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Organization. In the supplementary materials, we provide detailed proofs for all theorems, lemmas
and propositions of our paper [2], and more experiment settings and results. We organize our
supplementary materials as follows.

Theory part. In Section A, we provide preliminaries of multi-marginal optimal transport. In Section
B, we prove an equivalence theorem that solving Problem II is equivalent to solving Problem III
under a mild assumption. In Section C, we build the relationship between Problem II and Problem
III. In Section D, we provide an error bound of the new dual formulation. In Section E, we prove
an update rule of optimizing the generators in Problem IV. In Section F, we theoretically analyze
the generalization performance of MWGAN. In Section G, we provide a relaxation of inter-domain
constraints. In Section H, we discuss a case that the potential function is Lipschitz continuous.

Experiment part. In Section I, we compare MWGAN with existing GAN methods. In Section J,
we study the effectiveness of one potential function of MWGAN. In Section K, we introduce more
details of toy dataset. In Section L, we introduce details of the classification on CelebA. In Section
M, we apply more quantitative evaluations for MWGAN. In Section N, we discuss the influences
of inner-domain constraints and inter-domain constraints. In Section O, we discuss the influence
of the hyper-parameter in our proposed method. In Section P, we introduce the details about the
network architecture of the discriminator and generators as well as more training details of MWGAN.
In Section Q, we present more qualitative results on CelebA and style painting dataset.

A Preliminaries of Multi-marginal Optimal Transport

Notation. We use calligraphic letters (e.g., X ) to denote space, capital letters (e.g., X) to denote
random variables, and bold lower case letter (e.g., x) to denote the corresponding values. Let
D=(X ,P) be the domain, P or µ be the marginal distribution over X and P(X ) be the set of all the
probability measures over X . For convenience, let X=Rd, and let I={0, ..., N} and [N ]={1, ..., N}.
Deep learning has achieved great success in computer vision. Despite its empirical success, however,
the theoretical understanding of deep neural networks still remains an open problem. Existing analysis
methods [3] are hard to understand the deep neural networks. Recently, optimal transport [17, 5, 18]
has been applied in deep learning [19]. With the help of optimal transport theory, one can define
the following primal problem to measure the distance among all distributions jointly (see Figure 1).
Specifically, the primal formulation of the multi-marginal Kantorovich problem is defined as follows.
Problem V (Primal problem [16]) GivenN+1 marginals µi ∈ P(Rd), ∀ i∈I and a cost function
c
(
X(0), . . . , X(N)

)
, then the multi-marginal Kantorovich problem can be defined as:

inf
γ∈Π(µ0,...,µN )

∫
c
(
X(0), . . . , X(N)

)
dγ
(
X(0), . . . , X(N)

)
, (10)

where Π(µ0, . . . , µN ) is the set of probabilistic couplings γ
(
X(0), . . . , X(N)

)
with the marginal µi,

for all i ∈ I, Π(µ0, . . . , µN ):=
{
γ ∈ P

(
Rd(N+1)

)
|πi(γ)=µi,∀i ∈ I

}
, where πi : Rd(N+1)→Rd

is the canonical projection.
∗Authors contributed equally.
†Corresponding author.
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Solving the primal problem is intractable on the generative task [8], so we consider the dual formula-
tion of the multi-marginal Kantorovich problem.
Problem VI (Dual problem [16]) Given N+1 marginals µi∈P(Rd) and potentials fi, i∈I, the
dual Kantorovich problem of multi-marginal Wasserstein distance is defined as:

W (µ0, . . . , µN )= sup
fi

∑
i∈I

∫
fi

(
X(i)

)
dµi

(
X(i)

)
,

s.t.
∑

i∈I
fi

(
X(i)

)
≤c
(
X(0), . . . , X(N)

)
.

(11)

In practice, we optimize the discrete case of Problem I. Specifically, given samples {x(0)
j }j∈J0 and

{x(i)
j }j∈Ji drawn from source domain distribution Ps and generated target distributions Pθi , i∈[N ],

respectively, where Ji is an index set and ni=|Ji| is the size of samples, we have:
Problem VII (Discrete dual problem) Let F={f0, . . . , fN} be the set of Kantorovich potentials,
then the discrete dual problem ĥ(F ) can be defined as:

max
F

ĥ(F ) =
∑

i

1

ni

∑
j∈Ji

fi

(
x

(i)
j

)
, (12)

s.t.
∑

i
fi

(
x

(i)
ki

)
≤ c

(
x

(0)
k0
, . . . ,x

(N)
kN

)
,∀ki ∈ [ni]. (13)

There is an interesting class of functions satisfying the constraint in Problem I, it is helpful for
deriving Theorem 4.

Definition 2 (c-conjugate function) Let c : Rd(N+1) → R∪ {∞} be a Borel function. We say that
the (N+1)-tuple of functions (f0, . . . , fN ) is a c-conjugate function, ∀i ∈ I, if

fi

(
X(i)

)
= inf

{
c
(
X(0), . . . , X(N)

)
−
∑N

j 6=i
fj

(
X(j)

)}
. (14)

With Definition 2, the following theorem builds a relationship between the primal and dual problem.
Theorem 4 (Primal-dual Optimality [12]) Let (Rd, µ0), . . . , (Rd, µN ) be Polish spaces equipped
with Borel probability measures µ0, . . . , µN , then we have

1. There exists a solution γ to Problem V and a c-conjugate solution (f0, . . . , fN ) to Problem I.

2. The maximum value of Problem V is equal to the minimum value of Problem I.

3. For any solution γ of Problem V, any c-conjugate solution of Problem I and any (X(0), . . ., X(N))
in the support of γ, then

N∑
i=0

fi(X
(i)) = c(X(0), . . ., X(N)).

