E |Eµ mµ+1 −mµ − 1

N
f(mµ)| ≤ CN−3/2. (S1)

Proof. We first recall that mµ contains all time-dependent order parameters Rµ, Qµ, and vµ, so
we will prove the Lemma in turn for each of them. In fact, in each case we can prove a slightly
stronger result which encompasses the required bound.

For the teacher-student overlaps Rµin, we multiply the update (2) with w∗n/N on both sides
and find that

Rµ+1
in = Rµin −

ηw
N
viρ

µ
ng
′(λµi )∆µ . (S2)

The local field of the teacher is ρµn ≡ w∗nxµ/
√
N is a Gaussian random variable with mean zero

and variance Tnn. Taking the conditional expectation, we find

Eµ Rµ+1
in −Rµin =

1

N
ηwvi〈ρµn∆µg′(λµi )〉 (S3)

as required.
For the student-student overlaps Qµik, we multiply the update (2) by wµk/N and find that

Qµ+1
ik = Qµik −

1

N

(
ηw∆µvµk g

′(λµk)λµi + ηw∆µvµi g
′(λµi )λµk

)
+

1

N

(
η2w(∆µ)2vµi v

µ
k g
′(λµi )g′(λµk)

(xµ)2

N

)
.

(S4)

Using assumption (A1), we see that the term (xµ)2/N concentrates to yield 1 by the central
limit theorem. Thus we find after taking the conditional expectation of both sides and using
Eµ ζµ = 0 that

Eµ Qµ+1
ik −Qµik =

1

N
fQ(mµ) . (S5)

Finally, it is easy to convince oneself that taking the conditional expectation of the update for
the second-layer weights (3) yields

Eµ vµ+1
k − vµk =

1

N
fv(m

µ) (S6)

which completes the proof of Lemma A.1.
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A.3. Second moments of the increment mµ

We now proceed to bound the second-order moments of the increments of the time-dependent
order parameters. We collect these bounds in the following lemma:

Lemma A.2. Under the assumptions of Theorem 1.1, for all µ < NT , we have that

E ||mµ+1 − Eµ mµ+1||2 ≤ C(T )N−2 . (S7)

Before proceeding with the proof, we state a simple technical lemma that will be helpful in
the following; we relegate its proof to Sec. A.5.

Lemma A.3. Under the same assumptions as Theorem 1.1, we have for all 0 ≤ µ ≤ NT that

E vµk ≤ C(T ) , (S8)

where C(T ) is a constant independent of N .

In the following, we will use q to denote any order-parameter that is varying in time, such
as the teacher-student overlaps Rµin, while we keep mµ as the collection of all order parameters,
including those that are static, such as the teacher-teacher overlaps Tnm.

Proof of Lemma A.2. We first note all order parameters q ∈ {Rin, Qik, vk} obey update equations
of the form

qµ+1 = qµ +
1

N
fq(m

µ, xµ) , (S9)

where we have emphasised that the update function fq(·) may depend on all order parameters at
time µ and the µth sample shown to the student xµ. For the variance σ2q = E (q − E q)2 of the
order parameter q, a little algebra yields the recursion relation(

σµ+1
q

)2 − (σµq )2 =
2

N
(E qµfq(m

µ, xµ)− E fq(m
µ, xµ)E qµ)

+
1

N2

(
E fq(m

µ, xµ)2 − [E fq(m
µ, xµ)]2

)
.

(S10)

We will now use complete induction to show that for any q, the update of the variance at every
step is bounded by C(T )N−2 as required. In particular, this means showing that the term
proportional to N−1 actually scales as N−2.

For the induction start, we note that by Assumption A3, we have σ0q = 0. Hence the variance
of any order parameter after a single step of SGD reads

(σ1q )
2 =

2

N

(
E q0E fq(m

0, x0)− E fq(m
0, x0)E q0

)
+

1

N2

(
E fq(m

0, x0)2 −
[
E fq(m

0, x0)
]2)

(S11)

=
1

N2

(
E fq(m

0, x0)2 −
[
E fq(m

0, x0)
]2)

. (S12)

In going from the first to the second line, we have used assumption (A3) by which the initial
macroscopic state is deterministic and therefore the average E is just an average over the first
sample shown during training, which leads to the simplification of Eq. S12.

