
An Algorithm to Learn Polytree Networks with
Hidden Nodes - Supplementary Material

Firoozeh Sepehr
Department of EECS

University of Tennessee Knoxville
1520 Middle Dr, Knoxville, TN 37996

dawn@utk.edu

Donatello Materassi
Department of EECS

University of Tennessee Knoxville
1520 Middle Dr, Knoxville, TN 37996

dmateras@utk.edu

5.1 Task 1: Determine the visible nodes of each rooted subtree

5.1.1 Algorithm 4: Pairwise-Finite Distance Algorithm (PFDA)

We report a version of Pairwise-Finite Distance Algorithm (PFDA) that has been modified from the
one presented in [16] just to match the notation of this article.

Algorithm 4 Pairwise-Finite Distance Algorithm
Input the ordered set of nodes V = {y1, ..., yn} and the independence statements of the form

I(yi, ∅, y j) or ¬I(yi, ∅, y j) for all yi, y j ∈ V
Output the set of all non-eliminated lists S i, j

1: for every node yi ∈ V such that ∀y j ∈ V \ {yi} we have that I(yi, ∅, y j) do
2: define S i,0 := {yi}

3: end for
4: for each pair yi, y j ∈ V with i < j, and ¬I(yi, ∅, y j) do
5: Define S i, j := {yi, y j}

6: for each yk ∈ V \ S i, j do
7: if ∀y ∈ S i, j : ¬I(yk, ∅, y) , then add yk to S i, j
8: end for
9: end for

10: for each pair yi, y j ∈ V with i < j do
11: if S i, j = S k,` for some k and `, then eliminate S k,`
12: end for

5.1.2 Explanation and intuition behind PFDA

The main purpose of the PFDA in [16] is to recover the lists of all visible nodes in each rooted
tree of a minimal latent polytree (V, L, ~E) from independence relations of the form I(yi, ∅, y j) or
¬I(yi, ∅, y j) for all yi, y j ∈ V . In general, PFDA can deal with polyforests (a graph composed of
multiple polytrees), but in this article we focus on its application to a single polytree.

Steps 1-3 deal with the special case when the polytree has exactly one node. Steps 4-9 are the main
routine, where the algorithm initializes a list S i, j with two nodes yi, y j ∈ V such that ¬I(yi, ∅, y j).
Since ¬I(yi, ∅, y j) holds, both yi and y j belong to the same rooted subtree (potentially they belong
to even more than one rooted subtree). The routine keeps adding nodes yk to S i, j so long as yk
satisfies ¬I(yk, ∅, y) for all y currently in S i, j. Such a routine is repeated for all pairs of distinct yi, y j
computing all the corresponding lists S i, j. Steps 10-12 simply remove potential duplicate lists S i, j.

In [16], the original version of PFDA does not take as an input the relations I(yi, ∅, y j) or ¬I(yi, ∅, y j).
Instead, it takes as input a metric d with the property that d(yi, y j) < ∞ if and only if yi, y j are in the

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

same rooted subtree. Since ¬I(yi, ∅, y j) holds if and only if yi, y j are in the same rooted subtree, it is
immediate to verify that the relations I(yi, ∅, y j) or ¬I(yi, ∅, y j) can replace the role of the metric in
the original algorithm, that is precisely how we have modified it in this article.

5.1.3 Proof of Theorem 13

Proof. In [16], the authors show that PFDA outputs the lists of visible nodes belonging to each rooted
subtree of the latent polytree ~P` = (V, L, ~E) when the distances between pairs of nodes, i.e., d(yi, y j)
for all yi, y j ∈ V are given by a metric d which satisfies the property that d(yi, y j) < ∞ if and only if yi
and y j are in the same rooted subtree. Define d(yi, y j) = 0 if and only if ¬I(yi, ∅, y j) holds and define
d(yi, y j) = ∞ if and only if I(yi, ∅, y j) holds. Using this metric, the original PFDA in [16] becomes
PFDA of this article with all the related guarantees. �

5.2 Task 2: Determine the collapsed quasi-skeleton of each rooted subtree

5.2.1 Algorithm 5: Reconstruction Algorithm for Latent Rooted Trees

We report a version of Reconstruction Algorithm for Latent Rooted Trees that has been modified
from the one presented in [17] just to match the notation of this article.