This Primal-dual Optimality theorem helps to derive a new dual formulation in Theorem 1.
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B Equivalent Theorem

The Kantorovich duality theorem [16] can transform Problem II into the following problem.
Problem VIII Let Fc = {f1, . . . , fN} be the set of Kantorovich potentials, then the discrete c-
conjugate dual problem can be defined as:

sup
Fc

ĥ(Fc) =
1

n0

∑
j∈J0

f c
(
x

(0)
j

)
+

N∑
i=1

1

ni

∑
j∈Ji

fi

(
x

(i)
j

)
, (15)

where f c is the c-conjugate function defined as:

f c
(
x(0)

)
= inf

x(1),...,x(N)

c(x(0),x(1), . . . ,x(N)
)
−

N∑
j=1

fj

(
x(j)

) . (16)

Definition 3 (Cost function) Given a distance function d(·, ·) which satisfies the triangle inequality,
i.e., d(x,y)+d(y, z)≥d(x, z),∀x,y, z, then the cost function can be defined as

c
(
x(0),x(1), . . . ,x(N)

)
=
∑

i 6=j
d
(
x(i),x(j)

)
, ∀ i, j ∈ [N ]. (17)

Lemma 2 Given the cost function c(·, . . . , ·) defined in Definition 3, ifN+1 samples x(i)
ki
∈ X (i), i ∈

I are overlapped, let f∗i , i∈[N ] be the optimizers to Problem II, and (f c)∗ be the c-conjugate function
defined in Eqn. (16), then

(f c)∗
(
x

(0)
k0

)
=f∗i

(
x

(i)
ki

)
, i∈[N ]. (18)

Corollary 1 Given the cost function c(·, . . . , ·) defined in Definition 3, we assume f∗

is 1-Lipschitz continuous, the samples are bounded and the distance function satisfies
d(x, z)≤d(x,y)+d(y, z)≤Cd(x, z), where C≥1, when N+1 samples x

(i)
ki
∈X (i), i∈I are close

to each other, i.e., c(x(0)
k0
, . . . ,x

(N)
kN

) is arbitrarily small, then (f c)∗(x
(0)
k0

) would be arbitrarily close

to f∗i (x
(i)
ki

), i∈[N ], where f∗i , i∈[N ] are the optimizers to Problem II, and (f c)∗ is the c-conjugate
function defined in Eqn. (16).

Lemma 3 Suppose f∗ is an optimal solution to Problem III and
∑
i∈I λi = 0, then f∗ satisfies

f∗
(
x(0)

)
= inf

x(1),...,x(N)

{
c
(
x(0),x(1), . . . ,x(N)

)
−
∑N

j=1
λjf

∗
(
x(j)

)}
, ∀ x ∈ X 0. (19)

Theorem 5 (Equivalent Theorem) Given the cost function defined in Definition 3, and∑
i λi=0, i∈I then solving Problem III is equivalent to solving Problem II, i.e., the optimal ob-

jective of Problems II and III are equal.
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B.1 Proofs of Equivalent Theorem

Theorem 5 (Equivalent Theorem) Given the cost function defined in Definition 3, and∑
i λi=0, i∈I then solving Problem III is equivalent to solving Problem II, i.e., the optimal ob-

jective of Problems II and III are equal.

Proof First, we prove that any optimal solution to Problem III is a feasible solution to Problem II.
Suppose that f∗ is the optimal solution to Problem III, from Lemma 2, we know that

f∗
(
x(0)

)
= inf

x(1),...,x(N)

c(x(0),x(1), . . . ,x(N)
)
−

N∑
j=1

λjf
∗
(
x(j)

) , ∀ x∈X 0. (20)

From the definition of c-conjugate function in Eqn. (16), we have

(f∗)c
(
x(0)

)
= inf

x(1),...,x(N)

c(x(0),x(1), . . . ,x(N)
)
−

N∑
j=1

λjf
∗
(
x(j)

) , ∀ x∈X 0. (21)

Hence, f∗ is a feasible solution to Problem II. Therefore,

ĥ(F ∗c ) ≥ ĥ(F ∗λ ). (22)

Second, we prove that any optimal solution to Problem II is a feasible solution to Problem III.
Suppose f∗i , i ∈ [N ] are optimizers to Problem II. From Lemma 2, ∀ x(i)

ki
∈ X (i), i ∈ I with equal

value, we have (f c)∗(x
(0)
k0

) = f∗i (x
(i)
ki

), i ∈ [N ], given that the cost function satisfies the condition in
Definition 3. Therefore, we can find a function φ and λi, i ∈ [N ] such that

λ0φ
(
x

(0)
k0

)
= (f c)∗

(
x

(0)
k0

)
, (23)

λiφ
(
x

(i)
ki

)
= f∗i

(
x

(i)
ki

)
. (24)

Thus, ĥ(F ∗c ) can be rewritten as

ĥ(F ∗c ) =
∑
i

λi
ni

∑
j∈Ji

φ
(
x

(i)
j

)
(25)

From the definition of (f c)∗, we have∑
i
λiφ

(
x(i)
)
≤ c

(
x(0), . . . ,x(N)

)
, (26)

Therefore, φ is a feasible solution to Problem III, and hence

ĥ(F ∗c ) ≤ ĥ(F ∗λ ). (27)

From ĥ(F ∗c ) ≥ ĥ(F ∗λ ) and ĥ(F ∗c ) ≤ ĥ(F ∗λ ), we have

ĥ(F ∗c ) = ĥ(F ∗λ ), (28)

where ĥ(F ∗λ ) = {λ0f
∗, . . . , λNf

∗}. �
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B.2 Proofs of Lemmas 2 and 3

Lemma 2 If the cost function c(·, . . . , ·) satisfies Definition 3, then ∀ x(i)
ki
∈ X (i), i ∈ I, if they are

equal and f∗i , i ∈ [N ] are the optimizers to Problem II, then (f c)∗(x
(0)
k0

) = f∗i (x
(i)
ki

), i ∈ [N ], where
(f c)∗ is the c-conjugate function defined in Eqn. (16).

Proof We prove this by Contradiction. Without loss of generality, suppose ∀ x(i)
ki
∈ X (i), i ∈ I

are equal, and (f c)∗(x
(0)
k0

) 6= f∗i (x
(i)
ki

), i ∈ [N ]. Let K = {k1, . . . , kN} and Ω = {X1 × · · · × XN}.
According to the definition of the c-conjugate function,

(f c)∗
(
x

(0)
k0

)
= inf

−
N∑
j=1

f∗j

(
x

(j)
kj

)
, inf
Ω\K

c(x(0)
k0
,x(1), . . . ,x(N)

)
−

N∑
j=1

f∗j

(
x(j)

)
 .

For simplicity, let ψ∗(x(1), . . . ,x(N)) =
∑N
j=1 f

∗
j

(
x(j)

)
, we rewrite the above function as

(f c)∗
(
x

(0)
k0

)
= inf

{
−ψ∗

(
x

(1)
k1
, . . . ,x

(N)
kN

)
, inf
Ω\K

{
c
(
x

(0)
k0
,x(1), . . . ,x(N)

)
− ψ∗

(
x(1), . . . ,x(N)

)}}
.