For the induction step, we assume that the variance after µ < T steps is (σµv )2 ≤ C(T )µN−2 ≤
C(T )αN−1. By using the existence and boundedness of the derivatives of the activation function,
we can write mµ = E mµ + (mµ − E mµ) and expand the terms proportional to N−1 using a
multivariate Taylor expansion in (mµ − E mµ). We find that

(E qµfq(m
µ, xµ)− E fq(m

µ, xµ)E qµ) ≤ C(T )E (mµ − E mµ) ≤ C(T )σ2q ≤ C(T )σqN
−1. (S13)
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We are justified in truncating the expansion since we assumed that σ2q ≤ C(T )N−1. If the
functions fq(m,x) are bounded by a constant, this completes the induction and shows that the
variance of the increment of the order parameters is bounded by C(T )N−2, as required.

It is easy to check that all three functions fv, fR and fQ fulfil this condition because of the
boundedness of g(x) and its derivatives (A2) and of Lemma A.3, which completes the proof of
Lemma A.2.

A.4. Putting it all together

Having proved both Lemmas A.1 and A.2, we can proceed to prove Theorem 1.1 by using the
coupling trick in the form given by Wang et al. [1] for another online learning problem, namely
the training of generative adversarial networks. We paraphrase the coupling trick as given by
Wang et al. in the following to make the proof self-contained and refer to the supplemental
material of their paper for additional details.

Proof of Theorem 1.1. We first define a stochastic process bµ that is coupled with the Markov
process mµ as

bµ+1 = bµ +
1

N
g(mµ) +mµ+1 − Eµ mµ+1 . (S14)

This process lives in the same space as mµ. Wang et al. [1] showed that for such a process, when
Lemma A.1 holds, we have that

E ||bµ −mµ|| ≤ C(T )N−1/2 (S15)

for all µ ≤ NT . We then define a deterministic process

dµ+1 = dµ +
1

N
g(dµ), (S16)

which is a standard first-order finite difference approximation of the equations of motion (9), and
also lives in the space as mµ. Invoking a standard Euler argument for first-order finite differences
gives

E ||dµ −m(µ/N)|| ≤ C(T )N−1. (S17)

Wang et al. [1] further showed that for such a process, using Lemma A.2, we have

E ||bµ − dµ|| ≤ C(T )N−1. (S18)

Finally, combining Eqs. (S15), (S18) and (S17), we have

E ||mµ −m(µ/N)|| ≤ C(T )N−1/2 (S19)

which completes the proof.

A.5. Additional proof details

Proof of Lemma A.3. The increment of vk reads explicitly

vµ+1
k − vµk =

ηv
N

[∑
m

v∗mg(ρµm)−
∑
k

vµk g
(
λµk
)
− σζµ

]
. (S20)

To bound the value of vµk after µ steps, we consider the three terms in the sum vµk =
∑µ

s=1 v
µ
k

each in turn. We first note that the sum of the output noise variables ζµ is a simple sum
over uncorrelated, (sub-) Gaussian random variables rescaled by 1/N and thus by Hoeffding’s
inequality almost surely smaller than a constant [2].

For the first two terms, we can use an argument similar to the one used to prove the bound
on the variance of the increment of the order parameters. We first note that g(·) is a bounded
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function by Assumption (A2) and that the initial conditions of the second-layer weights are
bounded by a constant by Assumption (A3). Hence, after a first step, the weight has increased
by a term bounded by C(T )N−1. Actually, at every step where the weight is bounded by a
constant, its increase will be bounded by C(T )N−1. Hence the magnitude of vµk ≤ C(T ) for
0 ≤ µ ≤ NT , as required.

B. Derivation of the ODE description of the generalisation dynamics
of online learning

Here we demonstrate how to evaluate the averages found in the equations of motion for the
order parameters (9), following the classic work by Biehl and Schwarze [3] and Saad and Solla [4,
5]. We repeat the two main technical assumption of our work, namely having a large network
(N → ∞) and a data set that is large enough to allow that we visit every sample only once
before training converges. Both will play a key role in the following computations.

B.1. Expressing the generalisation error in terms of order parameters

We first demonstrate how the assumptions stated above allow to rewrite the generalisation error
in terms of a number of order parameters. We have

εg(θ, θ
∗) ≡ 1

2

〈
[φ(x, θ)− φ(x, θ∗)]2

〉
(S21)

=
1

2

〈[
K∑
k=1

vkg (λk)−
M∑
m=1

v∗mg(ρm)

]2〉
, (S22)

where we have used the local fields λk and ρm. Here and throughout this paper, we will use the
indices i, j, k, . . . to refer to hidden units of the student, and indices n,m, . . . to denote hidden
units of the teacher. Since the input xµ only appears in εg only via products with the weights
of the teacher and the student, we can replace the high-dimensional average 〈·〉 over the input
distribution p(x) by an average over the K +M local fields λµk and ρµm. The assumption that
the training set is large enough to allow that we visit every sample in the training set only once
guarantees that the inputs and the weights of the networks are uncorrelated. Taking the limit
N →∞ ensures that the local fields are jointly normally distributed with mean zero (〈xn〉 = 0).
Their covariance is also easily found: writing wka for the ath component of the kth weight vector,
we have