Algorithm 5 Reconstruction Algorithm for Latent Rooted Trees
Input the set of visible nodes in a rooted subtree Vr and the independence statements of the form

I(yi, yk, y j) or ¬I(yi, yk, y j) for yi, y j, yk ∈ Vr
Output (Vr, Lr, Er) the collapsed quasi-skeleton of Tr

1: Initialize Vtemp := Vr, Lr := {}, and Er := {}
2: If |Vtemp| = 2, i.e., Vtemp = {yi, y j}, then add the edge yi − y j to Er and if n ≤ 2, stop and output

the results
3: Determine a visible terminal node yk in the rooted tree by verifying the condition ¬I(yi, yk, y j)

for all yi, y j ∈ Vtemp \ {yk}

4: Search for a visible node y` ∈ Vtemp \ {yk} linked to yk by verifying the condition I(yk, y`, y j) for
all ∀y j ∈ Vtemp \ {yk, y`}

5: if y` exists then
6: add the link y` − yk to Er, remove yk from Vtemp, and go to Step 2.
7: else
8: create a new hidden node yh in Lr and add the link yk − yh to Er
9: compute the set K ⊆ Vtemp such that y j ∈ K implies that ¬I(y j, yi, yk) for all yi , y j, yk where

yi ∈ Vtemp \ K
10: add yh − y j to Er for y j ∈ K
11: set (V (j), L(j), E(j)) as the output of this algorithm applied to each V (j) defined as the union of
{y j} and the set of nodes in Vtemp separated from yk by y j ∈ K

12: set Er :=
⋃

y j∈K E(j) ∪ Er and Lr :=
⋃

y j∈K L(j) ∪ Lr

13: end if

5.2.2 Explanation and intuition behind the algorithm

The main goal of the Reconstruction Algorithm for Latent Rooted Trees developed in [17] is to
reconstruct the collapsed quasi-skeleton of a latent rooted tree from independence relation of the
form I(yi, yk, y j) or ¬I(yi, yk, y j) for yi, y j, yk ∈ Vr where Vr is the set of visible nodes of the rooted
tree. The algorithm and its properties are described in detail in [17]. Here we just provide a brief
description of the intuition behind it.

In particular, one fundamental result in [17] is that the Reconstruction Algorithm for Latent Rooted
Trees can reconstruct the collapsed skeleton of every rooted tree so long as each hidden cluster has
degree greater than or equal to 3. All other hidden clusters are undetected: for each hidden cluster
with degree equal to 2, the two nodes linked to such a cluster are linked together by the algorithm;
for each cluster with degree equal to 1, the algorithm ignores the cluster. In the context of this
dissertation, all hidden clusters in each rooted subtree of a minimal latent polytree have degree greater
than or equal to 3 with the exception of the special case where we have a hidden root with two

2

visible children. This is basically the main reason why we have introduced quasi-skeletons: in a
quasi-skeleton this special case is removed. The following lemma makes sure that hidden clusters in
quasi-skeletons of rooted subtrees have degree at least equal to 3 when considering minimal latent
polytrees.

Lemma 21. Let ~P` = (V, L, ~E) be a latent polytree and let Tr = (Vr, Lr, ~Er) be a rooted subtree of ~P`
with the root yr. If ~P` is minimal, then each hidden cluster in the quasi-skeleton of Tr has degree at
least 3.

Proof. Since ~P` is minimal, we distinguish the following two cases:

1. if the hidden node yh has deg+
~P`

(yh) ≥ 2 and deg~P` (yh) ≥ 3 then it is trivially true that the hidden
cluster that yh belongs to has degree at least 3 in the quasi-skeleton of the rooted subtree Tr.

2. if the hidden node yh has deg+
~P`

(yh) = 2 and deg−~P`
(yh) = 0, then we have two subscenarios:

a. if the two children of yh are visible, then the hidden cluster containing yh is made of only
yh. However, yh is a Type-II hidden node and therefore such a cluster does not appear in the
quasi-skeleton of Tr.

b. if at least one child of yh is hidden, say yc, then the hidden cluster containing yh is the same
hidden cluster that contains yc. Since yc is a Type-I hidden node, we fall back to case 1,
proving that the hidden cluster containing yh has degree at least 3.

�

Thus, Lemma 21 allows us to apply Reconstruction Algorithm for Latent Rooted Trees to recover the
quasi-skeletons of the rooted subtrees.

Now we provide a brief description of the intuition behind the Reconstruction Algorithm for Latent
Rooted Trees. Step 1 is just the initialization and Step 2 is a basic induction step solving the problem
when the minimal rooted tree has 1 or 2 visible nodes. Observe that, in the collapsed skeleton of a
latent rooted tree where all hidden clusters have degree at least 3, all nodes with degree equal to 1
(namely, terminal nodes) are visible and they are either linked to another visible node or linked to a
hidden cluster which is connected to at least 2 other visible nodes. Step 3 searches for a terminal
visible node yk: as proven in [17], a node yk is terminal in a rooted tree where hidden clusters have
degree at least 3 if and only if there is no pair of visible nodes yi, y j ∈ V \ {yk} such that ¬I(yi, yk, y j).
This is precisely what is tested in this step. For example, considering the polytree in Figure 3 (True),
one of the lists of visible nodes is the set Vr = {y9, y16, y17, y18} associated with the rooted tree with
the root y9. The quasi-skeleton of this rooted tree is depicted in Figure 5 (a) and the list containing its
visible nodes obtained at the end of Task 1 is depicted in Figure 5 (b). Observe that node y18 satisfies
the conditions of Step 3 since it cannot d-separate any pair of other nodes in Vr (in other words, the
node y18 cannot make any pair of visible nodes independent). Thus, node y18 is terminal in this rooted
subtree.