Since (f c)∗(x
(0)
k0

) 6= f∗i (x
(i)
ki

), i ∈ [N ], for any x
(0)
i , we have

ψ∗
(
x

(1)
k1
, . . . ,x

(N)
kN

)
+ c

(
x

(0)
i ,x

(1)
k1
, . . . ,x

(N)
kN

)
> inf

Ω\K

{
c
(
x

(0)
k0
,x(1), . . . ,x(N)

)
− ψ∗(x(1), . . . ,x(N))

}
+ c

(
x

(0)
i ,x

(1)
k1
, . . . ,x

(N)
kN

)
= inf

Ω\K

{
−ψ∗

(
x(1), . . . ,x(N)

)
+ c

(
x

(0)
k0
,x(1), . . . ,x(N)

)
+ c

(
x

(0)
i ,x

(1)
k1
, . . . ,x

(N)
kN

)}
≥ inf

Ω\K

{
−ψ∗

(
x(1), . . . ,x(N)

)
+ c

(
x

(0)
i ,x(1), . . . ,x(N)

)}
. (29)

Line 29 follows the fact that the definition of the cost function, x(i)
ki
∈ X (i), i ∈ I are equal. Suppose

the number of samples in each distribution is n,

W ∗(µ0, . . . , µN ) = sup
Fc

ĥ(Fc)

=
1

n

∑
j∈J0

(f c)∗
(
x

(0)
j

)
+

N∑
i=1

1

n

∑
j∈Ji

f∗i

(
x

(i)
j

)

=
1

n

∑
j∈J0

inf
Ω\K

{
c
(
x

(0)
j ,x(1), . . . ,x(N)

)
− ψ∗

(
x(1), . . . ,x(N)

)}
+

N∑
i=1

1

n

∑
j∈Ji

f∗i

(
x

(i)
j

)
=

1

n

∑
j∈J0

inf
Ω\K

{
c
(
x

(0)
j ,x(1), . . . ,x(N)

)
− ψ∗

(
x(1), . . . ,x(N)

)}
+

1

n
ψ∗
(
x

(1)
k1
, . . . ,x

(N)
kN

)
+

1

n

∑
j:x

(i)
j /∈K,i∈[N ]

ψ∗
(
x

(1)
j , . . . ,x

(N)
j

)
.

We can always find another function ψ′, such that ψ′
(
x(1), . . . ,x(N)

)
= ψ∗

(
x(1), . . . ,x(N)

)
for

∀x(1), . . . ,x(N) ∈ Ω \ K, and

−ψ∗
(
x

(1)
k1
, . . . ,x

(N)
kN

)
>−ψ′

(
x

(1)
k1
, . . . ,x

(N)
kN

)
> inf

Ω\K

{
c
(
x

(0)
k0
,x(1), . . . ,x(N)

)
−ψ∗

(
x(1), . . . ,x(N)

)}
.

In this case, (f c)′
(
x

(0)
j

)
= (f c)∗

(
x

(0)
j

)
,∀j ∈ J0, but

ψ∗
(
x

(1)
k1
, . . . ,x

(N)
kN

)
< ψ′

(
x

(1)
k1
, . . . ,x

(N)
kN

)
.

Therefore, F̂ψ > F̂c, a contradiction. �
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Corollary 1 Given the cost function c(·, . . . , ·) defined in Definition 3, we assume f∗

is 1-Lipschitz continuous, the samples are bounded and the distance function satisfies
d(x, z)≤d(x,y)+d(y, z)≤Cd(x, z), where C≥1, when N+1 samples x

(i)
ki
∈X (i), i∈I are close

to each other, i.e., c(x(0)
k0
, . . . ,x

(N)
kN

) is arbitrarily small, then (f c)∗(x
(0)
k0

) would be arbitrarily close

to f∗i (x
(i)
ki

), i∈[N ], where f∗i , i∈[N ] are the optimizers to Problem II, and (f c)∗ is the c-conjugate
function defined in Eqn. (16).

Proof We prove the case of N=1, it can be directly extended to the case of N>1. Specifically, the
potential function f1:=−f . Based on the definition of the cost function, we have c(x,y):=d(x,y).
If x(1)

k1
is the optimal solution, i.e., (f c)∗

(
x

(0)
k0

)
=f∗

(
x

(1)
k1

)
+d
(
x

(0)
k0
,x

(1)
k1

)
, then∣∣∣(f c)∗ (x(0)

k0

)
− f∗

(
x

(1)
k1

)∣∣∣ = d
(
x

(0)
k0
,x

(1)
k1

)
. (30)

If x(1)
k′1

is the optimal solution, i.e., (f c)∗
(
x

(0)
k0

)
=f∗

(
x

(1)
k′1

)
+d
(
x

(0)
k0
,x

(1)
k′1

)
, then∣∣∣(f c)∗ (x(0)

k0

)
− f∗

(
x

(1)
k1

)∣∣∣ =
∣∣∣f∗ (x(1)

k′1

)
+ d

(
x

(0)
k0
,x

(1)
k′1

)
− f∗

(
x

(1)
k1

)∣∣∣ (31)

≤
∣∣∣f∗ (x(1)

k′1

)
− f∗

(
x

(1)
k1

)∣∣∣+ d
(
x

(0)
k0
,x

(1)
k′1

)
(32)

≤d
(
x

(1)
k′1
,x

(1)
k1

)
+ d

(
x

(0)
k0
,x

(1)
k′1

)
(33)

≤Cd
(
x

(0)
k0
,x

(1)
k1

)
. (34)

For the above two cases, when x
(1)
k1

is close to x
(0)
k0

, then f∗
(
x

(1)
k1

)
is also close to (f c)∗

(
x

(0)
k0

)
. �

Lemma 3 Suppose f∗ is an optimal solution to Problem III and
∑
i∈I λi = 0, then f∗ satisfies

f∗
(
x(0)

)
= inf

x(1),...,x(N)

{
c
(
x(0),x(1), . . . ,x(N)

)
−
∑N

j=1
λjf

(
x(j)

)}
, ∀ x ∈ X 0. (35)

Proof Since f∗ is the optimal solution to Problem III, we have

f∗
(
x(0)

)
≤ inf

x(1),...,x(N)

{
c
(
x(0),x(1), . . . ,x(N)

)
−
∑N

j=1
λjf

(
x(j)

)}
, ∀ x ∈ X 0. (36)

We prove by contradiction. Without loss of generality, suppose there exists a x
(0)
k0

, such that

f∗
(
x(0)

)
< inf

x(1),...,x(N)

{
c
(
x(0),x(1), . . . ,x(N)

)
−
∑N

j=1
λjf

(
x(j)

)}
, ∀ x ∈ X 0. (37)

Note that x(i)
ki
∈ X (i), i ∈ I can not be equal, otherwise,

f∗
(
x

(0)
k0

)
=−

∑
i∈[N ]

λif
∗
(
x

(i)
ki

)
(38)

=−
∑

i∈[N ]
λif
∗
(
x

(i)
ki

)
+ c

(
x

(0)
k0
,x

(1)
k1
, . . . ,x

(N)
kN

)
(39)

≥ inf
x(1),...,x(N)

{
−
∑

i∈[N ]
λif
∗
(
x(i)
)

+ c
(
x(0),x(1), . . . ,x(N)

)}
. (40)

It is not consistent with Eqn. (37), thus x(i)
ki
∈ X (i), i ∈ I can not be equal.

