Supplementary Material

This document provides additional details for the paper “Minimum Stein Discrepancy Estimators”.
Appendix A contains background technical material required to understand the paper, Appendix B
derives the minimum SD estimators from first principles and Appendix C derives the information met-
rics for DKSD and DSM. Appendix D contains proof of all asymptotic results including consistency
and central limit theorems for DKSD and DSM, whilst Appendix E discusses their robustness.

Our derivations will use standard operators from vector calculus which we summarise in Ap-
pendix A.1. We will additionally introduce the following notation. We write f < g if there is a
constant C' > 0 for which f(z) < Cg(z) for all z. We set Qf = [ fdQ and use I'(W, Y) for the
set of maps W — ) when W # X.

A Background Material

In this section, we provide background material which is necessary to follow the proofs in the follow-
ing sections. This includes background in vector calculus, stochastic optimisation over manifolds and
vector-valued reproducing kernel Hilbert spaces.

A.1 Background on Vector Calculus

The following section contains background and important identities from vector calculus. For a
function g € T'(X,R), v € F(X Rd) and A € I'(X,R?*?) with components A;;, v;, g, we have

(Vg)i = 0ig, (v-A); = vjA;; = (v'A);, (V- A); = 0;Aj; which must be interpreted as
the components of row- Vectors ( v); = A” v; which are the components of a column vector.
Moreover (Vv);; = 0;v;, V2f = V(Vf), A: B= (A, B) = Tr(A" B) = A;; B;;. We have the

following identities (where in the last equahty we treat V - A and Vg as column vectors)
V- (gv) = 9;(gvi) = v;0;9 + gOiv; = (Vg)v+ gV -v=Vg-v+ gV - v,

V- (9A) = 9i(gAij)e; = (AijOig + gdiAij)e; = Vg - A+ gV -A=Vg A+ gV - A,
V- (Av) = 0;(Asjv;) = (V- A)v + Tr[AVo] = (V- A) - v + Tr[AV].

A.2 Background on Norms

For F € T(X,R™*"2) we set ||F||? = [ | F(z)||>dQ(z), where || F(z)]|, is the vector p-norm
on R™*"2 when ny = 1, else it is the induced operator norm. If v € T'(X',R"), then ||v[|) =
Jlv(@)|pde = [ 32, [vi(z)[Pdz = 3=, [|vi||b, hence v € L,(Q) iff v; € L,(Q) for all i, and
similarly F' € L,(Q) iff F;; € L,(Q) for all ¢, j since the induced norm || F'(x)||, and the vector
norm ||F||P,,. = Zij |Fij(z)|P are equivalent.

A.3 Background on Vector-valued RKHS

A Hilbert space H of functions X — R? is a RKHS if || f(z)||ge < C.||f|l%. It follows that the
evaluation “functional” &, : H — R? is continuous, for any x. Moreover for any z € X, v € R4,
the linear map f — v - f(x) is cts. By the Riesz representation theorem, there exists K v € H s.t.
v- f(x) = (K,v, f). From this we see that K, v is linear in v (turns out linear combinations of
K, v; are dense in H), and K = §,. We define K : X x X — End(R?) by

K(z,y)v = (Kyv)(z) = 0,0,v.

It follows that K (z,y) = K (y,z)* and u - K (z,y)v = (K,v, K,u). Denote by e; the i vector in
the standard basis of R?. From this we can get the components of the matrix:

(K(x,y))ij = (Kye;, Kye;).

We have for any v, z;, >, v - K(zj, xx)ve > 0.
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A.4 Background on Separable Kernels

Consider the d dimensional product space H¢ of function f : X — R? with components f; € H,;
and H; is a RKHS with kernel C? kernel k* : X x X — R.LetK : X x X — End(R?) = Rxd
be the kernel of H? (see Appendix A.3). Note if K, = K(z,-) : X — End(R%), and if
v € RY, then K,v € H% The reproducing property then states that Vf € H?: (f(x),v)pa =
(f, K(-,z)v)3a. Moreover for the kernel K = diag(\k!,..., A\¢k?) we will prove below that
(f,g)ye = )\% > i fi» gi)n,, whereas for K = Bk where B is symmetric and invertible we should

have (f, 9)ya = 3,5 B3 (fir 9)n-
Given a real-valued kernel k; on X, consider K = diag(A1k1, ..., A\pky). Let f = Zj 5;], v;. Recall

this is a dense subset of %%: we will derive the RKHS norm for this dense subset and by continuity
this will hold for any function. Given the norm, the formula for the inner product will follow by the
polarization identity. We have

fi(z) = 6.(f) -ei = 5:1:5;].?}3' ce; = K(z,2)v; - €
= diag(>\1]€1, ey /\nkn)(x,xj)vj e = /\lkl(as,x])v;

1130 = (05,050 05,0003 = vj - K (x5, 20)v = vf Nk (25, 20)v]
On the other hand, Y=, <= (fi, fi)r, = Y_; - AFvivjki(wy, @1). Thus || f113,, = 3= 22 (fis fidki-

For a symmetric positive definite matrix B, consider the kernel on H K (x,y) = k(z,y)B. Let
f=232;65,vj. We have:

filx) =6.(f) - e; = 5$5;jvj ej = K(x,2)v; - e; = Bvj - ejky, ()
This implies f; € Hj. Then

1130 = (05,050 05,0000 = vj - K (x5, 20)v = k(25, 21)v; - Buy.
On the other hand (f;, f;)x = ¢/ Buye; Bugk(xs,x,). Notice

1,7 _ p-1 1 _ U — g
B e; Bu, = B;; Bjjv, = 0150, = vj.