1716

9

h

18

1716

9 18

1716

9 18

1716

9

h

18

K

(a) (b) (c) (d)

Figure 5: Quasi-skeleton of the actual rooted tree with root in node y9 (a), the list of visible nodes
belonging to the rooted tree with root in node y9 (b), node y18 satisfies the conditions of being a
terminal node and node y9 satisfies the conditions of being the visible node linked to it (c), and
node y17 is found to be terminal but not linked to a visible node, thus, a hidden node linked to y17 is
detected (d).

Once a visible node yk with deg (yk) = 1 is found, Step 4 looks for a single visible node y` linked to
yk. We have that y` exists if and only if ∀y j ∈ Vr \ {yk, y`} : I(yk, y`, y j). This is the case for node y18,
since we have that y9 makes y18 independent of all the other nodes in Vr. If y` ∈ V exists, then the

3

test at Step 4 finds it and then at Step 6 the edge {yk, y`} is added to Er, and the algorithm is run again
on Vr \ {yk}. In our example, the nodes y9 and y18 are linked together and the algorithm is applied to
Vr \ {y18}, as depicted in Figure 5 (c).

When the algorithm runs again on Vr \ {y18}, it is found that, for example, node y17 is terminal.
However, Step 4 cannot find any visible node linked to y17. Thus, y17 must be connected to a hidden
cluster: Step 8 is where a new hidden cluster is created. Step 9 finds the set K which contains all other
visible neighbors of this hidden cluster. In our example, we have that K = {y9, y16}, as depicted in
Figure 5 (d). At Step 10, node yh is linked to all y j ∈ K, as depicted in Figure 5 (d), and the algorithm
is applied recursively to V (j)

r := {yi | I(yk, y j, yi)} for all y j ∈ K at Step 11. Step 12 sets the output to
the union of all the outputs obtained at Step 11.

5.3 Proof of Theorem 14

In order to formally prove Theorem 14, first we need to introduce two additional results: Theo-
rems 22 and 23. In Theorem 22 a criterion is provided to determine if the unique node linked to a
visible terminal node is also visible. This criterion uses only the independence statements involving
the visible nodes.

Theorem 22. Let T be the quasi-skeleton of a rooted subtree of a minimal latent polytree. Let the
visible nodes in T be V. Let y j be a terminal node and let yk be the unique node linked to y j. The node
yk is visible if and only if there exists a visible node yk′ such that I(y j, yk′ , yi) for all yi ∈ V \ {y j, yk′ }.
Furthermore we have that yk = yk′ .

Proof. ⇒: If yk is visible, then set yk′ = yk and we have that I(y j, yk′ , yi) for all yi ∈ V \ {y j, yk′ }.

⇐: Let yk′ be a visible node such that I(y j, yk′ , yi) for all yi ∈ V \ {y j, yk′ }. By contradiction, assume
that yk is not visible. Thus, yk belongs to a hidden cluster and the node y j is directly linked to such a
cluster. Therefore, there are at least two other visible nodes directly linked to this cluster. Let yi , yk′

be one of these visible nodes. The path from yi to y j involves only hidden nodes, thus it is not true
that I(y j, yk′ , yi) which is a contradiction. So far, we have shown that the existence of a visible yk′

such that I(y j, yk′ , yi) for all yi ∈ V \ {y j, yk′ } implies that yk is visible. We also need to show that
yk′ = yk. Again, by contradiction, assume that yk′ , yk. Then, it does not hold that I(y j, yk′ , yk) which
is a contradiction. �

The following theorem complements Theorem 22 by stating that if there exists a set K of visible
nodes that can not be separated from y j by any other visible nodes and K has at least two elements,
then all the nodes in K and y j are linked to the same hidden cluster.

Theorem 23. Let T be the quasi-skeleton of a rooted subtree of a minimal latent polytree. Let the
visible nodes in T be V. Also, let y j be a terminal node linked to a hidden cluster C and let K be the
set of visible nodes connected to C excluding y j. Then, it holds that

K = {yk ∈ V \ {y j} | ∀yi ∈ V \ {yk, y j} : ¬I(y j, yi, yk)} (1)

such that for all yi ∈ V \ {yk, y j} there exists yk ∈ K such that I(y j, yk, yi).

Proof. We first show that if yk , y j is a visible node connected to the hidden cluster C, then
¬I(y j, yi, yk) for all yi ∈ V \ {yk, y j}. By contradiction assume that there is yi ∈ V such that I(y j, yi, yk).
Now, there is yk′ ∈ C and y j′ ∈ C such that yk − yk′ and y j − y j′ belong to the set of edges E. Since
both y j′ and yk′ belong to cluster C, there is a path from y j′ to yk′ that does not involve any visible
nodes. Thus, there is no yi ∈ V such that I(y j, yi, yk).