Therefore, there exists another function f ′ such that f ′
(
x

(i)
j

)
= f∗

(
x

(i)
j

)
,∀ x(i)

j ∈ X i, i ∈ [N ],

and f ′
(
x

(0)
j

)
= f∗

(
x

(0)
j

)
,∀ x(0)

j ∈ X 0 \ x(0)
k0

and

f ′
(
x

(0)
k0

)
= inf

x(1),...,x(N)

{
c
(
x(0),x(1), . . . ,x(N)

)
−
∑N

j=1
λjf

(
x(j)

)}
.

It is easy to verify that f ′ satisfies the constraints in Problem III and ĥ(F ′λ)>ĥ(F ∗λ ), where
ĥ(F ′λ)={λ0f

′, . . . , λNf
′} and ĥ(F ∗λ )={λ0f

∗, . . . , λNf
∗}. Therefore, it leads to a contradiction. �
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C Proof of Theorem 1

Theorem 1 Suppose the domains are connected, c is continuously differentiable and that each µi is
absolutely continuous. If (f0, . . . , fN ) and (λ0f, . . . , λNf) are solutions to Problems I, then there
exist some constant εi for all i ∈ I such that

∑
i εi = 0, and fi = λif + εi.

Proof First, using a convexification trick [7], we are able to construct a c-conjugate solution
(f c0 , f

c
1 , . . . , f

c
N ) to the continuous case of Problem I, where f ci can be defined as:

f ci

(
X(i)

)
= inf

c(X(0), . . . , X(N)
)
−
∑

0≤j<i

f cj

(
X(j)

)
−

∑
i<j≤N

fj

(
X(j)

) , ∀i ∈ I.

(41)

Based on the definition of f ci and its optimality, we have

f ci

(
X(i)

)
≤ inf

c(X(0), . . . , X(N)
)
−
∑
j 6=i

f cj

(
X(j)

) , ∀i ∈ I. (42)

Then we iteratively obtain that fi
(
Xi
)
≤ f ci

(
Xi
)
, and using the definition of Equation (41),

f ci

(
X(i)

)
= inf

c(X(0), . . . , X(N)
)
−
∑

0≤j<i

f cj

(
X(j)

)
−

∑
i<j≤N

fj

(
X(j)

) , ∀i ∈ I

≥ inf

c(X(0), . . . , X(N)
)
−
∑
j 6=i

f cj

(
X(j)

) . (43)

Combining Inequalities (42) and (43), we have a c-conjugate solution (f c0 , f
c
1 , . . . , f

c
N ) which satisfies

Definition 2. Let ϕi = λif,−1≤λ≤1, using the convexification trick, we are able to find c-conjugate
solutions (f c0 , . . . , f

c
N ) and (ϕc0, . . . , ϕ

c
N ) to the continuous cases of Problems II and III such that

fi ≤ f ci and ϕi ≤ ϕci . As∑
i∈I

∫
fi

(
X(i)

)
dµi

(
X(i)

)
=
∑
i∈I

∫
f ci

(
X(i)

)
dµi

(
X(i)

)
,

we must have fi = f ci , µi almost everywhere. Similarly, ϕi = ϕci , µi almost everywhere. We
choose X(i) ∈ Di where f ci and ϕci are differentiable. Then there exist X(j) for all j 6= i such that
(X(0), . . . , X(i−1), X(i), X(i+1), . . . , X(N)) in the support of µ. According to Theorem 4, we have

f ci

(
X(i)

)
− c

(
X(0), . . . , X(i−1), X(i), X(i+1), . . . , X(N)

)
= −

∑
j 6=i

f cj

(
X(j)

)
.

Because f ci
(
Z(i)

)
−c
(
X(0), . . . , X(i−1), Z(i), X(i), . . . , X(N)

)
≤ −

∑
j 6=i f

c
j

(
X(j)

)
for all other

Z(i) we have the differential of f ci and c(·) w.r.t. X(i) as follows

DX(i)f ci

(
X(i)

)
= DX(i)c

(
X(0), . . . , X(i−1), X(i), X(i+1), . . . , X(N)

)
.

Similarly, we have

DX(i)ϕci

(
X(i)

)
= DX(i)c

(
X(0), . . . , X(i−1), X(i), X(i+1), . . . , X(N)

)
.

Therefore, we have DX(i)f ci
(
X(i)

)
= DX(i)ϕci

(
X(i)

)
. As this equality holds for almost all

X(i), we have f ci
(
X(i)

)
= ϕci

(
X(i)

)
+ εi and fi

(
X(i)

)
= ϕi

(
X(i)

)
+ εi. Choosing any(

X(0), . . . , X(i−1), X(i), X(i+1), . . . , X(N)
)

in the support of γ, then∑
i∈I

f ci

(
X(i)

)
= c

(
X(0), . . . , X(i−1), X(i), X(i+1), . . . , X(N)

)
=
∑
i∈I

ϕci

(
X(i)

)
.

Therefore,
∑
i εi = 0. �
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D Error Bound of New Dual Formulation

Theorem 6 (Error bound) Suppose the function f is an optimal solution to Problem III and is
bounded in [−∆,∆], we let σ̂k0,...,kN=1[f /∈Ω], where Ω={f |

∑
i λif(x

(i)
ki

) ≤ c(x(0)
k0
, . . . ,x

(N)
kN

)}
with −1≤λi≤1, and σ=E[σ̂k0,...,kN ] be the expectation of the probability that violates constraints in
Problem III. Define h(Fλ)=

∑
i λiEx(i) [f(x(i))], then the error bound between the discrete ĥ and

the continuous problem h is:

P
(∣∣∣ĥ(Fλ)−h(Fλ)

∣∣∣≤ε)>1−2(N+1) exp

(
−nε2

2(N+1)2∆2

)
, (44)

where n= mini∈I ni. Let M=
∏
i∈I ni, then we have P (|σ|>ε)≤2e−2Mε2 .