So we have:

Bigl(fi, fivk = vﬂe}'—Bvsk(ms,xr) = vIBjv?k(zs, ;) = v, - Busk(zs, x,)

A.5 Background on Stochastic Optimisation on Riemmannian Manifolds

The gradient flow of a curve € on a complete connected Riemannian manifold © (for example a
Hilbert space) is the solution to 6(t) = —V ;) SD(Q||Pg), where V is the Riemannian gradient at 6.
Typically ! the gradient flow is approximated by the update equation 6(t+1) = expy( (= H (Z,0))
where exp is the Riemannian exponential map, (7y;) is a sequence of step sizes with Y7 < oo,
> = 400, and H is an unbiased estimator of the loss gradient, E[H (Z;,0)] = V¢ SD(Q||Pp).
When the Riemannian exponential is computationally expensive, it is convenient to replace it by
a retration R, that is a first-order approximation which stays on the manifold. This leads to the
update 0(t + 1) = Ry (—veH(Z¢,0)) [7]. When O is a linear manifold it is common to take

Row (—viH (Z,0)) = 0(t) — v H(Zy,6(¢)). In local coordinates (6°) we have Vg SD(Q||Pg) =
g(0)~dg SD(Q||Py), where dg f denotes the tuple (Jg: f), which we will approximate using the
biased estimator H ({X!};,0) = go)({ X! " )~1deSD({ X!}, |[Py), where Joey {XT}y) is
an unbiased estimator for the information matrix g(6(t)) using a sample {X}}" | ~ Q. We thus
obtain the following Riemannian gradient descent algorithm

0t +1) = 0(t) — wdo(r) {X{}iey) " do( SDUXTHL, [Pg).
When © = R™, v = 1, g is the Fisher metric and S/]\)({Xf ", ||Pp) is replaced by

I/{\L({X n |IP) this recovers the natural gradient descent algorithm [1].

i=1

ISee sec 4.4 [20] for Riemannian Newton method
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B Derivation of Diffusion Stein Discrepancies

In this appendix, we carefully derive the diffusion SD studied in this paper. We begin by providing
details on the diffusion Stein operator, then move on to the DKSD and DSM divergences and
corresponding estimators.

For any matrix kernel we will show in Appendix B.1 that Vf € H¢: S f1(x) = (S Ky, fya.
In Appendix B.2 we prove that if - — ||S)"' K, |3« € L' (Q), then

DKSDg,»(Q|P)? = Supff'e\f*d‘ [ SPRAQ = [ [ ST2SMLK (2, )dQ(x)dQ(y).
hl|<1

In Appendix B.3 we further show the Stein kernel satisfies

KO (a,y) = S8yt K (2,y) = sin Vo - Ve - (p(@)m(@) K (2, y)m(y) " p(y))-

B.1 Stein Operator
By definition for f € I‘(X, ]Rd) and A € I‘(.?‘c'7 RdXd)
Splfl =iV - (pmf)=mTViogp- f + V- (mf),

o
SplA] = %V - (pmA) =mTVlegp - A+ V- (mA)
which are operators I'(X, R?) — I'(X,R) and I' (X, R4*¢) — I'(X, R?) respectively.
Proposition 8. Let X' be an open (connected) subset of R%, m is continuously differentiable, and
K : X x X — R¥? s the matrix kernel of H%. Suppose for any j € [1,d], K,,;04; K are
separately continuous and locally bounded. Then for any f € H?

Splf1(@) = (Sy[K]las f)pa

Proof

Note that technically the kernel K of ¢ takes value in the set of (bounded) linear operators on R%, and
we view these linear operators as matrices by defining the components (K (z, y))ji =e; - K(z,y)e,,

where (e;) is the canonical basis of RY. For any f € H?

(f(z),m(z)" Vlogp(z))ra = (f, K (-, x)m(z) " Vlog p(x))a
= (£, K. m(z)" V1ogp(z))3s
= (f,m(z) " Vlogp(z) - Ky)pa.
Moreover, under these assumptions the RKHS ¢ is continuously embedded in the topological

space C1 (X, R%), so its elements are continuously differentiable. Then for any f € H?, by theorem
2.11 [53]

(f, 02 K (-, x)er)ya = (er,0; flz)ra = 0; frla

Hence

(f;V - (mE)|s)na = (f, O (myr Kri)|w€i)aga = (f Oy |o Kii (@, -)€5 + mjr (%) 015 K| w€5) 3
= 0jmjr|o(f, Kir(-s 2)€i) 300 + mjr (@) (f, 015 Kri (2, -)€5) 34a
= 0imjr|o(f, K (-, x)er) wa + mjr (2)(f, 02i Kir (-, ) €1) 300
= 0imyjr|o(f, K (- x)er)wa + mjp (2)(f, 02i K (-, 2)er )3
= Oymyr|o fr(2) + myr(2)0; fr]o
=(V-m, f(2))rae + Tr[m(z)V, f]
=V, - (mf).

Therefore, we conclude that S, f](x) = (S} Ky, f)ya where Sy K, = S)[K]|, means applying S,
to the first entry of K and evaluate it z, so informally S} [K]| : y — %VI “(p(z)m(x)K (z,y)). W
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B.2 Diffusion Kernel Stein Discrepancies

Proposition 9. Suppose S,[f](x) = (Sp[K]|s, f)3a for any [ € He. Let m and K be C?, and
x — Sp K, be Q-Bochner integrable. Then

DKSDg m(Q,P)? = [ [+ SiSHK (2, y)dQ(z)dQ(y).