〈λkλl〉 =

∑N
a,bwkawlb〈xaxb〉

N
=
wkwl
N
≡ Qkl, (S23)

since 〈xaxb〉 = δab. Likewise, we define

〈ρnρm〉 =
w∗nw

∗
m

N
≡ Tnm, 〈λkρm〉 =

wkw
∗
m

N
≡ Rkm. (S24)

The variables Rin, Qik, and Tnm are called order parameters in statistical physics and measure the
overlap between student and teacher weight vectors wi and w∗n and their self-overlaps, respectively.
Crucially, from Eq. (S22) we see that they are sufficient to determine the generalisation error εg.
We can thus write the generalisation error as

εg =
1

2

∑
i,k

vivkI2(i, k) +
1

2

∑
n,m

v∗nv
∗
mI2(n,m)−

∑
i,n

viv
∗
nI2(i, n), (S25)

where we have defined
I2(i, k) ≡ 〈g(λi)g(λk)〉. (S26)

5



Assuming sigmoidal activation functions g(x) = erf(x/
√

2) allows us to evaluate the average
I2(i, k) analytically:

I2(i, k) =
1

π
arcsin

Qik√
1 +Qii

√
1 +Qkk

. (S27)

The average in Eq. (S26) is taken over a normal distribution for the local fields λi and λk with
mean (0, 0) and covariance matrix

C2 =

(
Qii Qik
Qik Qkk

)
. (S28)

Since we are using the indices i, j, . . . for student units and n,m, . . . for teacher hidden units, we
have

I2(i, n) = 〈g(λi)g(ρn)〉, (S29)

where the covariance matrix of the joint of distribution λi and ρm is given by

C2 =

(
Qii Rin
Tin Tnn

)
. (S30)

and likewise for I2(n,m). We will use this convention to denote integrals throughout this section.
For the generalisation error, this means that it can be expressed in terms of the order parameters
alone as

εg =
1

π

∑
i,k

vivk arcsin
Qik√

1 +Qii
√

1 +Qkk
+

1

π

∑
n,m

v∗nv
∗
m arcsin

Tnm√
1 + Tnn

√
1 + Tmm

− 2

π

∑
i,n

viv
∗
n arcsin

Rin√
1 +Qii

√
1 + Tnn

. (S31)

B.2. ODEs for the evolution of the order parameters

Expressing the generalisation error in terms of the order parameters as we have in Eq. (S31) is
of course only useful if we can track the evolution of the order parameters over time. We can
derive ODEs that allow us to do precisely that for the order parameters Q by squaring the weight
update of w (2) and for R taking the inner product of (2) with w∗n, respectively, which yields
the equations of motion (9).

To make progress however, i.e. to obtain a closed set of differential equations for Q and R, we
need to evaluate the averages 〈·〉 over the local fields. In particular, we have to compute three
types of averages:

I3 = 〈g′(a)bg(c)〉, (S32)

where a is one the local fields of the student, while b and c can be local fields of either the student
or the teacher;

I4 = 〈g′(a)g′(b)g(c)g(d)〉, (S33)

where a and b are local fields of the student, while c and d can be local fields of both; and finally

J2 = 〈g′(a)g′(b)〉, (S34)

where a and b are local fields of the teacher. In each of these integrals, the average is taken with
respect to a multivariate normal distribution for the local fields with zero mean and a covariance
matrix whose entries are chosen in the same way as discussed for I2.

We can re-write Eqns. (9) with these definitions in a more explicit form as [4–6]

dRin
dt

= ηvi

 M∑
m

v∗mI3(i, n,m)−
K∑
j

vjI3(i, n, j)

 , (S35)
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dQik
dt

= ηwvi

 M∑
m

v∗mI3(i, k,m)−
K∑
j

vjI3(i, k, j)


+ ηwvk

 M∑
m

v∗mI3(k, i,m)−
K∑
j

vjI3(i, j, k)


+ η2wvivk

 M∑
n

M∑
m

v∗nv
∗
mI4(i, k, n,m)− 2

K∑
j

M∑
n

vjv
∗
nI4(i, k, j, n)

+
K∑
j

K∑
l

vjvlI4(i, k, j, l) + σ2J2(i, k)



(S36)

dvi
dt

= ηv

 M∑
n

v∗nI2(i, n)−
K∑
j

vjI2(i, j)

 . (S37)

The explicit form of the integrals I2(·), I3(·), I4(·) and J2(·) is given in Sec. H for the case
g(x) = erf

(
x/
√

2
)
. Solving these equations numerically for Q and R and substituting their

values in to the expression for the generalisation error (S25) gives the full generalisation dynamics
of the student. We show the resulting learning curves together with the result of a single simulation
in Fig. 2 of the main text. We have bundled our simulation software and our ODE integrator
as a user-friendly library with example programs at https://github.com/sgoldt/nn2pp. In
Sec. C, we discuss how to extract information from them in an analytical way.