Now we show that if ¬I(y j, yi, yk) for all yi ∈ V \ {y j, yk}, then yk is connected to cluster C. By
contradiction, assume that it is not. Consider the path from y j to yk. Since y j is a terminal node and it
is connected to C, there exists y j′ ∈ C such that y j − y j′ is an edge of E and this is the only edge in
the graph involving y j. Thus, the path from y j to yk contains y j′ . Consider the path from y j′ to yk and
let yk′ be the first visible node on this path. The node yk′ is directly linked to cluster C and if yk , yk′ ,
then we have that I(y j, yk′ , yk). Thus, we necessarily have that yk = yk′ . �

Now, we can provide the proof of Theorem 14.

4

Proof. The proof goes by induction on the number of nodes denoted by n. For n ≤ 2 the algorithm
trivially outputs the correct result. For n > 2, we combine Proposition 2.1 and Theorem 4.1 in [17], to
guarantee that a visible terminal node yk is always found at Step 3. Theorem 22 provides a sufficient
and necessary condition to find a visible y` directly linked to yk. If such a visible node y` exists, then
the edge y` − yk belongs to the skeleton of the original graph. Then the theorem is applied recursively
to a network with (n − 1) nodes which is obtained by removing the terminal node yk from the original
one. If such a y` does not exist, then yk is necessarily connected to a hidden cluster. Theorem 23
provides a necessary and sufficient condition to find the set K of all visible nodes, other than yk,
linked to such a hidden cluster. A new hidden node yh is introduced to the set L in order to represent
the hidden cluster in the collapsed rooted subtree and the link yk − yh is added to the set of edges E.
Also the edges yh − y j for all y j ∈ K are added to E. The algorithm is then applied recursively to
each set V (j) given by all visible nodes yi such that I(yi, y j, yk). Observe that each V (j) contains fewer
number of nodes than n, guaranteeing that the algorithm always terminates. �

5.4 Task 3: Merge the overlapping hidden clusters of the collapsed rooted trees

5.4.1 Proof of Theorem 15

First we prove a lemma stating that, in a minimal latent polytree, two hidden clusters in two rooted
subtrees share at least one node if and only if they have at least two common neighbors.

Lemma 24. Let C1 and C2 be two distinct hidden clusters in two rooted subtrees in a minimal latent
polytree ~P`. The two clusters overlap, i.e., |C1 ∩C2| ≥ 1, if and only if there exist two distinct nodes
y1, y2 ∈ N(C1) ∩ N(C2).

Proof. ⇒: This implication is trivially verified because of the minimality conditions of the latent
polytree. If the hidden node in common has two visible descendants y1 and y2, then the implication is
immediate. If it has, instead, at least one hidden child which belongs to C1 ∩C2, then such a hidden
child either has two visible descendants giving the implication or, again, a hidden child which belongs
to C1 ∩C2. Repeating the argument, we eventually find the common nodes y1, y2.

⇐: By contradiction, assume that C1 and C2 do not overlap. Since C1 and C2 share no common node
but have two common neighbors, there must be a loop in the latent polytree ~P`, contradicting the fact
that it is a polytree. �

Now we can provide the proof of Theorem 15.

Proof. From Lemma 24, the proof of Theorem 15 is straightforward. If there are two common
neighbors, then the two hidden clusters in the two rooted subtrees overlap, thus they belong to the
same hidden cluster in the latent polytree. �

5.4.2 Proof of Theorem 16

Proof. The algorithm HCMA proceeds by sequentially merging clusters of the collapsed quasi-
skeletons of the rooted subtrees of ~P` if they share at least 2 neighbors (Steps 2-5). According to
Lemma 24, this is equivalent to merging these clusters when they overlap (i.e., they have at least
one hidden node in common). Thus, the initial set P contains all the hidden clusters in all the
quasi-skeletons of the rooted subtrees of ~P`. If two hidden clusters in the quasi-skeletons of two
rooted subtrees overlap, then they are necessarily in the same cluster of the quasi-skeleton of the
original polytree ~P`. Thus, we just need to show that HCMA groups together all the hidden clusters
in quasi-skeletons of the rooted subtrees which are in the same hidden cluster in the quasi-skeleton of
~P`.