Proof

Let us identify Hy ® Ho = L(Hi X Ha,R) =2 L(Ha,H1) with (v ® va) ~ v1(va, )3, (since
Ho = H3), sothat (v ® va)ugs = vy (va, ug)y, (here L(V, W) is the space of linear maps from
V to W). Then

(U1 ®ug,v1 @ 02>H5 = (w1, v1)u, (U2, v2)u, = (u1, (1 ® U2)U2>H1~
For simplicity we will write S, K, = S} [K]|,. Using the fact 2 — S, K, is Q-Bochner integrable,
then by Cauchy-Schwartz z +— (h, S, K;)»a is Q-integrable. Then

DKSDg,m(Q,P)* = Supmﬂﬂd (Jx Splh)(2)dQ(2), [y Splh](y)dQY))y,

= Sup|}\Lh6\|}£il S (b, SpK ) 2adQ(x) [ (R, SpKy)32dQ(y)

=8Uppeqp [y Jao (s SpEa)ga(h, SpEy)30adQ()dQ(y)

[AlI<1

=suppepd [y [o( SpKe @ SKyh),0dQ(x)dQ(y)
lpll<1

=sup,epd v [ (h @ h,SpKy ® SpKy) 1 odQ(x)dQ(y)
[Ih]<1

Moreover [, S, Kz @ SpKy || rsdQ(z)dQ(y) < oo, since

Jx ISy Ko © SpKy | nsdQ(x) © dQ(y)

= [ S VS K 8K )00 (S K 5 8, K )30 dQ(2)dQ(y)
= (fx \/<SPKI’SPKI>Hdd@(x))2

= ([ IS, Kall3adQ(2))* < 00

since by assumption x — S, K is Q-Bochner integrable. Thus

DKSDgk ., (Q,P)? = supl,‘lﬁr_éd (h@h, [ [vSpK: ® SpKde(x)dQ(y)>HS
<1

= fo f){ Spie ® SpKde(x)dQ(y)HHS
= Hf)(s KpdQ(z) ® [y SpKyd@(y)HHS
= [l SpE2dQ(@)][5,

= (J SpEdQ(a), [ S,K,Qdy)),,.
fhhsmﬁmmmumm
- fx IX 82‘51 K(z,y)dQ(z)dQ(y).

To show the penultimate equality (exchange integral and inner product), we use the fact S, K, is
Q-Bochner integrable, and that the operator W : f — (f, [, S,K,Q(dy))ya is bounded, from
which it follows that

(e $yIA0(2). [ 8,K,Q(00)) = W[ §,K,0Q(x)] = [ WIS, K,dQ(z)]
= [ (Sp K, [ SpKydQ(y));,.dQ(z)
= fX fx (SpKa, SpKy>HddQ(x)dQ(y)
Hence DKSDg ., (Q, P)? = [y [ 8281 (z,y)dQ(x)dQ(y).
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Note that from this proof we have

Ko (z,y) = S;%S;K(%y) = <SPK95’SPKZ/>7-N’

which shows the map ¢ : X — H?, ¢(x) = S}[K]|, is a feature map (more precisely it is dual
to the feature map) for the scalar reproducing kernel k°, and its RKHS consists of functions

9() = (6(), f)ya for f € H?[52]. |

B.3 The Stein Kernel Corresponding to the Diffusion Kernel Stein Discrepancy

Note the Stein kernel satisfies

K = oV Ve (p(@)m(@) Km(y) Tp(y))

since

) = 5w Vo - 0@)m(y) Ve - (p(z)m(z)K))
y - (P(y)m(y) i (p(x)m(2)ir K )es)

- (P(Y)M(Y)1s 0 (p(2)m(2)ir Krs)er)
230yt (P(Y)m(y) 150 (P(2)M(2) i K r5))
= 5ot Ot 0wt (P(2)m(2)ir K rsm(y) 0 (y))
= saom Vo - Ve - (p(@)m(z)Km(y) " p(y)).

Note it is also possible to view m(z) Km(y) " as a new matrix kernel. That is the matrix field m de-
fines a new kernel K, : (z,y) — m(z)K (z,y)m ' (y), since K,,(y,z)" = m(z)K(y,z)m(y)" =
K (z,y) and for any v; € R z; € X,

vj - K, m)vy = vj - m(x;) K (zg, z)m(z) "oy = (m(x;) Toy) - K(xj,20) (m(x) To) >0
We can expand the Stein kernel using the following expressions:

Vy (p(y)m(y)V - (p(z)m(z)K))
=V, (ply)m(y)(Km(z) " Vop + p(x) Vs - (m(2)K))).

<

v (p)m(y)Km(x) " Ve.p)
m" (2)Vaep - Km(y) " Vyp + p(y)Vy, - (m(y) Km(z) " Vap)
=m" (2)Vaep- Km(y)"Vyp + p(y)Vy - (m(y)K) - m(z) " Vap,

(Vy - (p(y)m(y)) - Vo - (m(2) K) + p(y) Tr[m(y) Vy Ve - (m(z) K)])
(

Hence

kO =mT(z)V,logp- Km(y)"V,logp

(m(y)K) - m(z) "V logp + V, ( (2)K) - m(y) "V, logp
“(m(@)K) - Vy - m 4+ Te[m(y)Vy Ve - (m(z) K]

= (s8p(@), Ksp(y)) + (Vy - (m(y) K), s ( )>+<Vx'(m(x)K)78p(y)>
(Vo - (m(2) K), Vy - m) + Tr[m(y)Vy Ve - (m(z) K)]

Vy -
\Y%

+ +

x

_|_
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B.4 Special Cases of Diffusion Kernel Stein Discrepancy

Consider

K = s Vo Ve o (p@)m(@) K (z,y)m(y) " p(y))

and decompose m(x) K (z,y)m(y) " = gA where g is scalar and A is matrix-valued. Then we
K = g(V,logp, AV, logp) + (V, logp, AV.q) + (V,g, AV, log p)
+ Tr[AV,Vygl + gV - Vo - A+ (V- A, V,yg) +(V, - AT, V,g)
+g(Vy - AT, V,logp) + g(Va - A, V,logp).