Proof Based on the definitions of ĥ(Fλ) and h(Fλ) and −1≤λi≤1, i∈I,∣∣∣ĥ (Fλ)− h (Fλ)
∣∣∣ =

∣∣∣∣∣∣
∑
i

λi
ni

∑
j∈Ji

f
(
x
(i)
j

)
−
∑
i

λiE
[
f
(
x(i)
)]∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
i

λi

 1

ni

∑
j∈Ji

f
(
x
(i)
j

)
− E

[
f
(
x(i)
)]∣∣∣∣∣∣ ,−1 ≤ λi ≤ 1

≤
∑
i

∣∣∣∣∣∣ 1

ni

∑
j∈Ji

f
(
x
(i)
j

)
− E

[
f
(
x(i)
)]∣∣∣∣∣∣ . (45)

Suppose the function f is bounded in [−∆,∆], then, according to Hoeffding’s inequality, we have

P

(∣∣∣∣∣ 1

ni

∑
j

f
(
x
(i)
j

)
− E

[
f
(
x(i)
)]∣∣∣∣∣ > ε

N+1

)
≤ 2 exp

(
−niε2

2(N+1)2∆2

)
. (46)

Using Inequality (46) and union bound over all i ∈ I, we further have the following inequality,

P

(⋃
i∈I

(∣∣∣∣∣ 1

ni

∑
j

f
(
x
(i)
j

)
− E

[
f
(
x(i)
)]∣∣∣∣∣ > ε

N + 1

))

≤
∑
i

P

(∣∣∣∣∣ 1

ni

∑
j

f
(
x
(i)
j

)
− E

[
f
(
x(i)
)]∣∣∣∣∣ > ε

N + 1

)

≤2(N + 1) exp

(
−nε2

2(N + 1)2∆2

)
,

where n = mini∈I ni. Equivalently, we rewrite the above inequality as

P

(⋂
i∈I

(∣∣∣∣∣ 1

ni

∑
j

f
(
x
(i)
j

)
− E

[
f
(
x(i)
)]∣∣∣∣∣ ≤ ε

N + 1

))
> 1− 2(N + 1) exp

(
−nε2

2(N + 1)2∆2

)
.

Therefore, from Inequality (45), the following probability inequality satisfies:

P
(∣∣∣ĥ (Fλ)− h (Fλ)

∣∣∣ ≤ ε) ≥ P (∑
i

∣∣∣∣∣ 1

ni

∑
j

f
(
x
(i)
j

)
− E

[
f
(
x(i)
)]∣∣∣∣∣ ≤ ε

)

> 1− 2(N + 1) exp

(
−nε2

2(N + 1)2∆2

)
.

Based on the definitions of σ̂k0,...,kN and σ, they are bounded in the interval [0, 1]. Using Hoeffding’s
inequality, we have

P

∣∣∣∣∣∣ 1

M

∑
k0,...,kN

σ̂k0,...,kN − σ

∣∣∣∣∣∣ > ε

 ≤ 2 exp
(
−2Mε2

)
,

where M =
∏
i ni. Suppose the function f can be learned by a deep neural network with suffi-

cient capacity, and it is able to solve Problem III. Then, the inequality constraints
∑
i f
(
x

(i)
ki

)
≤

c
(
x

(0)
k0
, . . . ,x

(N)
kN

)
are satisfied, and thus σ̂k0,...,kN = 0 for ∀ k0, . . . , kN , we have

P (|σ| > ε) ≤ 2e−2Mε2 .

�
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E Proof of Theorem 2

Definition 4 (Function space) Let X ⊆ Rd be a compact set (such as [0, 1]d the space of images),
the function space can be defined as

Cb(X ) = {f : X → R, f is continuous and bounded}. (47)

Assumption 1 [1] Let g : X → X be locally Lipschitz between finite dimensional vector spaces.
Given gθ(X) evaluated on coordinates (X, θ), we say that g satisfies assumption 1 for a certain
probability distribution p over X if there are local Lipschitz constants L(θ,x) such that

Ex∼P[L(θ,x)] < +∞.

Assumption 2 [1] Assume the discriminator f is Lipschitz continuous w.r.t. x.

Lemma 4 [1] Assume the discriminator f is 1-Lipschitz w.r.t. w and the generator gθ(x) is locally
Lipschitz as a function of (θ, x), then ∇θEx∼Ps [f(gθ(x))] = Ex∼Ps [∇θf(gθ(x))].

Theorem 2 If each generator gi∈G, i∈[N ] is locally Lipschitz and satisfies Assumption 1 [1] , then
there exists a discriminator f to Problem IV, we have the gradient ∇θiW (P̂s, P̂θ1 , . . . , P̂θN ) =
−λ+

i Ex∼P̂s [∇θif(gi(x))] for all θi, i ∈ [N ] when all terms are well-defined.

Proof Recall the optimization problem, we first define the value function as follows:

V (f̃ , θ) = Ex∼Ps

[
f̃(x)

]
− 1

N

∑
i

Ex∼Pθi

[
f̃(x)

]
= Ex∼Ps

[
f̃(x)

]
− 1

N

∑
i

Ex∼Ps

[
f̃(gi(x))

]
,

where θ is the set of θi, i ∈ [N ], f̃ lies in F̃ = {f̃ : X → R, f̃ ∈ Cb(X ), f̃ ∈ Ω} and Cb(X ) is
defined in (47).

Ω =

{
f̃ : f̃(x)− 1

N

∑
i∈[N ]

f̃
(
x(i)
)
≤ c

(
x(0),x(1), . . . ,x(N)

)}
,

where x(0):=x. Since X is compact, and based on Theorem 4, there is a solution f∈F̃ that satisfies

W (Ps,Pθ1 , . . .,PθN ) = sup
f̃∈F̃

V (f̃ , θ) = V (f, θ).

Define the optimal set F∗(θ) = {f ∈ F̃ : V (f, θ) = W (Ps,Pθ1 , . . .,PθN )}, and note that this set
F∗(θ) is non-empty. Based on envelope theorem [15], we have

∇θiW (Ps,Pθ1 , . . .,PθN ) = ∇θiV (f, θ)

for any f ∈ F∗(θ) when all terms are well-defined. Note that f exists since F∗(θ) is non-empty for
all θi. Then, we have

∇θiW (Ps,Pθ1 , . . .,PθN ) =∇θiV (f, θ)

=∇θi

[
Ex∼Ps [f(x)]− 1

N

∑
i

Ex∼Ps [f(gi(x))]

]

=∇θi
[
Ex∼Ps [f(x)]− 1

N
Ex∼Ps [f(gi(x))]

]
=− 1

N
∇θiEx∼Ps [f(gi(x))]

=− 1

N
Ex∼Ps [∇θif(gi(x))] ,

where the last equality holds by Lemma 4. �
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F Proof of Theorem 3