By contradiction, assume that this is not true. Then the output of HCMA contains a union of clusters
that does not exist in the collapsed quasi-skeleton of ~P`. Let this union of clusters be U. Thus, there
exists at least one hidden node yh in one hidden cluster C of the quasi-skeleton of ~P` that does not
belong to U. Consider the path from yh to any node in U. By definition such a path consists of all
hidden nodes. Let ya be the last node on such a path that does not belong to U and yb be the node
following ya on this path. We necessarily have that ya → yb, otherwise ya would be a descendant of

5

yb and hence in U. Consider a rooted tree containing ya. Such a rooted tree has a hidden cluster C′
which contains yb as well and consequently overlaps with U, but C′ has not been included in U by
HCMA. This is a contradiction, because if two clusters overlap, then they are grouped together by
HCMA. Therefore, this proves the assertion. �

5.5 Task 4: Determine the quasi-skeleton of the latent polytree from the collapsed
quasi-skeleton of the latent polytree (recover type-I hidden nodes)

5.5.1 Proof of Theorem 17

We first provide the following straightforward lemma.

Lemma 25. Every hidden node in a minimal latent polytree ~P` = (V, L, ~E) has at least two visible
descendants.

Proof. Since the latent polytree is minimal, for every hidden node yh ∈ L we have that |ch~P` (yh) | ≥ 2.
Now, we distinguish the following two cases.

1. If |ch~P` (yh) ∩ V | ≥ 2, then the statement is trivially true.

2. If |ch~P` (yh) ∩ V | < 2, then the statement is trivially true by iterating the same argument on one
element of the set ch~P` (yh) ∩ L.

�

Now we leverage the result of Lemma 25 to prove Theorem 17.

Proof. ⇒: Let yhr ∈ Lr be a hidden root of C. Now, we distinguish the following two cases.

• If the root of ~T r, namely yr, is visible, then yr is necessarily a parent of yhr . If the root of
~T r′ , namely yr′ , is also a parent of yhr , then we have |Ṽr \ Ṽr′ | = 1 and |Ṽr′ \ Ṽr | = 1 because
deC (yr) \ {yr} = deC (yr′) \ {yr′ }. If, instead, the root of ~T r′ , namely yr′ , is not a parent of yhr , then
there exists a path connecting one of the children of yhr , namely yc1 , to yr′ and this path necessarily
contains an inverted fork. Now, consider another child of yhr , namely yc2 . Observe that this child
exists since all the hidden nodes in the collapsed quasi-skeleton of the rooted subtrees of ~P` have
at least outdegree two (see Definitions 8 and 10). The child node yc2 is either visible itself or has at
least two visible descendants according to Lemma 25. If yc2 is visible, then let A := {yc2 , yr}. If
yc2 is not visible, then let A := {deC

(
yc2

)
∩ Ṽr}. In either case, we have that |Ṽr \ Ṽr′ | ≥ 2 since

A ∩ deC (yr′) = ∅ because there exists an inverted fork on the path from yhr to yr′ .

• If the root of ~T r, namely yr, is hidden, then |chC (yr) | ≥ 2. If |chC (yr) | ≥ 3, let yc1 be the child of
yr such that it is on the path from yr to yr′ . Observe that this path contains at least one inverted
fork. Thus, if yc2 and yc3 are visible, then we have that |Vr \ Vr′ | ≥ 2. If, instead any of yc2 or yc3

are hidden, then they should have at least two visible descendants according to Lemma 25 which
also results in having |Ṽr \ Ṽr′ | ≥ 2. On the other hand, if |chC (yr) | = 2, then both of these children
are hidden since we are working with the collapsed quasi-skeleton of ~P`. In this case, each of these
hidden children have at least two visible descendants according to Lemma 25. Therefore, we have
|Ṽr \ Ṽr′ | ≥ 2.

⇐: We prove, instead, that if ~T r does not contain a hidden root of C, then ∃Ṽr′ : |Ṽr \ Ṽr′ | ≤ 1 and
|Ṽr′ \ Ṽr | > 1. We distinguish the following two cases.

• If the root of ~T r, namely yr, is visible, then we know that yr has exactly one hidden child, namely yhc ,
because ~T r belongs to N(C). Since this node is not a hidden root of C, then it has at least one
hidden parent, namely yhp . Let ~T r′ be the rooted tree such that yhp ∈ Lr′ . In this case, we know that
Ṽr = {yr ∪ deC

(
yhc

)
}, deC

(
yhc

)
⊂ Ṽr′ , and yr < Ṽr′ . Thus, we have that |Ṽr \ Ṽr′ | = |{yr}| = 1.

6

Furthermore, if yhp is the root of ~T r′ , then this case is similar to the second case of the first part
of this proof where there exists a path from yr to yhp which contains at least one inverted fork. In
this case, we have that |Ṽr′ \ Ṽr | > 1. If, instead, yhp is not the root of ~T r′ , then yhp has at least
two children because of minimality conditions and at least one parent. The other child of yhp (i.e.,
not the node yhc) and one of the parents of yhp are either visible or hidden that satisfy minimality
conditions. In either case, we have that |Ṽr′ \ Ṽr | > 1.

• If the root of ~T r is hidden, then this would be a contradiction to the hypothesis since ~T r does not
contain a hidden root of C.