For the case, K = diag(k!,. .., k%), setting 7.* = —)6 i(p(x)-) then

SpSyldiag(k', ... k)] =T (mus (0) T (K (2, y)mil () = TTE (mai () (0, y)mei ().
If K = Ik in components
S;%S;[Ik] = (Sp(a?))ik(x,y)(s ()i +5 (mirk) (s p(x))r +axi(m($)irk)(5p(y))r
+ Ogi (M(2)irk) Oyt (M) + M(Y)ir Oyi Ogs (M) 1K)
When p = py we are often interested in the gradient Vyk9. Note V,, - (m(y)K) = kV, - m + V k -
m(y), so?
Opi[k(Vy - m, sp(2))] = kD (Vy - m, 5p())
Bp:[(Vyk - m(y), sp(x))] = (Vyk, Bp: [m(y)sp(x)])
Te[m(y)VyVa - (m(z)K)] = VykTm(y) Ve - m + Trlm(y)m(z) 'V, Vi k]
and the terms in Jy: k° reduce to
9gi (sp(z), Ksp(y)
9g:(Vy - (m(y) K), sp(x)
99: (Ve - (m(z)K), s (y)
99:(Va - (m(2)K), V
When K = kI and we further have a diagonal matrix m = diag(f;), m(y)m(z)" =
diag(f;(y)fi(z)). If w ® v denotes the vector given by the pointwise product of vectors, i.e.,

(u®v); = u;v;, and f is the vector, then m(z)V  logp = f(z) © V,logpand (V, - m), = 0y fi,
(Vo - (mk)); = 04 (fik),

sp(x) - Ksp(y)

i(sp(2), 5p(y))

(Vy - m, sp(x)) + (Vyk, i [m(y)sp(x)])

o1 (Va - m, 5p(y)) + (Vak, 9gs [m(z)s, (y)])
(Vg -m,Vy-m) + 0pi(Vyk-m(x),V,-m).

kOy
kOgi
kO,
kg

)
)
)
m)

(x,y)f, (x)axl 1ngfz( )6 i logp

y - (MY)K) - sp(x) = 0y (fi(y)k) fi(2)0yi log p
(m(ﬂc) ) - Vy - m = 0y (fi(x)k)0y: (fi(y))
[ (Y)VyVa - (mk)] = fi(y) i (fi(2)0yi k)

and if m — mI (is scalar), (this is just KSD with k(x, y) — m(z)k(z, y)m(y)):
KO = m(x)m(y)k(z,y) V. logp - V,logp
+m(x)Vy(m(y)k) - Vi logp +m(y)Va(m(z)k) - Vy logp
+ Va(m(z)k) - Vym +m(y)Vy - (m(z)Vyk),

When m = I, we recover the usual definition of kernel-Stein discrepancy (KSD):

KSD(QIP)® = [y [ 57 Vo - Ve (@) k(. )p(y))dQ(2)dQ(y).

*More generally V- (m(y)K) = (Vy -m)- K + Tr[V, K ® m(y)] where Tr[Vy K @ m], = 0, Kjrmi;
and if K = Bk

99i[(Vy - m) - Ksp(z)] = kBsr9i ((Vy - m)s(sp(2))r) = k Tr[Bi (sp(x) ® Vy - m)]
Oyi [VykTm(y)Bsp(x)] = Oy=kB;r0yi [mSj(y)(Sp(w))r]
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B.5 Diffusion Kernel Stein Discrepancies as Statistical Divergences

In this section, we prove that DKSD is a statistical divergence and provide sufficent conditions on the
matrix-valued kernel.
B.5.1 Proof of Proposition 1: DKSD as statistical divergence

By Stoke’s theorem [, S;[v]dQ = [,V qmv)dx = 0, thus fX WdQ = [, (Splv] —
S,[])dQ = [, (sp—5q)- vd@ and by assumption [, S d@ Y qu Ydx = 0. Moreover,
with s, = m " Vlogp, and 6, 4 = s, — s,. Hence

DKSD g, (Q,P)2 = [, [ S2[SIK (z,y d@(y)dQ(w)
(

_fx fx(sp y) — sply (

= Jx(sp(¥) = sp(¥)dQ(y) - [ [«%K( ,y)]dQ( )

= [x(sp(y) = 5p())AQY) - [ [SpK (2, y) — S K (2,y)]dQ(x)

= [ (5p(y) = $p(¥)dQ(y) - [ [(sp(x) = 8p(2)) - K(2,y)]dQ(z)
(,9)0p,q(y)a(y)dzdy

where p1(dz) = g(z)dp,4(2)dz, which is a finite measure by assumption. If S(g, p) = 0, then since
K is IPD we have ¢, = 0, and since ¢ > 0 and m is invertible we must have Vlogp = Vlog ¢
and thus ¢ = p.

B.5.2 Proof of Proposition 2: IPD matrix kernels

Let 4 be a finite signed vector measure. (i) If each k' is IPD, then [du'Kdp =
[ ki (z,y)du;(z)dpi(y) > 0 with equality iff g; = 0 for all i. Conversely suppose
[k (z,y)du;(z)dpi(y) > 0 with equality iff p; = 0 for all i . Suppose k7 is not IPD for some
7, then there exists a finite non-zero signed measure v s.t., f Edv @ dv < 0, so if we define the
vector measure y; = d;;v, which is non-zero and finite, then [ k%(z,y)du;(z)dp;(y) < 0 which
contradicts the assumption. For (i7), we first diagonalise B = R DR where R is orthogonal and D
diagonal with positive entries A\; > 0. Then

JduTKdp = [kdpT RTDRAp = [ k(Rdp) " D(Rdp) = [ k(x,y)Nidv(z)dvi(y),

where v = Ry is finite and non-zero, since p is non-zero and R is invertible, thus maps non-zero
vectors to non-zero vectors. Clearly if & is IPD then [du' Kdu > 0 with equality iff v; = 0 for
all . Suppose K is IPD but £ is not, then there exists finite non-zero signed measure v for which
f kdv ® dv < 0, but then setting . = RTf , with § = d;;v which is finite and non-zero, implies
JduTKdp = [kdéTDdé = N, [ kdv @ dv < 0.