Theorem 3 (Generalization bound) Let Ps and Pθi be the continuous real and generated distribu-
tions, and P̂s and P̂θi be the empirical real and generated distributions with at least n samples each.
When n ≥ Cκ∆2 log(Lκ/ε)

ε2 , the following generalization bound is satisfied with probability at least
1− e−κ, ∣∣∣W (

P̂s, P̂θ1 , . . ., P̂θN
)
−W (Ps,Pθ1 , . . .,PθN )

∣∣∣ ≤ ε.
Proof Let W̃ be a finite set such that every point w ∈ W is within distance ε

8L of a point w′ ∈ W̃ ,
i.e., for every w ∈ W , there exist a w′ ∈ W such that ‖w − w′‖ ≤ ε

8L . For any x ∈ Ps or x ∈ P̂s,
assume that f is L-Lipschitz continuous w.r.t. w, then we have

|fw′(x)− fw(x)| ≤ L‖w′ − w‖ ≤ ε

8
. (48)

Assume that f is bounded in [−∆,∆]. Using to Hoeffding’s inequality, for every w′ ∈ W̃ , we have

P
(∣∣∣Ex∼Ps [fw′(x)]− Ex∼P̂s [fw′(x)]

∣∣∣ ≥ ε

4

)
≤ 2 exp

(
− nε2

32∆2

)
.

Therefore, when n ≥ Cκ∆2 log(Lκ/ε)
ε2 for a large enough constant C, we have union bounds over

all w′ ∈ W̃ . Then, we have |Ex∼Psfw′(x) − Ex∼P̂sfw′(x)| ≤ ε
4 with the high probability at least

1− exp(−κ), where κ is the number of parameters in the discriminator f . For every w ∈ W , we can
find a w′ ∈ W̃ such that the following satisfies∣∣∣Ex∼Ps [fw(x)]−Ex∼P̂s [fw(x)]

∣∣∣ ≤ |Ex∼Ps [fw′(x)]−Ex∼Ps [fw(x)]|+
∣∣∣Ex∼P̂s [fw′(x)]−Ex∼P̂s [fw(x)]

∣∣∣
+
∣∣∣Ex∼Ps [fw′(x)]−Ex∼P̂s [fw′(x)]

∣∣∣
≤ ε

8
+
ε

8
+
ε

4
≤ ε

2
.

The third line holds by Inequality (48). Therefore, with high probability at least 1− exp(−κ), for
every discriminator fw, ∣∣∣Ex∼Ps [fw(x)]− Ex∼P̂s [fw(x)]

∣∣∣ ≤ ε

2
.

Similarly, for Pθi and P̂θi , when n≥Cκ∆2 log(Lκ/ε)
ε2 , with the probability at least 1− exp(−κ),∣∣∣Ex∼Pθi [fw(x)]− Ex∼P̂θi

[fw(x)]
∣∣∣ ≤ ε

2
, ∀i = 1, . . . , N.

Let fw be the optimal discriminator of W (Ps,Pθ1 ,. . .,PθN ), we have

W
(
P̂s, P̂θ1 , . . . , P̂θN

)
= sup
f∈F

Ex∼P̂s [f(x)]− 1

N

∑
i

[
Ex∼P̂θi

[f (x)]
]

≥Ex∼P̂s [fw(x)]− 1

N

∑
i

[
Ex∼P̂θi

[fw (x)]
]

=Ex∼Ps [fw(x)]− 1

N

∑
i

[
Ex∼Pθi [fw (x)]

]
−
(
Ex∼Ps [fw(x)]− Ex∼P̂s [fw(x)]

)
− 1

N

∑
i

[
Ex∼P̂θi

[fw (x)]− Ex∼Pθi [fw (x)]
]

≥W (Ps,Pθ1 , . . . ,PθN )− ε.

Similarly, W (Ps,Pθ1 , . . . ,PθN ) ≥ W
(
P̂s, P̂θ1 , . . . , P̂θN

)
− ε. Therefore, when the number of

sample in each domain satisfying n ≥ Cκ∆2 log(Lκ/ε)
ε2 , then the following satisfies with the probability

at least 1− exp(−κ), ∣∣∣W (
P̂s, P̂θ1 , . . ., P̂θN

)
−W (Ps,Pθ1 , . . .,PθN )

∣∣∣ ≤ ε.
We conclude the proof. �
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G Proof of Lemma 1

Lemma 1 (Constraints relaxation) If the cost function c(·) is measured by `2 norm, then there
exists a constant Lf≥1 such that discriminator f satisfies the following constraint:∑

i

∣∣f(x)− f
(
x̂(i)
)∣∣∥∥x− x̂(i)

∥∥ ≤ Lf . (49)

Proof When the inequality constraints in Problem IV is satisfied, and without loss of generality,
we assume that 1

N

∑∣∣f(x)− f
(
x(i)
)∣∣ ≤ c(x(0), . . . ,x(N)). Let c := c(x(0), . . . ,x(N)), we have

1

Nc
min
i

∥∥∥x− x̂(i)
∥∥∥∑

i

∣∣f(x)− f
(
x̂(i)
)∣∣∥∥x− x̂(i)

∥∥ ≤ 1

Nc

∑
i

∥∥x− x̂(i)
∥∥ ∣∣f(x)− f

(
x̂(i)
)∣∣∥∥x− x̂(i)

∥∥ ≤ 1.

Let Lf = Nc/min
i

∥∥x− x̂(i)
∥∥ ≥ 1, we conclude the proof. �

In Lemma 1, the constant Lf is related to the cost function c. In this sense, it captures the dependency
among domains.

H Discussions on Lipschitz Condition

From the following proposition, the assumption that the potential function is Lipschitz continuous is
strong to enforce the inequality constraints. It would cause misleading results for our problem setting.
Proposition 1 If the potential function is Lipschitz continuous, and the cost function is defined as

c
(
x,x(1) . . . ,x(N)

)
=
∑
i∈[N ]

∥∥x− xi
∥∥ , (50)

then the potential function must satisfy the inequality constraints, i.e.,

1

N

∑
i∈[N ]

∣∣∣f(x)− f
(
x(i)
)∣∣∣ ≤ c(x,x(1) . . . ,x(N)

)
. (51)

Proof If the potential function is 1-Lipschitz continuous, i.e.,∣∣f(x)− f
(
xi
)∣∣ ≤ ∥∥x− xi

∥∥ , i ∈ [N ]. (52)

Then, based on the definition of the potential and for all variables, we have

1

N

∑
i∈[N ]

∣∣∣f(x)− f
(
x(i)
)∣∣∣ ≤ ∑

i∈[N ]

∥∥x− xi
∥∥ . (53)

�
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I Comparisons with GAN Methods

I.1 Differences between MWGAN and WGAN

In this paper, the proposed MWGAN essentially differs from WGAN even when λ+
i = 1/N : 1)

MWGAN considers and incorporates multi-domain correlations into the inequality constraints to
improve the image translation performance. WGAN focuses on image generation tasks and cannot
directly deal with multi-domain correlations. 2) The objectives of two methods are different in the
formulation. 3) In the algorithm, MWGAN uses gradient penalty to deal with inequality constraints;
while WGAN relies on the weight clipping.