�

5.5.2 Proof of Lemma 18

First, we introduce a lemma which provides the conditions for finding the parents of a hidden root of
a hidden cluster in a minimal latent polytree.

Lemma 26. Let ~P` be a minimal latent polytree and define the rooted subtrees ~T i, the sets Ṽi for
i = 1, ..., nr, the hidden root yh and the hidden cluster C as in Lemma 18. Let Ṽr contain yh which is a
hidden root of the hidden cluster C. We have that Ṽr \ Ṽr′ = {yv} and Ṽr′ \ Ṽr = {yv′ } if and only if yv
and yv′ are parents of yh.

Proof. ⇒: We show that yv and yv′ are the parents of the root of the hidden cluster C. Let yr and yr′

be the roots of the restriction of ~T r and ~T r′ to the closure of C, respectively. Consider the path from
yr to yr′ . This path needs to have a length of at least 2, otherwise either yr or yr′ would be a child of
the other contradicting the fact that they are roots in the restriction of ~P` to the closure of C. If the
length of this path is greater than 2, then it needs to have the form yr → yh1 · · · yh2 ← yr′ where yh1

and yh2 are two distinct hidden nodes. As a result, either yh1 or yh2 is not a descendant of the other.
Furthermore, because of the minimality conditions, in the closure of C, either there exist two visible
descendants of yh1 that are not descendants of yr′ or there exist two visible descendants of yh2 that are
not descendants of yr. This contradicts the fact that |Ṽr \ Ṽr′ | = |Ṽr′ \ Ṽr | = 1. Thus, the path between
yr and yr′ necessarily has length 2 and has the form yr → yh1 ← yr′ for some hidden node yh1 . As a
consequence, yr = yv, yr′ = yv′ and also yh1 = yh is the root of the hidden cluster C.

⇐: This implication is trivial. �

Now we can provide the proof of Lemma 18.

Proof. For a fixed Ṽr, the set of indices I ⊆ {1, 2, ..., nr} with nr equal to the number of rooted
subtrees is defined as the set {r} ∪ {r′ such that |Ṽr \ Ṽr′ | = |Ṽr′ \ Ṽr | = 1}. It is trivial to show that if
|Ṽr \ Ṽr′ | = |Ṽr′ \ Ṽr |, then the two sets Ṽr and Ṽr′ can be written as

Ṽr = {yv} ∪ Ṽ , Ṽr′ = {yv′ } ∪ Ṽ . (2)

In other words, there is exactly one element yv in Ṽr which is not in Ṽr′ . Similarly there exists exactly
one yv′ in Ṽr′ which is not in Ṽr.

Now, we show that W \W is the set of all nodes linked to yh which is a root of the hidden cluster C.
If a visible node yw is linked to yh, it is either its parent or its child. If yw is a parent of yh, then it is
contained in W and cannot be in W because of Lemma 26. If yw is a child of yh, then it cannot be
in W because I contains no index associated with subtrees containing any of the parents of yh (see
Lemma 26).

Now, we show, instead, that if yw ∈ W \W, then yw is linked to yh. Equivalently, we show that if yw is
not linked to yh, then yw < W \W. Consider the following two cases.

• Node yw is a root of the closure of C. Since yw is not linked to yh, it is not a parent of yh and from
Lemma 26 we have that yw ∈ W.

7

• Node yw is not a root of the closure of C. Consider the path from yh to yw which has the form
yh → · · · yh1 → yw. Since the node yh1 is hidden, the minimality conditions imply that yh1 has at
least another parent, namely yp (hidden or visible). Since yp is not a parent of yh, every rooted
subtree ~T i containing yp is such that i < I (see Lemma 26). Thus, all the visible descendants of yp

(including yw) are necessarily in W.

�

5.5.3 Proof of Theorem 19

We first provide the following lemma to ensure that the Steps 24-27 of HCLA correctly merge the
fictitious hidden clusters.

Lemma 27. There exists two distinct nodes ya, yb in W ∩W such that ya, yb ∈ Ṽm where m < I, if and
only if ya and yb are connected to the same hidden cluster.

Proof. Observe that N(C(i)
j) ∪ N(C(i)

k) ⊆ W ∩W. Consider two distinct elements ya, yb in W ∩W.

⇒: If we have that ya, yb ∈ Ṽm where m < I, then we know that ya and yb belong to a commom rooted
subtree that does not contain the newly recovered hidden node yh. Now, by contradiction, assume that
the nodes ya and yb are not connected to the same hidden cluster. This implies that there exists a path
connecting ya to yb through yh. On the other hand, since ya and yb belong to a common rooted subtree
that does not contain yh, there exists another path connecting ya and yb which does not include yh.
This is a contradiction with the fact that any two nodes in a polytree are connected to each other via
at most one path. Therefore, ya and yb are connected to the same hidden cluster.