B.6 Diffusion Score Matching

Another example of SD is the diffusion score matching (DSM) discrepancy, as introduced below:
B.6.1 Proof of Theorem 2: Diffusion Score Matching
Note that the Stein operator satisfies

Sylg) = V.(;;mg) — <V;D7mg>:)‘pv.(mg) = (Vlogp,mg) + V - (ng) = <mTV10gp,g> +V - (mg).
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Since [, S;[9]dQ = 0, we have

D(Q|[P) = sup,eg| [ Splg)(@)Q(d2)|* = sup,eg| [+ (Splgl(x) — Selg](2)Q(da)]
= supyeg| [ ((Vlogp — Vlogq) - (mg))dQ)|”,

2
= SUPyeg ‘ <mT(V logp — Vlogq), g>L2(Q)‘

2

= [[m ™ (Viogp — Viega) 2. o,

= [y|lm" (Viogp — Viogq)||;dQ,

where we have used the fact that G is dense in the unit ball of L?(Q) (since smooth functions
with compact support are dense in L?(Q)), and that the supremum over a dense subset of the

continuous functional F(-) = (m'(Vlogp — Vloggq),-) 12(Q) is equal to the supremum over

the closure, supgF' = supgF. Suppose D(Q|P) = 0. Then since ¢ > 0 we must have

||mT(Vlogp— Vlogq)Hz =0, ie, m (Vlogp—Vlogq) = 0, ie., V(logp — logq) = 0.
Thus log(p/q) = ¢, so p = ge® and integrating implies ¢ = 0, so D(Q||P) = 0iff Q =P a.e..

To obtain the estimator we will use the divergence theorem, which holds for example if X,V - X €
Lt (]Rd) for X = gmm'V log p (see theorem 2.36, 2.28 [59] or theorem 2.38 for weaker conditions).
Note

|m™(Viogp — Vlogq)”i = [lmTVlogp|2 +|mTVlogg|3 —2mTViogp-m'Viogq
thus we have

[ {(mTVlogp,m'Vliogq)dQ = [,(Vlogg,mm'Vlogp)dQ
= [(Vg,mmTVlogp)dzx
= fX (V . (qmmTVIng) —qV - (mmTVIng))dx
=— fX qV - (mmTVIng)da:
=— [, V- (mm"Vlogp)dQ.
B.6.2 Diffusion Score Matching Estimators

As for the standard SM estimator, the DSM is only defined for distributions with sufficiently smooth
densities. However the f-dependent part of DSM,,,(Q, Py) *

Jx (HmTVw log pg H; +2V - (mm'V logpg))d(@
= [y (HmTV$ log pg H; +2((V - (mmT"),Vlogp) + Tr[mmTV?logp] ))d@,
does not depend on the density of Q. An unbiased estimator for this quantity follows by replacing

Q wi.th the emp.irical random measure Q,, = % > 0x, where X; ~ Q are independent. Hence we
consider the estimator

OPSM = argming o Q,, (||mTVw 1ogp9||§ +2((V - (mm?"),Vlogpg) + Tr[mm' V2 logpg])).
In components, this corresponds to:

OPSM = argmingcg [ dQ(@)|m(x) TV, log p(x]0) 13 + 2 305 4 1y Oas O log p(a]0)mpa ()i ()
+2 Z?,k,l:l Oy log p(x]0) (0ps mpi (x)myji(x) + My (2)0psmyi(z))

B.6.3 Proof of Theorem 10: DSM as a limit of DKSD

We now consider the the limit in which DKSD converges to DSM:

3 Here we use V - (mmTVlogp) = <V -(mm"),V logp> + Tr [mmTV2 logp]
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Theorem 10 (DSM as a limit of DKSD). Let Q be a distribution on R% with ¢ > 0 and suppose
sp—54 € CRYNL2(Q). Let D (s) = v 4®(s/y), 7 >0, P € Ll(Rd) ® > 0and [, P( ds =

L. Consider the reproducing kernel ki (x,y) = k,(z,y)//q( =0, (z—y)/Va(x)q(y),

and set K¢ = BE4. Then, DKSDgq ,,,(Q|[P)* — DSMm(QH]P’), as 'y —> 0.

We use the following lemma as a stepping stone.

Lemma 1. Suppose ® € L'(R?), ® > 0and [ ®(s)ds = 1. Let f, g € C(R?) N L*(R?), then
defining K., = B®., where ®.,(s) = v~ 9®(s/v) andy > 0, we have

@) Ky, y)gy)dady — [ f(z)"Bg(z)dz, as v — 0.
Proof We rewrite
Joo S F(@) T BOy (2 —y)g(y)dedy = [, [, f(x) " Bg(z — s)da ®,(s)ds = [, H(s)®,(s)ds,
where H : X — R is defined by
= [, f()"Bg(z — s)dz = [, (f(z), Bg(z — 8))pedz = [, (f(2), g(z — 5)) pdz.

Since f,g € C(R?) N L*(R%), the function H(s) is continuous, bounded |H(s)| S
Al fllz2®ay 19| 2 (r) for a constant A > 0 depending only on B, and H(0) = [ f(x )T Bg(z)
Given § > 0, we can split the integral as follows:

Jes H(8)®(5)ds + [, o5 H(s)y(s)ds = [ + I,

By continuity, given € € (0, 1) there exists § > 0 such that |H (s) — H(0)| < e for all |s| < J. Let
Is= f\y|<6 ~(y)dy > 0 since ® > 0. Consider

L= H(O) = [os @ ()H(s)ds = HO) = fi,5@,(s) (H(s) - F2)ds

Ics
f\ |<& IL(;) (H(s)I<s — H(0))ds.

Clearly [ @, (s)ds = [y ?®(s/v)ds = [ ®(z)dz = 1, since z = s/ implies dz = y~%ds, so
Is =1-1.5 =1 *jiyp(;/ﬁfq)(y)dy-

Then since P is integrable, there exists v(d) > 0s.t. fory < ~o(d) we have f| D(y)dy < e

and thus 0 < 1 — ¢ < I5 < 1. Therefore, fory < ~o(9) :

y|>6/~

[y = HO)] = | <5 2 (H(s) s — H(0))ds]
< 22(3) | ((H(s) — H(0))I<5 + H(0)(I<s — 1))[ds

[s]<d Ics

|s|<6 IL(; (IH(s) — H(0)|I<s + |1 — I<5|H(0))ds
<o T (el<s + eH (0))ds

SELZ\Q/ ®(2)dz + H(0)e < (1 + H(0))e.