C. Calculation of εg in the limit of small noise for Soft Committee
Machines

Our aim is to understand the asymptotic value of the generalisation error

ε∗g ≡ lim
α→∞

εg(α). (S38)

We focus on students that have more hidden units than the teacher, K ≥M . These students are
thus over-parameterised with respect to the generative model of the data and we define

L ≡ K −M (S39)

as the number of additional hidden units in the student network. In this section, we focus on the
sigmoidal activation function

g(x) = erf
(
x/
√

2
)
, (S40)

unless stated otherwise.
Eqns. (S35ff) are a useful tool to analyse the generalisation dynamics and they allowed Saad

and Solla to gain plenty of analytical insight into the special case K = M [4, 5]. However, they
are also a bit unwieldy. In particular, the number of ODEs that we need to solve grows with K
and M as K2 +KM . To gain some analytical insight, we make use of the symmetries in the
problem, e.g. the permutation symmetry of the hidden units of the student, and re-parametrised
the matrices Qik and Rin in terms of eight order parameters that obey a set of self-consistent
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ODEs for any K > M . We choose the following parameterisation with eight order parameters:

Qij =



Q i = j ≤M,

C i 6= j; i, j ≤M,

D i > M, j ≤M or i ≤M, j > M,

E i = j > M,

F i 6= j; i, j > M,

(S41)

Rin =


R i = n,

S i 6= n; i ≤M,

U i > M,

(S42)

which in matrix form for the case M = 3 and K = 5 read:

R =


R S S
S R S
S S R
U U U
U U U

 and Q =


Q C C D D
C Q C D D
C C Q D D
D D D E F
D D D F E

 . (S43)

We choose this number of order parameters and this particular setup for the overlap matrices
Q and R for two reasons: it is the smallest number of variables for which we were able to
self-consistently close the equations of motion (S35), and they agree with numerical evidence
obtained from integrating the full equations of motion (S35).

By substituting this ansatz into the equations of motion (S35), we find a set of eight ODEs
for the order parameters. These equations are rather unwieldy and some of them do not
even fit on one page, which is why we do not print them here in full; instead, we provide a
Mathematica notebook where they can be found and interacted with together with the source
at http://www.github.com/sgoldt/nn2pp. These equations allow for a detailed analysis of the
effect of over-parameterisation on the asymptotic performance of the student, as we will discuss
now.

C.1. Heavily over-parameterised students can learn perfectly from a noiseless
teacher using online learning

For a teacher with Tnm = δnm and in the absence of noise in the teacher’s outputs (σ = 0), there
exists a fixed point of the ODEs with R = Q = 1, C = D = E = F = 0, and perfect generalisation
εg = 0. Online learning will find this fixed point [4, 5]. More precisely, after a plateau whose
length depends on the size of the network for the sigmoidal network, the generalisation error
eventually begins an exponential decay to the optimal solution with zero generalisation error.
The learning rates are chosen such that learning converges, but aren’t optimised otherwise.

C.2. Perturbative solution of the ODEs

We have calculated the asymptotic value of the generalisation error ε∗g for a teacher with
Tnm = δnm to first order in the variance of the noise σ2. To do so, we performed a perturbative
expansion around the fixed point

R0 = Q0 = 1, (S44)

S0 = U0 = C0 = D0 = E0 = F0 = 0, (S45)

with the ansatz
X = X0 + σ2X1 (S46)
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Figure S1: The final generalisation error of over-parameterised sigmoidal networks
scales linearly with the learning rate, the variance of the teacher’s output noise,
and L. We plot ε∗g/σ

2 in the limit of small noise, Eq. (S47), for M = 2 (red) and M = 16 (blue).
It is clear that generalisation error increases with the number of superfluous units L at fixed
learning rate (left) and the learning rate η (middle). Right: For K = M , the learning rate ηdiv
at which our perturbative result diverges is precisely the maximum learning rate ηmax at which
the exponential convergence to the optimal solution is guaranteed for σ = 0, Eq. (S48)

for all the order parameters. Writing the ODEs to first order in σ2 and solving for their steady
state where X ′(α) = 0 yielded a fixed point with an asymptotic generalisation error

