
Supplementary Material: Superset Technique for Approximate
Recovery in One-Bit Compressed Sensing

A Proof of Lemma 14

Lemma (Lemma 14). Suppose we have a known measurement vector m 2 {0, 1}n, and an unknown

k-sparse signal x 2 Rn
. The signal x is generated randomly by first picking a subset of size k from

[n] (using any distribution) to be the support, then taking x to be a uniformly random vector on the

sphere on those k coordinates. Then from sign(mTx), we can determine the value of m� x with

probability 1.

Proof. We assume without loss of generality that x is supported on the first k coordinates; the
remainder of the argument does not depend specifically on the choice of support, so this is purely
for notational convenience. If sign(mTx) 6= 0, then immediately we must have m � x = 1, as
mTx 6= 0.

Otherwise if sign(mTx) = 0, we must have mTx = 0. This leaves two cases: either m� x = 0, or
x is orthogonal to m and m� x = 1. In the latter case x satisfies the equation

kX

i=1

mixi = 0 () m1x1 = �

 
kX

i=2

mixi

!
.

Let z be a random vector formed by using the same distribution as that used to determine the support
of x in order to determine the support, then within that support drawing k variables Zi ⇠ N (0, 1) to
be the k coordinates, and finally rescaling so that ||z||2 = 1. It is well-known that the distribution of
such z is identical to the distribution of x, thus the probability that z is orthogonal to m is the same
as the probability that x is orthogonal to m. We proceed by showing the probability z is orthogonal
to m is 0.

If z is orthogonal to m, then as above we must have

m1Z1
||z||2

= �
(
Pk

i=2 miZi)
||z||2

=) Z1 = �
⇣Pk

i=2 miZi

⌘
/m1.

Thus in order for z to lie in the nullspace of m, it is necessary that Z1 takes a specific value
determined by the other k�1 Zi; as Z1 is drawn independently of the other Zi and from a continuous
distribution, this happens with probability 0. We conclude that the same is true for x, and thus when
sign(mTx) = 0 we assume that m� x = 0, and are correct with probability 1.
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(a) n = 1000, k = 10 (b) n = 1000, k = 20 (c) n = 1000, k = 40

Figure 2: Average size of superset following group testing decoding for different sparsity levels as
Bernoulli probability of measurement matrix varies. Vertical line highlights 1

k+1 .

B Empirical Evidence for Experimental Choice of Bernoulli Probability

In this section, we provide some empirical evidence that the choice of 1
k+1 for the Bernoulli probability

of the experiments in Section 5 is reasonable.

Figure 2 shows the average size of the superset using a matrix with Bernoulli entries (i.e. each value is
1 with probability p and 0 otherwise) following a group testing decoding. The different lines represent
different numbers of measurements used in the Bernoulli matrix, and different plots show different
sparsity levels. All vectors had length 1000, and were constructed randomly by first choosing a size k
support set uniformly at random, then drawing a random value from N (0, 1) for each coordinate in
the support set and normalizing so that ||x||2 = 1. 1000 trials were performed for each tuple (n, k, p)
of values.

The vertical line overlaid atop the other curves in Figure 2 indicates where the Bernoulli probability
is equal to 1

k+1 . For all three sparsity levels, it appears that this value is very close to achieving the
minimum size superset for a given number of measurements. Furthermore, the fact that the curves
all have relatively wide basins around the minimum indicates that any value close to the minimum
should perform fairly well.

C Sufficient Condition for Universal Support Recovery of Real Vectors

The goal in this section is to give sufficient conditions on a measurement matrix in order to be
able to recover a superset of the support of an unknown k-sparse signal x 2 Rn using 1-bit sign
measurements, by generalizing the definition of “Robust UFF” given in [1].

In this section we will work primarily with matrix columns rather than rows, so to this end for any
matrix B 2 Rm⇥n, here we let Bj denote its j-th column. For any sets X ✓ [m] and Y ✓ [n], let
B[X : Y ] denote the submatrix of B restricted to rows indexed by X and columns indexed by Y .
Let wt(x) denote the size of the support of x, i.e. wt(x) = | supp(x)|. We say x has full support if
wt(x) = n.

In order to recover the superset of the support of x using the sign measurements sign(Bx) 2
{�1, 0, 1}m, we use the algorithm of [1] (Algorithm 1). For any subset of k columns S ⇢ [n],
|S|  k, define TS := {j 2 [n] \ S : | supp(Bj) \ ([i2S supp(Bi)) | �

1
2 wt(Bj)}. These are the

columns outside of the subset S that have large intersection with the union of the k columns indexed
by S.

[1] show that if B is a Robust UFF with sufficient parameters, then their algorithm recovers the exact
support of x. Algorithm 1 computes the intersection of the support of each column Bj with the output
b := sign(Bx). It includes the index j in the estimated support if the intersection is sufficiently large.
The property of a Robust UFF ensures that the estimated support is exactly the support of x.