For the second term, since H is bounded we have
Iy =[5 H(s)Py(s)ds = [ o5/, H(vs)2(s)ds < [[Hl|so [, 5/, P(s)ds,
so that, |I5| < ||H||x€, fory < ~0(d). It follows that

|[ [ f@) Ky (2, y)g(y)dady — [ f(z) T Bg(x)dz| = |[ H(s)®,(s)ds — H(0)]
= |11+12—H( )|
< - HO)[ 4[] — 0,
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as v — 0 as required. ]
We note that f € L?(Q) if and only if f/g € L?(R?). Therefore applying the previous result, we
have that

e S £ )T K9, 9)0(9) 00() AQ() = [y o (Va@T7@)) K (o) (900)v/al) ) ey
%fX (r) " Bg(z)dQ(z), as v — 0.

Note that if % is a (scalar) kernel function, then (x, y) — r(z)k(z,y)r(y) is a kernel for any function
r: X — R, and thus k7 defines a sequence of kernels parametrlsed by a scale parameter v > 0. It
follows that the sequence of DKSD paramaterised by K

DKSDK“ QHP fX f){ q\x p7q Kﬁ(x,y)%,q(y)Q(y)dxdy

converges to DSM with inner product (-, -) g = (-, B-)5 on R%.
DSM,1, (Q[IP) = [, dg.( (2) " Bégp(2)dQ = Jx [m™(Vlogp — Vlog q)[|3dQ

C Information Semi-Metrics of Minimum Stein Discrepancy Estimators

In this section, we derive expressions for the metric tensor of DKSD and DSM. Let Pg be a parametric
family of probability measures on X. Given amap D : Pgo x Pg — R, for which D(P||P3) =0
iff P; = Py, its associated information semi-metric is defined as the map 6 — ¢(#), where g(0) is

the symmetric bilinear form g(6),; = —%M‘?i;wD(]P’a IPg)|a=6- When g is positive definite, we can

use it to perform (Riemannian) gradient descent on Pg = ©.

C.1 Proof of Proposition 3: Information Semi-Metric of Diffusion Kernel Stein Discrepancy
From Proposition 1 we have
DKSD g m (Pa; P9)? = [y [ Pa()0pg.po (2) T K (2, 4)0p p, (4)Pa(y)dady

where 8, . = m, (Vlogps — Vlogp,). Thus

0qi09i DKSDg 1, (P, P9)2 = 04 0pi fx fx Palz )00 po (T )TK(CE» Y)0p.po (Y)Pa (y)dzdy
= Oai [y [ Pa(®) 005 0pg po () TE (2, 4)0p, po (¥)Pa(y)dzdy
+ Oni f;\f fx pa p97pa( )TK(% y)aej 5pe,pa (y)pa(y)dxdy,

and using d,, p, = 0, we get:

D fx fxpa a916pe,pa($>TK($ Y)0po.pa (Y)P a(y)dxdy’azg

.
= 0ai [ [ Pa(@)(Dgsmg (V1ogpg — V1ogpa) + myg 89 V1og pg) K (2,y)0py p. (y)pPa(y)dady| _,

= [y oo Pa() (mg 06:V 10g p) " K (2,9)0ni6py o (v)Pa(y)dady|,_,
— [y o pal) (mg 06:V 1og pg) " K (2, y) (mg iV log po ) (y)pa(y)dady| _,
=— [y [x(mg 0V 10gp9)T($)K(JU, y) (mg 0p: V 10g pg) (y)dPg (x)dPy (y).

Similarly, we also get:

D fX fx Pal)0p,,p, () " K (2,y)0ps 6pg,pa (Y)Pa dxdy| a=0

=~ Jx Jx(mg 95:Vlogpe) (2)K (x,y)(mg 0pi V log py) (y)dPo(x)dPs(y)
= — [ [x(mg 0:V1ogpg)  (y) K (y,x)(mg s V log o) (x)dPg(y)dPp(z)
=— [ [ (mg 05:V1ogps) (y)K(2,y)" (mg D9V log pg) ()P (y)dPs ()
=~ [ Jx(mg 995V log pg) (x) " K (w,y) (mg 9p: V log pe ) (y)dPs (y)dPo ().

)T
) (
) (
)(
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Hence, we conclude that

1041091 DKSDg 1 (Po, Pg)? = — [ [ (mg 09s V1og pg) (z) T K (2, y) (mg 9g: V log pe) (y)dPs(y)dPg(z)
The information tensor is positive semi-definite. Indeed writing Vp(y) = m, (y)V, (v, Vg log pp):

(v,9(0)v) = v'g;;(0)v7
= [y Ja(mg ()
= [y Jx(mg ()
= Jx JxVole
since K is IPD.

()V (v, Vg logp9>) K(z,y)(myg (y)Vy (v, Vglogpg))dPs(z)dPy(y)
z (v, Vg log pg), (x,y)m (y)V (v,Vglogp9>>dIPg(a:)dIP’9(y)
) (x y)Ve( ))dPo(z)dP(y) = 0

C.2 Proof of Proposition 4: Information Semi-Metric of Diffusion Score Matching
Proof The information metric is given by g(6);; = —% (’)a‘ aeJ DSM(pa||po)|a=0- Recall

DSM(pa||pe) = fXHmT(Vlogpa — Vlogpa)H;padx.

Moreover

1845095 DSM(pallpo)|,_p = 500i Ops fXHmT (Vlogpp — V1og pa)|[opadz],_,
= Oy fx( (Vlogps — Viogpa)) - (m" 8V logpo)padz| _,
= fx( Vlogpe—VInga)) ( T(‘?@leogpg)aaipadw’a:g
— [ (m78,:Vlogps) - (m" 8p;Vlogpe)padz| _,
= — [ (mT 89 Vlogpy) - (m' ps V log pg)dPy.
Finally g is semi-positive definite,

(v, g(0)v) = vig;;(0)v) = =[yv mmambagl log pemn,, 0,1 0ps log pevI APy
= [ m/05+ (v, Vo log pe)m, ;0,1 (v, Vg log pg)dPy
- fx<mTvr<Ua Vo logpg),m' V., (v,Vo 10gp0>>dpe
= fx HmTVI@, Vo logp9>||2dP9 >0

D Proofs of Consistency and Asymptotic Normality for minimum Stein
Discrepancy Estimators

In this appendix, we prove several results concerning the consistency and asymptotic normality of
DKSD and DSM estimators.