ε∗g =
σ2η

2π
f(M,L, η) +O(σ3). (S47)

f(M,L, η) is an unwieldy rational function of its variables. Due to its length, we do not print
it here in full; instead, we give the full function in a Mathematica notebook together with our
source code at https://github.com/anon/.... Here, we plot the results in various forms in
Fig. S1. We note in particular the following points:

ε∗g increases with L, η The two plots on the left show that the generalisation error increases
monotonically with both L and η while keeping the other fixed, respectively, for teachers
with M = 2 (red) and M = 16 (blue)

The role of the learning rate η Mitigating this effect by decreasing the learning rate η for larger
students raises two problems: a lower learning rate yields longer training times, and longer
training times imply that more data is required until convergence. This is in agreement
with statistical learning theory, where models with more parameters generalise just as well
as smaller ones given enough data, despite having a higher complexity class as measured
by VC dimension or Rademacher complexity [7], for example. Furthermore, we show in
Sec. C.2 that even with η ∼ 1/K, the generalisation error increases with L before plateauing
at a constant value. Moreover, we show in Fig. S2 that the asymptotic generalisation
error (S47) of a student trained using SGD with learning rate η = 1/K still increases with
L before plateauing at a constant value that is independent of M .

Divergence at large η Our perturbative result diverges for large L, or equivalently, for a large
learning rate that depends on the number of hidden units L ∼ K. For the special case
K = M , the learning rate ηdiv at which our perturbative result diverges is precisely the
maximum learning rate ηmax for which the exponential convergence to the optimal solution
is still guaranteed for σ = 0 [5]

ηmax =

√
3π

M + 3/
√

5− 1
(S48)

as we show in the right-most plot of Fig. S1.

Expansion for small η In the limit of small learning rates, which is the most relevant in practice
and which from the plots in Fig. S1 dominates the behaviour of ε∗g outside of the divergence,
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Figure S2: Asymptotic generalisation error for sigmoidal soft committee machines
with learning rate η = 1/K. We plot the asymptotic generalisation error ε∗g (S47) over σ2 of
a student with a varying number of hidden units trained on data generated by teachers with
M = 2, 4, 16 using SGD with learning rate 1/K. The generalisation error still increases with K,
before plateauing at a constant value that is independent of M . Weight decay parameter κ = 0.

the generalisation error is linear in the learning rate. Expanding ε∗g to first order in the
learning rate reveals a particularly revealing form,

ε∗g =
σ2η

2π

(
L+

M√
3

)
+O(η2) (S49)

with second-order corrections that are quadratic in L. This is actually the sum of the
asymptotic generalisation errors of M continuous perceptrons that are learning from a
teacher with T = 1 and L continuous perceptrons with T = 0 as we calculate in Sec. D.
This neat result is a consequence of the specialisation that is typical of SCMs with sigmoidal
activation functions as we discussed in the main text.

D. Asymptotic generalisation error of a noisy continuous perceptron

What is the asymptotic generalisation for a continuous perceptron, i.e. a network with K = 1,
in a teacher-student scenario when the teacher has some additive Gaussian output noise? In this
section, we repeat a calculation by Biehl and Schwarze [3] where the teacher’s outputs are given
by

y = g

(
w∗x√
N

)
+ ζ , (S50)

where ζ is again a Gaussian r.v. with mean 0 and variance σ2. We keep denoting the weights of
the student by w and the weights of the teacher by w∗. To analyse the generalisation dynamics,
we introduce the order parameters

R ≡ ww∗

N
, Q ≡ ww

N
and T ≡ w∗w∗

N
. (S51)

10



10 5 10 3 10 1
2

10 7

10 6

10 5

10 4

10 3

10 2
* g

a) = 0.04
= 0.08

10 3 10 2 10 1
10 7

10 6

10 5

10 4

10 3

* g

b) = 0.1
= 0.01

0 4 8 12 16 20
L

0.0001

0.0002

0.0003

0.0004

0.0005

* g

c) M=4
M=16

Figure S3: The final generalisation error of over-parametrised ReLU networks scales
as ε∗g ∼ ησ2L. Simulations confirm that the asymptotic generalisation error ε∗g of a ReLU student
learning from a ReLU teacher scales with the learning rate η, the variance of the teacher’s output
noise σ2 and the number of additional hidden units as εg ∼ ησ2L, which is the same scaling as
the one found analytically for sigmoidal networks in Eq. (S49). Straight lines are linear fits to the
data, with slope 1 in (a) and (b). Parameters: M = 2,K = 6 (a, b) and M = 4, 16; K = M + L
(c); in all figures, N = 784, κ = 0.