We relax the definition of an (n,m, d, k,↵)-Robust UFF to allow a few false positives, since we only
require a superset of the support of x rather than the exact support. The allowable size of TS controls
the number of false positives. Note that allowing |TS | � 1 might induce some false negatives as well,
thus to avoid this possibility we need to ensure that no column of B in the support of x has too many
zero test results. In general, zero test results can occur when x lies in the nullspace of many rows of
B that have a nonempty intersection with the support of x. We construct the matrix B to avoid such
situations.
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Input: B : (n,m, d, k, 1/2)-Robust UFF, x 2 Rn, unknown k-sparse vector.
Let b := sign(Bx).
Ŝ = ;.
for j 2 [n],

if | supp(Bj) \ supp(b)| > d
2 ,

Ŝ  {j}
Return Ŝ.

Algorithm 1: Support recovery via Robust-UFF

For any subset S ✓ [n], and any j 2 TS , define LS,j := {t 2 supp(Bj) \ ([i2S supp(Bi))} ✓ [m].
These are the rows in the support of Bj that intersect with the support of the columns of B indexed
by S. In order to ensure that the algorithm does not introduce any false negatives, we want the output
vector b to have not many zeros in rows corresponding to LS,j . Let us define AS,j := B[LS,j :
S [ {j}] to be the matrix restricted to the rows in LS,j and columns of S [ {j}. Note that since
j 2 TS , |LS,j | �

wt(Bj)
2 , therefore AS,j has at least wt(Bj)

2 rows. We now define a list-Robust UFF
as follows:
Definition 5 (List-RUFF). A real matrix B 2 Rm⇥n

is called an (m,n, d, k, 1/2, `)-list Robust UFF

if wt(Bj) = d for all j 2 [n], and for all subsets S ✓ [n], |S|  k, the following properties hold:

1. |TS | < `.

2. For any j 2 TS , and any x 2 R|S|
with full support, wt(AS,jx) > |LS,j |�

1
2 wt(Bj).

The first condition ensures that the Algorithm 1 introduces at most ` false positives. The second
condition is used to ensure that no k-sparse vector x is in the nullspace of too many rows of B, and
therefore Algorithm 1 will not yield any false negatives.

Next we show that Algorithm 1 recovers a superset of size at most k + ` given a measurement matrix
B which is an (m,n, d, k, 1/2, `)-list RUFF.
Theorem 16. Let x 2 Rn

be an unknown k-sparse vector with supp(x) = S⇤
. If B is an

(n,m, d, k, 1/2, `)-list RUFF, then Algorithm 1 returns Ŝ such that S⇤
✓ Ŝ ✓ S⇤

[ TS⇤ .

Proof. We first show that Ŝ ✓ S⇤
[ TS⇤ . We in fact prove the contrapositive, i.e. if j /2 S⇤

[ TS⇤ ,
then j /2 Ŝ. Let j 2 [n]\(S⇤

[TS⇤). By definition of TS⇤ , we know that supp(Bj) does not intersect
[i2S⇤ supp(Bi) in too many places, i.e. |supp(Bj) \ ([i2S⇤ supp(Bi))| <

wt(Bj)
2 . Consider all

the rows t 2 supp(Bj) \ ([i2S⇤ supp(Bi)). Note that for all these rows, bt = 0. Therefore,

|supp(b) \ supp(Bj)|  |supp(Bj)|� |supp(Bj) \ ([i2S⇤ supp(Bi))|

= |supp(Bj) \ ([i2S⇤ supp(Bi))| <
wt(Bj)

2
.

From Algorithm 1, it then follows that j /2 Ŝ.

To show that every j 2 S⇤ is included in Ŝ, we need to show that for every such j, |supp(b) \
supp(Bj)| >

wt(Bj)
2 . This is equivalent to showing that there are not too many zeros in the rows of

b corresponding to rows in [i2S⇤ supp(Bi). Let j 2 S⇤ be any column in the support of x. Let us
partition supp(Bj) into two groups. Let S⇤

j := S⇤
\ {j}. Define

G1 :={t 2 supp(Bj) \
⇣
[i2S⇤

j
supp(Bi)

⌘
}, and

G2 := supp(Bj) \G1 = {t 2 supp(Bj) \
⇣
[i2S⇤

j
supp(Bi)

⌘
}.

Note that for all t 2 G2, bt 6= 0 since bt = xj · Bj(t) 6= 0 since j 2 supp(x). Therefore,
G2 ✓ supp(b) \ supp(Bj). We can without loss of generality assume that j 2 TS⇤

j
. Otherwise, by

definition of TS⇤
j

it follows that |G2| >
wt(Bj)

2 , and Algorithm 1 includes j 2 Ŝ.
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We now show that bt 6= 0 for many t 2 G1. In particular, we show that bt is zero for at most wt(Bj)
2

indices in G1. This follows from the property of the list-RUFF. Consider the following submatrix of
B, AS⇤

j ,j
:= B[G1, S⇤] = B

h
LS⇤

j ,j
: S⇤

j [ {j}
i
. Since j 2 TS⇤

j
, |G1| > wt(Bj)/2, and therefore

AS⇤
j ,j

has at least wt(Bj)/2 rows, and at most k columns.