D.1 Diffusion Kernel Stein Discrepancies

Given the Stein kernel (2) we want to estimate §P%5P = argmin, o DKSDg ,, (Q,Pp)? =
argmingcg [y [y k§(2,9)Q(dz)Q(dy) wusing a sequence of estimators gDKSD €

argming o DKSDg ,, (Q, P9)2 that minimise the U-statistic approximation (3). We will as-
sume we are in the specified setting Q = Pypxsp € Pg. In the misspecified setting it is necessary to
further assume the existence of a unique minimiser.

D.1.1 Strong Consistency

We first prove a general strong consistency result based on an equicontinuity assumption:
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Lemma 2. Let X = R% Suppose {0 — k3(x,y)},{0 — Q.k(x, 2)} are equicontinuous on any
compact subset C C © for x,y in a sequence of sets whose union has full Q-measure, and ||sp, (z)|| <

f1(@), [Ve-me(2)]| < fa(@), Ve - (mo(2) K (z,y))|| < fa(z,y), [Tr[m(y)Vy Ve - (m(2)K)]| <
fa(x,y) hold on C, where f1(x)\/K(z,2); € LY(Q), and f4, f3f2, f1fs € LY (Q ® Q). Assume

further that 0 — Py is injective. Then we have a unique minimiser 0°%SP | and if either © is compact,
or OPKSD ¢ int(©) and © and 6 — DKSD ., ({Xi}1_,,Pg)? are convex, then 02KSP is strongly
consistent.
Proof
Note DKSD i, (Q, Pg)? = 0 iff Py = Pyoxso by Proposition 1, which implies § = §2¥5P since
6 — Py is injective. Thus we have a unique minimiser at §PXSP,
Suppose first © is compact and take C' = ©. Note
K (2, )| <[(sp(2), Ksp(y))] + (Vy - (m(y) K), sp(@))] + (Ve - (m(z) K), 5p(y))]
(Ve - (m(@)K), V- m)| + [Tem(y)V, Vs - (m(x) K]
< [sp(@), Ksp(W))| + f3(y, 2) [1(2) + fs(z,9) () + fs(2,9) () + falz,y),
From the reproducing property f(z) = (f, K (-, 2)v),,q, forany f € H?, v € R Using K (y,z) =
K(z,y)" wehave K(-,z); = K(z,-); , where K (-, ) ; and K (z, -);, denote the i column and row
respectively, which implies that K (z,-);,, K(-, ) ; € H and f(z); = (f, K(-,2) i)3,4. Choosing
f=K(y),; implies
K(z,y)i; = (K(,y).5, K1) ) g0 < G y) llaal K (o 2) il
= \/<K(7 y),j’ K(" y)7j>7{d \/<K(a x),iﬂ K('7 :E),i>’;-¢d
= VK, 1) VK (@, 2)i.

It follows that
(sp(@), Ksp(y)) = (sp)i(2) K (2,9)i5(sp) (y) < (3p)i(@)/K (@, 2)iiv/K (y,9);(sp); (y)
< lsp(@) oo vV/E (2, 2)iin/ K (Y, 9)5l15p (¥) [l o
< Cfi(a)VEK(x,2) /Ky, v)i511 (),

where the constant C' > 0 arises from the norm-equivalence of ||s,,(y)|| and ||s, (y)||oc- Hence k° is
integrable. Thus by theorem 1 [70],

supng/Kﬁ)K,m({Xi}?:l’ Py)2 — DKSD e (@, Pe)?| 25 0

and 6 — DKSDg.,,,(Q, Py)? are continuous. By theorem 2.1 [56] then PKSP 22, gDKSD,

On the other hand, if © is convex we follow a similar strategy to the proof of theorem 2.7 [56]. Since
HPKSD ¢ int(©), we can find a € > 0 for which C' = B(AP¥SP 2¢) C © is a closed ball containing
OPKSD (which is compact since © C R™). Using the compact case, we know any sequence of

estimators APXSP € argming ., DKSD . ({X;}7_,, Pg)? is strongly consistent for /PXSP_ In
particular, there exists Ny a.s. s.t. for n > Np, ||gPKSP — gDKSD|| < ¢ I § ¢ C, there exists
A € [0,1) s.t. MGPKSP 4 (1 — \)f lies on the boundary of the closed ball C. Using convexity and
the fact éEKSD is a minimiser over C,

@K,m({Xi}?:p ]PéTI?KSD)2
< D/K§)K,M({Xi}zn:17PA@EKSDJr(lf)\)G)Q
< ADKSD g o ({Xi 1y, Pgpicsn )2 + (1 — A)DKSD ¢ ({Xi 11, Pp)?

which implies ﬁ{s\]:)Kﬁm({Xi}?:l,]PéDKSD)z < ﬁ{ﬁ)K,m({Xi}?:p]Pe)z and ODKSD s the
global minimum of 6 — DKSD ., ({X;},,Pg)? for n > Nj. |
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When £ is Fréchet differentiable on © equicontinuity can be obtained using the Mean value theorem,
which simplifies the assumptions under which strong consistency holds.