and we explicitly do not fix T for the moment. For g(x) = erf
(
x/
√

2
)
, they obey the following

equations of motion:

dR

dt
=

2η

π (Q(t) + 1)

 TQ(t)−R(t)2 + T√
(T + 1)Q(t)−R(t)2 + T + 1

− R(t)√
2Q(t) + 1

 (S52)

dQ

dt
=

4η

π(Q(t) + 1)

(
R(t)√

2(Q(t) + 1)−R(t)2
− Q(t)√

2Q(t) + 1

)

+
4η2

π2
√

2Q(t) + 1

[
−2 arcsin

(
R(t)√

(6Q(t) + 2)(2Q(t)−R(t)2 + 1)

)

+ arcsin

(
2
(
Q(t)−R(t)2

)
+ 1

2 (2Q(t)−R(t)2 + 1)

)
+ arcsin

(
Q(t)

3Q(t) + 1

)]

+
2η2σ2

π
√

2Q(t) + 1
. (S53)

The equations of motion have a fixed point at Q = R = T which has perfect generalisation for
σ = 0. We hence make a perturbative ansatz in σ2

Q(t) =T + σ2q(t) (S54)

R(t) =T + σ2r(t) (S55)

and find for the asymptotic generalisation error

ε∗g =
ησ2(4T + 1)

2
√

2T + 1
(
−η
√

8T 2 + 6T + 1 + 4πT + π
) +O

(
σ3
)
. (S56)

To first order in the learning rate, this reads

ε∗g =
ησ2

2π
√

2T + 1
, (S57)

which should be compared to the corresponding result for the full SCMs, Eq. (S49).
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Figure S4: Asymptotic performance of linear (left) and ReLU (right) two layer networks. Error
bars indicate one standard deviation over five runs, and the y-axis is the same in both plots.
Parameters: N = 500,M = 2, v∗ = 4, η = 0.01, σ = 0.01. N.B. The right plot is the same as
Fig. 4 of the main text.

E. Calculation of the asymptotic generalisation error in two-layer
sigmoidal networks

In this section, we describe the ansatz we chose for the ODE to compute the asymptotic
generalisation error when training both layers with sigmoidal activation function. As we describe
in the main text, the ansatz used for the Soft Committee Machine is not appropriate, since (i)
all the hidden units of the student are used, and (ii) several nodes overlap with the same teacher
node. Inspection of the overlaps after integration of the ODE thus suggested the following ansatz
when the number of nodes in the student is a multiple of the number of teacher nodes, K = ZM :

Qij =

{
Q i mod M = j mod M,

C otherwise
(S58)

Rin =

{
R i mod M = n mod M,

S otherwise
(S59)

which in matrix form for the case M = 2 and K = 4 read:

Rin =


R S
S R
R S
S R

 and Qik =


Q C Q C
C Q C Q
Q C Q C
C Q C Q

 (S60)

Once this ansatz is found, the rest of the calculation follows along the same lines as that of
Sec. C: we derive a reduced set of coupled ODE for Q,C,R and S, expand around the noiseless
fixed point where R = 1, S = 0, Q = 1, C = 0 and substitute the resulting fixed point into the
expression for the generalisation error, yielding the formula plotted in Fig. 3c.

In Fig. S4 we show the asymptotic performance linear and ReLU two-layer networks that we
discuss at the end of Sec. 3 of the main text.

F. Unbalanced weights rescale effective learning rate in two layer
linear networks

If we consider a linear, two layer neural network of the form:

φ(x, θ) =
∑
m,j

vmwmjxj , (S61)
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where v ∈ R1×M , w ∈ RM×N and x ∈ RN×1. The online SGD updates to the first and second
layer weights will have the form:

∆wµmj = η(yµ − φ(xµ, θµ))vµmx
µ
j , (S62)

and
∆vµm = η(yµ − φ(xµ, θµ))

∑
j

wmjx
µ
j . (S63)

If we define the product of student weights as a vector u:

uj =
M∑
m=1

vmwmj , (S64)

it follows that

∆uµj =
M∑
m=1

(
vµm∆wµmj + ∆vµmw

µ
mj

)
. (S65)

Substituting the form for the update in first and second layer weights into the expression above
we find:

∆uµ = η(yµ − uµ · xµ)(xµ)T
(
IN‖vµ‖2 + (wµ)T (wµ)

)
. (S66)

This suggests that the level of imbalance between the norm of weights at different layers may
impact the noisy fluctuations in updates even at late training times. If we compare the update
step of the network with another network which produces the same output but has a different
scaling of the weights we can see that the effective learning rate will be different. For instance
ṽ = av and w̃ = 1

aw leads to an equivalent network, but updates which scale as:

∆uµ = η(yµ − uµ · xµ)(xµ)T
(
INa2‖vµ‖2 +

1

a2
(wµ)T (wµ)

)
. (S67)

We can think of this scaling of the weights as impacting the effective learning, and we have
provided an expression for how the learning rate impacts generalisation error in this paper. Our
finding thus suggests that weights with more balanced norms across layers will tend to lead to
lower generalisation error during online learning.