⇐: Let C be the hidden cluster to which both ya and yb are connected. Thus, we know that C has yh
as its parent, more specifically, yh is a parent of one hidden node in C. Let this hidden node be yh1 .
Since yh1 has the hidden node yh as its parent, it is required, by the minimality conditions, that yh1 has
at least one other parent. This implies that ya and yb are contained in at least one rooted subtree ~T m

which does not contain yh, namely, m < I and also ya and yb are contained in W ∩W. �

Now we can provide the proof of Theorem 19.

Proof. HCLA calls the subroutine Hidden Node Detection on all hidden clusters until no more hidden
nodes are discovered (Steps 1-3). The goal of Hidden Node Detection is to locate a hidden root yh
in the collapsed quasi-skeleton (V, L, E) of a polytree, determine the visible nodes linked to it and
compute the new collapsed quasi-skeleton associated with the visible nodes V ∪ {yh}. Thus, we just
need to show that such subroutine can successfully complete this procedure for a given hidden cluster.

Step 5 simply defines the sets Ṽi as the visible nodes in the closure of the selected hidden cluster C
and Step 6 applies Theorem 17 to these sets in order to detect a rooted subtree containing a hidden
root of C. Steps 7-14 apply Lemma 18 to find all the visible nodes connected to the hidden root of C.
If the index set I contains only r, we know that Tr is the only rooted subtree containing yh and thus
¬I(yh, ∅, y) for all y ∈ Vr, and I(yh, ∅, y) for all other visible nodes y. If I contains multiple indices,
then Lemma 26 guarantees that ¬I(yh, ∅, y) for all y ∈ W, and I(yh, ∅, y) for all other visible nodes y.
These last observations are at the core of Steps 15-18.

Observe that the descendants of yh in the closure of C which are not directly linked to yh are the nodes
in W ∩ W. Steps 19-23 link yh to these nodes introducing some fictitious hidden clusters. These
clusters are just instrumental for the application of the merging algorithm at Step 25. Steps 25-26
merge these fictitious hidden clusters when appropriate as shown in Lemma 27 and they also update
the structure of the rooted subtrees containing yh accordingly. Step 28 merges these hidden clusters
using the HCMA considering all the rooted subtrees now that the node yh can be treated as visible. �

8

5.6 Task 5: Obtain the pattern of the latent polytree from the recovered quasi-skeleton of
the latent polytree (recover type-II hidden nodes and edge orientations)

5.6.1 Proof of Theorem 20

Proof. Steps 1-4 are an implementation of the GPT algorithm for the orientation of edges in a
polytree. GPT algorithm tests two nodes yi and y j on a path of the form yi − yk − y j. Thus, all these
tests are local in the sense that they are always performed on paths of length 2 in the skeleton of the
polytree. However, HRRA performs these tests on paths of length 2 on the quasi-skeleton of the
polytree. If the path of length 2 on the quasi-skeleton is the same path of length 2 on the skeleton,
HRRA orients the edge the same way the GPT algorithm does. The only difference arises on paths of
length 2 in the quasi-skeleton which are not actual paths in the skeleton. This only occurs in situations
where a Type-II hidden node is involved on the path.

There are only two possible scenarios when testing the independence statements I(yi, ∅, y j) or
¬I(yi, ∅, y j) on a path of the form yi − yk − y j in the quasi-skeleton of a minimal latent polytree, as
depicted in Figures 6 and 7.

jk

`i

jk

`i

jk

h1 `i

(a) (b) (c)

Figure 6: Quasi-skeleton of a rooted tree with one undiscovered Type-II hidden node (a), the detection
of a conflict on the orientation of the edge yk − y j (b), and discovery of a Type-II hidden node (c).

ki

g

j

`

ki

g

j

`

ki

h1g

j

`h2

(a) (b) (c)

Figure 7: Quasi-skeleton of a rooted tree with two undiscovered Type-II hidden nodes (a), the
detection of a conflict on the orientation of the edges yi − yk and yk − y j (b), and discovery of two
Type-II hidden nodes (c).

The first scenario occurs when we have the path yi−yk−y j−y` on the quasi-skeleton, as in Figure 6 (a).
In this case, there is a yet undetected Type-II hidden node between the nodes yk and y j, and the node
y` is a parent of the node y j. In this scenario, we have that I(yi, ∅, y j) holds giving the orientations
yi → yk ← y j. However, because of the Type-II hidden node between the nodes yk and y j we also
have I(yk, ∅, y`) implying the orientation yk → y j ← y`, as in Figure 6 (b). Thus in this scenario, the
presence of the undetected Type-II hidden node is discovered from the double orientation of the edge
yk − y j, as depicted in Figure 6 (c).