I.2 Comparisons with Image-to-image Translation Methods

CycleGAN [20] is a two-domain translation method, but it can be used in the multi-domain image
translation task. It means that CycleGAN needs to learn multiple two-domain translation tasks.
Moreover, CycleGAN performs well on the unbalanced translation task, because it independently
optimizes multiple individual networks for the multi-domain image translation task. StarGAN [6] and
UFDN [13] are multi-domain image translation methods, however, they may not exploit multi-domain
correlations to achieve good performance on the unbalanced translation task.

Table 4: Comparisons with image-to-image translation methods.

Method Unpaired data Multiple domains Multi-domain correlations Unbalanced translation task
CycleGAN X × × X
StarGAN X X × ×

UFDN X X × ×
MWGAN X X X X

Difference between MWGAN and StarGAN. The adversarial learning of MWGAN is different
from StarGAN. Specifically, MWGAN cannot be interpreted as distribution matching between source
and a mixture of target distributions. Let P̄θ be a mixture distribution over (Pθ1 , . . . ,PθN ). Note that
P̄θ is related to the batch size. When the batch size is too small, then P̄θ cannot guarantee to contain
all domains. StarGAN minimizes the following optimization problem:

maxf Ex∼P̂s [f(x)]− Ex̂∼P̄θ [f (x̂)] . (54)

In contrast, MWGAN minimizes the following optimization problem,

maxf Ex∼P̂s [f(x)]−
∑

i
λ+
i Ex̂∼P̂θi

[f (x̂)] . (55)

When λ+
i =1/N and P̄θ is uniformly drawn from every target generated distribution, the objective

(54) is equivalent to the objective (55). However, when λ+
i 6=1/N and the batch size is small, the

objective (54) is not equivalent to the objective (55). Besides, the inequality constraints in MWGAN
are related to the correlation among all domains, while StarGAN only considers the source domain
and certain target domain. Therefore, the adversarial learning of MWGAN is different from StarGAN.
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J Effectiveness of One Potential Function

J.1 Comparisons between One and Multiple Potential Functions

We focus on multiple marginal matching, where multiple target domains often contain cross-domain
correlations. Thus, a shared potential function helps to exploit cross-domain correlations to improve
performance (see results in Table 5 on the Edge→CelebA task). Second, training a shared function
using entire data of all domains is much easier than training N+1 potentials (one per domain).

Table 5: Comparisons of shared and N+1 potentials in terms of FID.

Method Black hair Blond hair Brown hair
N+1 potentials 245.25 289.56 303.04
One potential 33.81 51.87 35.24

J.2 Weight Setting and Performance vs #domains (N )

With λ+
i = 1/N , each generator provides equal gradient feedbacks in each target domain and helps to

exploit cross-domain correlations in adversarial learning. We apply MWGAN on the Edge→CelebA
translation task with different N . From Table 6, more domains help to improve the performance in
terms of FID by exploiting cross-domain correlations.

Table 6: Performance vs #domains in FID.

N 2 3 4 5
FID 58.61 38.31 33.81 32.43
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K Toy Dataset

K.1 7 Gaussian Distributions

In the first row of Figure 2, we generate 7 Gaussian distributions as the real data distribution, where
the center of initial distribution (green) is (0, 0), and the centers of 6 target distributions (red)
are (3/2, 0), (−3/2, 0), (3/4, 3

√
3/4), (−3/4, 3

√
3/4), (3/4,−3

√
3/4) and (−3/4,−3

√
3/4). For

each Gaussian distribution, the variance is 0.04, and we generate 256 samples. The synthetic data
distribution (orange) is generated from the Gaussian centered at (0, 0).

K.2 1 Gaussian and 6 Uniform Distributions

In the second row of Figure 2, we generate 1 Gaussian distribution and 6 uniform distributions as the
real data distributions, where the center of initial distribution (green) is also (0, 0), and the centers of 6
uniform distributions (red) are (3/2, 0), (−3/2, 0), (3/4, 3

√
3/4), (−3/4, 3

√
3/4), (3/4,−3

√
3/4)

and (−3/4,−3
√

3/4). For each uniform distribution, we generate 256 samples in a square around
the center (length is 0.4). The synthetic data distribution (orange) is generated from the Gaussian
centered at (0, 0).

K.3 Toy Experiment Settings

We use fully connected neural network architecture for all methods. The generator contains 3 hidden
layers with 512 units followed by ReLU. The discriminator contains 2 hidden layers with 512 units
followed by ReLU. We use Adam as the optimizer with β1 = 0.5 and β2 = 0.999 and the learning rate
of all methods is set to 0.0001. The hyper-parameters follow the default setting of these methods.

L Details of Classification on CelebA

In the facial attribute translation experiment (In Section 6.5 of the main submission), we train a
classifier on CelebA to obtain a near-perfect accuracy, and test on blond hair, eyeglasses, mustache
and pale skin to obtain classifier accuracy of 99.62%, 99.94%, 99.76% and 97.96%, respectively.
In the same way, we use this classifier to test on synthesized single and multiple attributes for the
considered methods.
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M More Evaluations with Amazon Mechanical Turk (AMT)

For more quantitative evaluations, we conduct a perceptual evaluation using AMT to assess the
performance on the Edge→CelebA translation task, following the settings of StarGAN [6]. From
Table 7, MWGAN wins significant majority votes for the best perceptual realism, quality and
transferred attributes for all facial attributes.

Table 7: AMT perceptual evaluation for each attribute.

Method Black hair Blond hair Brown hair
CycleGAN 9.7% 5.7% 9.0%

UFDN 13.2% 15.8% 12.9%
StarGAN 16.0% 21.9% 19.4%
MWGAN 61.1% 56.6% 58.7%

N Influences of Inner-domain and Inter-domain Constraints

In this section, we evaluate the influences of inner-domain constraints and inter-domain constraints
on the edge→celebA task, respectively. Specifically, we compare the FID values with different α
(inner-domain constraint weights) and different τ (inter-domain constraint weights). The value of
α and τ is selected among [0, 0.1, 1, 10, 100]. Each experiment only evaluates one constraint and
fix other parameters. To evaluate the influence of α, we empirically set τ = 10. Otherwise, we set
α = 10 to evaluate the influence of τ . The results are shown in Tables 8 and 9.