G. Additional experiments on Soft Committee Machines

G.1. Regularisation by weight decay does not help

A natural strategy to avoid the pitfalls of overfitting is to regularise the weights, for example by
using explicit weight decay by choosing κ > 0. We have not found a setup where adding weight
decay improved the asymptotic generalisation error of a student compared to a student that was
trained without weight decay in our setup. As a consequence, weight decay completely fails to
mitigate the increase of ε∗g with L. We show the results of an illustrative experiment in Fig. S5.

G.2. SGD with mini-batches

One key characteristic of online learning is that we evaluate the gradient of the loss function
using a single sample from the training step per step. In practice, it is more common to actually
use a number of samples b > 1 to estimate the gradient at every step. To be more precise, the
weight update equation for SGD with mini-batches would read:

wµ+1
k = wµk −

κ

N
wµk −

η

b
√
N

b∑
`=1

xµ,`g′(λµ,`k )
[
φ(xµ,`, θ)− yµ,`

]
. (S68)
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Figure S5: Weight decay. We plot the final generalisation error ε∗g of a student with a
varying number of hidden units trained on data generated by a teacher with M = 4 using SGD
with weight decay. The generalisation error clearly increases with the weight decay constant κ.
Parameters: N = 784, η = 0.1, σ = 0.01.
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Figure S6: SGD with mini-batches shows the same qualitative behaviour as online
learning We show the asymptotic generalisation error ε∗g for students with sigmoidal (left) and
ReLU activation function (right) for various K learning from a teacher with M = 4. Between the
curves, we change the size of the mini-batch used at each step of SGD from 1 (online learning)
to 20 000. Parameters: N = 500, η = 0.2, σ = 0.1, κ = 0.
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Figure S7: Higher-order correlations in the input data do not play a role for the
asymptotic generalisation. We plot the final generalisation error ε∗g after online learning of a
student of various sizes from a teacher with M = 4 using Gaussian inputs (blue) and MNIST
images (red) for training and testing. N = 784, η = 0.1, σ = 0.1, κ = 0.

where xµ,` is the `th input from the mini-batch used in the mth step of SGD, λµ,`k is the local
field of the kth student unit for the `th sample in the mini-batch, etc. Note that when we use
every sample only once during training, using mini-batches of size b increases the amount of data
required by a factor b when keeping the number of steps constant.

We show the asymptotic generalisation error of student networks of varying size trained using
SGD with mini-batches and a teacher with M = 4 in Fig. S6. Two trends are visible: first, using
increasing the size of the mini-batches decreases the asymptotic generalisation error ε∗g up to a
certain mini-batch size, after which the gains in generalisation error become minimal; and second,
the shape of the ε∗g −L curve is the same for all mini-batch sizes, with the minimal generalisation
error attained by a network with K = M .

G.3. Using MNIST images for training and testing

In the derivation of the ODE description of online learning for the main text, we noted that only
the first two moments of the input distribution matter for the learning dynamics and for the
final generalisation error. The reason for this is that the inputs only appear in the equations
of motion for the order parameters as a product with the weights of either the teacher or the
student. Now since they are – by assumption – uncorrelated with those weights, this product is
the sum of large number of random variables and hence distributed by the central limit theorem.

We have checked how our results change when this assumption breaks down in one example
where we train a network on a finite data set with non-trivial higher order moments, namely
the images of the MNIST data set. We studied the very same setup that we discuss throughout
this work, namely the supervised learning of a regression task in the teacher-student scenario.
We only replace the the inputs, which would have been i.i.d. draws from the standard normal
distribution, with the images of the MNIST data set. In particular, this means that we do not
care about the labels of the images. Figure S7 shows a plot of the resulting final generalisation
against L for both the MNIST data set and a data set of the same size, comprised of i.i.d. draws
from the standard normal distribution, which are in good agreement.