The second scenario occurs when we have the path yg − yi − yk − y j − y` in the quasi-skeleton, as in
Figure 7 (a). In this case, there are two yet undetected Type-II hidden nodes: one between the nodes
yi and yk, and one between the nodes yk and y j. Following the same reasoning as in the previous
scenario, the double orientation of the edges yi − yk and yk − y j reveals the presence of two Type-II
hidden nodes, as depicted in Figures 7 (b)-(c). �

5.7 Conclusions and Discussion: the meaning of “minimality” for a latent polytree

In this section we show that if a latent polytree P` is not minimal, then there exists another latent
polytree with a smaller number of hidden nodes which has the same independence relations among the
visible nodes. In other words, if a latent polytree is not minimal, then there exists at least one hidden
node yh that does not satisfy the minimality conditions (see the degree conditions of Definition 8).
The proof of such a statement is done by considering various scenarios for such a node.

9

1. Case I: If deg~P` (yh) = 1, then this hidden node can be immediately marginalized from the
factorization of the joint probability distribution to obtain an equivalent factorization where yh is
not present. Indeed, if deg−P` (yh) = 1, then let yp be the only parent of the node yh, as depicted in
Figure 8 (a). Then the factor P(yh | yp) disappears from the factorization of the joint probability
distributions by integrating over yh. Instead, if deg+

P` (yh) = 1, then let yc be the only child of
the node yh, as depicted in Figure 8 (b). Then the factor P(yc | yh) P(yh) disappears from the
factorization of the joint probability distributions, again, by integrating over yh.

h ...p h ...c

(a) (b)

Figure 8: A hidden node yh where deg (yh) = deg− (yh) = 1 (a), and a hidden node yh where
deg (yh) = deg+ (yh) = 1 (b).

2. Case II: If yh has a single hidden parent yp and multiple children yc1 , yc2 , ..., ycnc
, as depicted in

Figure 9 (a), then there exists a factor in the factorization of the joint probability distribution where
yh can be marginalized as follows

nc∏
i=1

P(yci | yh, p(ci)) P(yh | yp)
np∏
j=1

P(yc j | yp) P(yp | g) =

nc∏
i=1

P(yci | yp, p(ci))
np∏
j=1

P(yc j | yp) P(yp | g)

(3)

where p(ci) are the parents of yci other than yh for i = 1, ..., nc, c j are the children of yp other than
yh for j = 1, ..., np and g are the parents of yp, as depicted in Figure 9 (b).

h ...

p

g

c2

c1

cnc

...
c1c2cnp

... ...

g

c2

c1

cnc

...

p

c1c2cnp
...

(a) (b)

Figure 9: A hidden node yh which has a single hidden parent yp and multiple children yc1 , yc2 , ..., ycnc

(a), and the case where the hidden node yh is marginalized (b).

3. Case III: If yh is a hidden root with exactly two children yc1 and yc2 and at least one of its children
has no other parent (without loss of generality say yc1), as depicted in Figure 10 (a), then in the
factorization of the joint probability distribution we find a factor of the following form∏

i=1

P(yh) P(yc1 | yh) P(yc2 | yh, p) (4)

where p are the parents of yc2 other than yh, as depicted in Figure 10 (b).

10

h ...

p
c2

c1

...

p
c2

c1

(a) (b)

Figure 10: A hidden node yh which is a root with exactly two children yc1 and yc2 and at least one of
its children has no other parent (without loss of generality, say yc1) (a), and the case where the hidden
node yh is marginalized.

By applying the Bayes’ theorem, we have

P(yh) P(yc1 | yh) P(yc2 | yh, p) = P(yh | yc1) P(yc1) P(yc2 | yh, p) (5)

and then by marginalizing over yh we obtain the following factor of the joint probability distribution

P(yc1) P(yc2 | yc1 , p). (6)

In all of these scenarios, one hidden node has been marginalized from the factorization of the joint
probability distribution of the random variables leading to a factorization equivalent to the original
one, but with fewer number of hidden nodes. In all other scenarios, the factorization is instead
associated with a polytree which meets the definition of minimality of a latent polytree.

11

	Task 1: Determine the visible nodes of each rooted subtree
	Algorithm 4: Pairwise-Finite Distance Algorithm (PFDA)
	Explanation and intuition behind PFDA
	Proof of Theorem 13

	Task 2: Determine the collapsed quasi-skeleton of each rooted subtree
	Algorithm 5: Reconstruction Algorithm for Latent Rooted Trees
	Explanation and intuition behind the algorithm

	Proof of Theorem 14
	Task 3: Merge the overlapping hidden clusters of the collapsed rooted trees
	Proof of Theorem 15
	Proof of Theorem 16

	Task 4: Determine the quasi-skeleton of the latent polytree from the collapsed quasi-skeleton of the latent polytree (recover type-I hidden nodes)
	Proof of Theorem 17
	Proof of Lemma 18
	Proof of Theorem 19

	Task 5: Obtain the pattern of the latent polytree from the recovered quasi-skeleton of the latent polytree (recover type-II hidden nodes and edge orientations)
	Proof of Theorem 20

	Conclusions and Discussion: the meaning of ``minimality'' for a latent polytree