Specifically, when α=0 or τ=0, MWGAN obtains the worst performance. In other words, when we
abandon any one of the inner or inter-domain constraints, we cannot achieve a satisfactory result. This
demonstrates the effectiveness of both constraints. Besides, MWGAN achieves the best performance
when setting both weights to 10. This means that when setting some reasonable constraint weights,
we can achieve a better trade-off between the optimization objective and constraints, and thus obtain
better performance.

Table 8: Influence of α for the inner-domain
constraint in terms of FID.

α Black hair Blond hair Brown hair
0 316.41 334.08 325.31

0.1 263.85 317.89 300.79
1 109.65 109.48 136.97

10 33.81 51.87 35.24
100 55.96 71.60 66.17

Table 9: Influence of τ for the inter-domain con-
straint in terms of FID.

τ Black hair Blond hair Brown hair
0 392.87 360.17 346.16

0.1 276.07 328.16 337.11
1 90.75 87.99 93.18

10 33.81 51.87 35.24
100 54.30 56.44 48.03

O Influences of the Parameter Lf

In this section, we evaluate the influences of the parameter Lf on the edge→celebA task. Specifically,
we compare the FID values with different Lf in the inter-domain constraints. The value of Lf is
selected among [1, 3, 10, 50], where 3 is the number of domains. Each experiment only evaluates
one constraint and fix other parameters. The results are shown in Table 10.

In Tables 10, MWGAN achieves the best performance when setting both weights to 3. This means
that when setting some reasonable constants, we can achieve a better gradient penalty between the
source and each target domain, and thus obtain better performance by exploiting the cross-domain
correlations.

Table 10: Influence of the parameter Lf for the domain constraint in terms of FID.

Lf Black hair Blond hair Brown hair
1 64.17 55.98 49.19
3 33.81 51.87 35.24
10 44.12 52.46 43.64
50 79.89 91.07 79.50
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P Network Architecture and More Implementation Details

Network architecture. The classifier φ shares the same structure except for the output layer with
f . The network architectures of the discriminator and generators of MWGAN are shown in Tables 11
and 12. We split each generator to an encoder and a decoder, where all generators share the same
encoder but with different decoders. For the encoder and decoder network, instead of using batch
normalization [10, 11], we use instance normalization in all layers except the last output layer of
the decoder. For the discriminator network, we use PatchGAN network which is made up of fully
convolutional networks, and we use Leaky ReLU with a negative slope of 0.01. We use the following
abbreviations: h: the width size of input image, w: the height size of input image, nd: the number of
transferred domains(exclude source domain), N: the number of output channels, K: kernel size, S:
stride size, P: padding size, IN: instance normalization.

More implementation details. For Loss (5), we use mean square loss and cross-entropy loss
for the balanced and imbalanced translation task, respectively. In the experiments, we find that
introducing an identity mapping loss [20] helps improve the quality of generated images on the
facial attribute translation task. Specifically, the identity mapping loss is defined as: Lidt(gi) =

Ex∼P̂ti
[‖gi(x)− x‖1], where P̂ti is an empirical distribution in the i-th target domain. We use the

identity mapping loss for all target domains.

Table 11: Generator network architecture.

Encoder
Part Input→ Output shape Layer information

Down-sampling
(h,w, 3)→(h,w, 64) CONV-(N64, K7x7, S1, P3), IN, ReLU

(h,w, 64)→(h
2
, w

2
, 128) CONV-(N128, K4x4, S2, P1), IN, ReLU

(h
2
, w

2
, 128)→(h

4
, w

4
, 256) CONV-(N256, K4x4, S2, P1), IN, ReLU

Bottleneck
(h
4
, w

4
, 256)→(h

4
, w

4
, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

(h
4
, w

4
, 256)→(h

4
, w

4
, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

(h
4
, w

4
, 256)→(h

4
, w

4
, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

Decoder

Bottleneck
(h
4
, w

4
, 256)→(h

4
, w

4
, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

(h
4
, w

4
, 256)→(h

4
, w

4
, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

(h
4
, w

4
, 256)→(h

4
, w

4
, 256) Residual Block: CONV-(N256, K3x3, S1, P1), IN, ReLU

Up-sampling
(h
4
, w

4
, 256)→(h

2
, w

2
, 128) DECONV-(N128, K4x4, S2, P1), IN, ReLU

(h
2
, w

2
, 128)→(h,w, 64) DECONV-(N64, K4x4, S2, P1), IN, ReLU

(h,w, 64)→(h,w, 3) CONV-(N3, K7x7, S1, P3), Tanh

Table 12: Discriminator network architecture.

Layer Input→ Output shape Layer information
Input Layer (h,w, 3)→(h

2
, w

2
, 64) CONV-(N64, K4x4, S2, P1), Leaky ReLU

Hidden Layer (h
2
, w

2
, 64)→(h

4
, w

4
, 128) CONV-(N128, K4x4, S2, P1), Leaky ReLU

Hidden Layer (h
4
, w

4
, 128)→(h

8
, w

8
, 256) CONV-(N256, K4x4, S2, P1), Leaky ReLU

Hidden Layer (h
8
, w

8
, 256)→( h

16
, w
16
, 512) CONV-(N512, K4x4, S2, P1), Leaky ReLU

Hidden Layer ( h
16
, w
16
, 512)→( h

32
, w
32
, 1024) CONV-(N1024, K4x4, S2, P1), Leaky ReLU

Hidden Layer ( h
32
, w
32
, 1024)→( h

64
, w
64
, 2048) CONV-(N2048, K4x4, S2, P1), Leaky ReLU

Output layer (f ) ( h
64
, w
64
, 2048)→( h

64
, w
64
, 1) CONV-(N1, K3x3, S1, P1)

Output layer (φ) ( h
64
, w
64
, 2048)→(1, 1, nd) CONV-(N(nd), K h

64
x w
64

, S1, P0)
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Q Additional Qualitative Results

Q.1 Results on CelebA

Input Blond hair Eyeglasses Mustache Pale skin B+E B+M B+E+M

Figure 6: Single and multiple attribute translation results on CelebA.

28



Q.2 Results on Edge→CelebA

Black hair Blond hairInput Brown hair Black hair Blond hairInput Brown hair

Figure 7: Translation results from edge images to CelebA.

Q.3 Results on Painting Translation

Monet Van GoghInput Ukiyo-e Monet Van GoghInput Ukiyo-e

Figure 8: Translation results from real-world images to painting images.
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