G.4. The scaling of ε∗g with L for finite training sets

In practice, a single sample of the training data set will be visited several times during training.
After a first pass through the training set, the online assumption that an incoming sample (x, y)
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Figure S8: The scaling of ε∗g with L shows a similar dependence on the size of the
training set for early-stopping (top) and final (bottom) generalisation error. We plot
the asymptotic and the early-stopping generalisation error after SGD with a finite training set
containing PN samples (linear, sigmoidal and ReLU networks from left to right). The result
for online learning for linear and sigmoidal networks, Eqns. (10) and (12) of the main text,
are plotted in violet. Error bars indicate one standard deviation over 10 simulations, each
with a different training set; many of them are too small to be clearly visible. Parameters:
N = 784,M = 4, η = 0.1, σ = 0.01.
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is uncorrelated to the weights of the network thus breaks down. A complete analytical treatment
in this setting remains an open problem, so to study this practically relevant setup, we turn to
simulations. We keep the setup described in Secs. 1, but simply reduce the number of samples in
the training data set P . Our focus is again on the final generalisation error after convergence ε∗g
for linear, sigmoidal and ReLU networks, which we plot from left to right as a function of L in
Fig. S8.

Linear networks show a similar behaviour to the setup with a very large training set discussed
in Sec. 2: the bigger the network, the worse the performance for both P = 4 and P = 50. Again,
the optimal network has K = 1 hidden units, irrespective of the size of the teacher. However, for
non-linear networks, the picture is more varied: For large training sets, where the number of
samples easily outnumber the free parameters in the network (P = 50, red curve; this corresponds
roughly to learning a data set of the size of MNIST), the behaviour is qualitatively described by
our theory from Sec. 2: the best generalisation is obtained by a network that matches the teacher
size, K = M . However, as we reduce the size of the training set, this is no longer true. For
P = 4, for example, the best generalisation is obtained with networks that have K > M . Thus
the size of the training set with respect to the network has an important influence on the scaling
of ε∗g with L. Note that the early-stopping generalisation error, which we define as the minimal
generalisation error over the duration of training, shows qualitatively the same behaviour as ε∗g.

G.5. Early-stopping generalisation error for finite training sets

A common way to prevent over-fitting of a neural network when training with a finite training set
in practice is early stopping, where the training is stopped before the training error has converged
to its final value yet. The idea behind early-stopping is thus to stop training before over-fitting
sets in. For the purpose of our analysis of the generalisation of two-layer networks trained on a
fixed finite data set in Sec. 4 of the main text, we define the early-stopping generalisation error
ε̂g as the minimum of εg during the whole training process. In Fig. S8, we reproduce Fig. 6
from the main text at the bottom and plot ε̂g obtained from the very same experiments at the
top. While the ReLU networks showed very little to no over-training, the sigmoidal networks
showed more significant over-training. However, the qualitative dependence of the generalisation
errors on L was observed to be the same in this experiment. In particular, the early-stopping
generalisation error also shows two different regimes, one where increasing the network hurts
generalisation (P � K), and one where it improves generalisation or at least doesn’t seem to
affect it much (small P ∼ K).

H. Explicit form of the integrals appearing in the equations of
motion of sigmoidal networks

To be as self-contained as possible, here we collect the explicit forms of the integrals I2, I3, I4
and J2 that appear in the equations of motion for the order parameters and the generalisation
error for networks with g(x) = erf

(
x/
√

2
)
, see Eq. (S35). They were first given by [3, 4]. Each

average 〈·〉 is taken w.r.t. a multivariate normal distribution with mean 0 and covariance matrix
C ∈ Rn, whose components we denote with small letters. The integration variables u, v are
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always components of λ, while w and z can be components of either λ or ρ.

J2 ≡ 〈g′(u)g′(v)〉 =
2

π

(
1 + c11 + c22 + c11c22 − c212

)−1/2
(S69)

I2 ≡
1

2
〈g(w)g(z)〉 =

1

π
arcsin

c12√
1 + c11

√
1 + c12

. (S70)

I3 ≡ 〈g′(u)wg(z)〉 =
2

π

1√
Λ3

c23(1 + c11)− c12c13
1 + c11

(S71)

I4 ≡ 〈g′(u)g′(v)g(w)g(z)〉 =
4

π2
1√
Λ4

arcsin

(
Λ0√
Λ1Λ2

)
(S72)

where
Λ4 = (1 + c11)(1 + c22)− c212 (S73)

and

Λ0 = Λ4c34 − c23c24(1 + c11)− c13c14(1 + c22) + c12c13c24 + c12c14c23 (S74)

Λ1 = Λ4(1 + c33)− c223(1 + c11)− c213(1 + c22) + 2c12c13c23 (S75)

Λ2 = Λ4(1 + c44)− c224(1 + c11)− c214(1 + c22) + 2c12c14c24 (S76)
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