From the definition of list-RUFF, we know that for any z 2 R|S⇤
| with full support, wt(AS⇤

j ,j
z) >

|LS,j |�
1
2 wt(Bj) = |G1|�

1
2 wt(Bj). Therefore, for x that is supported on S⇤, bt 6= 0 for at least

|G1|�
1
2 wt(Bj) indices in G1.

Combining these observations, it follows that

|supp(b) \ supp(Bj)| > |G1|�
1

2
wt(Bj) + |G2| =

1

2
wt(Bj).

Therefore the fact that j 2 Ŝ follows from Algorithm 1.

In light of this, a possible direction for improving the current upper bound for universal approximate
recovery of real vectors would be to show the existence of (m,n, d, k, 1/2,O (k))-list RUFFs with
m = o(k2 log(nk )). This would immediately yield a measurement matrix with O

�
m+ k

✏

�
rows

that could be used for universal ✏-approximate recovery. We show below via a simple probabilistic
construction that matrices satisfying the first property in definition 5 with m = O(k log n) and
` = O(k) exist, but leave open the question of whether O(k log n) rows suffices also for the second
property, or whether O(k2 log n) rows are necessary.
Theorem 17. There exist matrices B 2 Rm⇥n

satisfying wt(Bj) = m
k for all columns Bj and

for every subset of columns S ✓ [n], |S|  k, we have |TS | < `, under the assumptions that

m = ⌦(k log n), k = o(n/ log(n)), and ` = ⌦(k).

Proof. We will construct B by drawing a set Sj ✓ [m] of size d = m
k uniformly at random among

all such sets for each column of B. If i 2 Sj then we set the ith entry of Bj to 1, otherwise 0. Now
we must show that with probability less than 1 there does not exist any subset S of at most k columns
of B with |TS | � ` = ⌦(k).

Recall that by definition,

TS = {j 2 [n] \ S : | supp(Bj) \ ([i2S supp(Bi))| �
1

2
wt(Bj)},

or in other words, TS is the set of “confusable” columns for the subset S of columns of B. The event
that we wish to avoid is that there exists a set S of k + ` “bad” columns for which the union of the
supports of a subset S0

✓ S of k of those columns has a large intersection with the supports of all of
the remaining ` columns. Since the columns of B are all chosen independently, we have

Pr[B has a bad set S of k + ` columns] (1)



✓
n

`+ k

◆
Pr[S ✓ col(B) is a bad set of k + ` columns] (2)



✓
n

`+ k

◆✓
`+ k

k

◆
Pr[ for all ` columns Bi in S \ S0, i 2 TS0 ] (3)



✓
n

`+ k

◆✓
`+ k

k

◆
(Pr[i 2 TS0 ])`. (4)

Now we can assume we have a fixed set S0 of k columns and another fixed column Bi, and we
want to upper bound the probability that more than half the d = m

k nonzero entries of Bi lie in
[j2S0 supp(Bj). Let Xj be the binary random variable that is equal to 1 if and only if the jth
entry of Bi is nonzero and lies in [j2S0 supp(Bj). Since every column has weight exactly d,
| [j2S0 supp(Bj)|  kd, thus for any j Pr[Xj = 1]  kd

n . Then by linearity of expectation we
conclude that

E[
mX

j=1

Xj ] = dPr[Xj = 1] 
kd2

n
. (5)
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While the Xj are not independent, if some Xj = 1 then it is less likely that a different random
variable Xj0 = 1 as there are less coordinates remaining in [j2S0 supp(Bj). Since the Xj are
negatively correlated we can apply a Chernoff bound:

Pr[
mX

j=1

Xj �
n

2m
E[

mX

j=1

Xj ]] <

✓
e(n/2m)�1

(n/2m)n/2m

◆m2/nk

<

✓
2em

n

◆m/2k

. (6)

Note that
n

2m
E[

mX

j=1

Xj ] 
n

2m
·
kd2

n
=

d

2
, (7)

so in order for the sum of the Xj to exceed d
2 (which would mean the corresponding fixed column

has large overlap with the union of the set of k columns), it must also exceed n
2mE[

Pm
j=1 Xj ].

Combining everything above,

Pr[B has a bad set S of k + ` columns] (8)



✓
n

`+ k

◆✓
`+ k

k

◆
(Pr[Bi 2 TS0 ])` (9)



✓
n

`+ k

◆✓
`+ k

k

◆✓
2em

n

◆(`m)/(2k)

(10)



✓
ne

k + `

◆k+`✓ (`+ k)e

k

◆k ✓2em

n

◆(`m)/(2k)

(11)



⇣ne
k

⌘2k+`
✓
2em

n

◆(`m)/(2k)

, (12)

and we can make this final quantity less than 1 by choosing m = ck log n for an appropriately large
constant c, using our assumptions that ` = ⌦(k) and k = o(n/(log n)).
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