We now prove our main result for consistency of minimum DKSD estimators: Theorem 3:

Proof Let ||K|| + |V K| + |V.V,K|| < Ks. Note |V, - (m(y)K)| < 2f2(y)Ks and
Tr[m(y)Vy Va - (m(z) K)]| < 2f2(y) f2(2) Koo 50

kg (2, )| < fi(@) Koo fi(y) + 2f2(2) Koo f1(y) + 2f2(y) Koo f1(2) + 3K fo(2) f2(y)

which is symmetric and integrable by assumption. Let S,,, m = 1,2, ... be an increasing sequence
of closed balls in R?, such that U_, S,,, = R%. Moreover,

IVo(sp(@), Ksp))ll < 91(2) f1(y) Koo + 91(y) f1(2) Koo
Vo (Vy - (m(y)K), sp(0)) | < 2Koog2(y) f1(2) + 2f2(y) g1 (2) Koo
Ve (V- (m ( )JK), Vy - m)|| < 2Keoga(2) f2(y) + 2K fa(7)g2(y)
IVeTx[m(y)VyVa - (m(z) K)]|| <2 oogz(y)fQ( ) + 2K f2(y)g2(x)

thus | VgkJ(, y)| is bounded above by a continuous integrable symmetric function, (z,y) — s(z,y),
which attains a maximum on the compact spaces .S;,, X S,,. By the MVT applied on the R™-open
neighbourhood of ©, [k)(z,y) — K3 (z,y)| < [Vek3(xn)llI6 — al < s(zy)8 — al

maxg yes,, s(z,y)||0 — o, and ke (x,y)is equicontinuous ing € C for z,y € S,,. Similarly, since

s is integrable, | [, kg(z,y)Q — [ K2, 2)Q(d2)| < (Vg [y k) (x,2)dQ(2)[[|0 — af <
S IVokg (2, 2)[dQ(2) |0 — a|| g max,es, Q.s(z,2)||0 — ol < is equicontinuous in § € C for
2 € Sp,. The rest follows as in the previous proposition. ]

D.1.2 Proof of Theorem 4: Asymptotic Normality

Proof  Note that VoDKSD m ({Xi 1oy, P9)? = sy i, Vokd(Xi, X;). Let p(6) =

Q ® Q[VgkJ]. Assumptions 1 and 2 imply that Q ® Q[||Vekj||*] < co. By [29, Theorem 7.1 ] it
follows that

Vi (VoDRSD e ({XiHio, Bo)? = u(6)) 5 A (0,45(6)
where

Y = Q[Q2[Vok) — n(0)] ® Q2 [Vok) — p(6)]]
= Ja ([ Voks (2, y)dQy) — p(89)) @ ([ Vokg(w, 2)dQz) — u(0))dQ(x)

Note that ,u(GEKSD) =0Q® Q[ngghg*DKSD] = Vy (@ ® @[kg])|9:91*31<513, and if Q ® Q[kg} is

differentiable around §PX5P | then the first order optimality condition implies 1 (#P%5P) = 0.

Consider now VyVsDKSD i ({ X}, Pg)? = i 0,5 Vo Vok( Xy, X;). Note

[VoVaVa(sp(x), Ksp(y))l = g1(2) Koo f1(y) + f1(2) Ko g1 (y)
IVeVeVo(Vy - (m(y)K), sp(x))|| = g2(y) Koo f1(2) + f2(y) Koo gi (2)
IVeVeVe (Ve - (m(z)K), Vy -m)|| < f2(y) Kooga(z) + g2(y) oofz(z)
VeVeVeTr[m(y)V,yVy - (m(z)K)| = g2(y) Koo f2(2) + f2(y) Koo ga(z)

Hence by Assumptions 1-4 |[VoVyVykj| is bounded above by a continuous integrable sym-
metric function and we can apply the MVT to show equicontinuity as in the proof above.
Moreover the conditions of [70, Theorem 1] hold for the components of Vngkg, so that

SUPgeps ﬁ Dt Dpa 0o k(Xi, X;) — Q ® Qga 0pp k9| =3 0 as n — oo, for all @ and b.
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Finally we observe that Q ® Qg gk | ,_ypsp = gas(0PF5P), where g is the information metric
associated with DKSD g ,,,. Indeed using 6, = 0if p = ¢

Q © Qe Oy kg ,_gorso

= 9o D> [y [y Porrso ()53, s (2) T (2, 9)50 e
= Opa f)( fx Pgpxsp (x)aebépe,penxsn (2) T K (x,y)6 Po,PgDKSD
+ Ope fx fx Dgpxsp (2)0p, ,pgngn( )T K(z T, Y)Ogo Oy, PgDKSD (y)PegKSD(
=[x S Poprso (2)090 0y pyprcsn (2) K (2,5) 092 8pg p,prcs (¥)Pops (y)dady|y_pocss
+ [ [ Poprso (2)09 0y pypics (2) T K (2, 9) 090 0pg pyprcsn (¥)Popicso (y)dwdy| y_poxsn

T
=2 fX fX (m(;r*DKSD (.’E)vzaaj]gKSD 1ng9£)KSD> K(.”L', y)

(ngKSD (y)vyamDKSD log pg*DKSD ) d]P)g*DKSD (I)dPQ*DKSD (y),

(y)pQDKSD y)dxdyb:g?}(sm
(y)pQDKSD (y)dxdy|‘9:91*3KSD
y)dxdy|9:9£n<sn

30 Q @ Qe g k| y_yosp = Jab(02F5P). The conditions of [56, Theorem 3.1] hold, from which
the advertised result follows. |

D.2 Diffusion Score Matching
Recall that the DSM is given by:
DSM(QIIPo) = [ ([T Valogpa; + T Viogall3 + 2V - (mm TV logpy) )aQ
and we wish to estimate
oDSM = argming g [, (HmTV@. 1ogp9||§ +2V - (mm'V Ingg))dQ = argmingg [, FpdQ
with a sequence of M-estimators PSM = argmingcg 2 37 Fy(X;). Recall also we have

x) = HmTVz logpeuz + 2<V - (mmT), Vlogp9> + 2Tr [mmTV2 lngg].
We will have a unique minimiser #25™ whenever the map 6 + Py is injective.

D.2.1 Weak Consistency of DSM

Theorem 11 (Weak Consistency of DSM). Suppose X be open subset of R%, and © C R™.
Suppose logpg(-) is C*(X) and m € C1(X), ()| < fi(z). Suppose also that
V.V logpg(z)| < fa(x) onany compact set C C ©, where |m" || f1 € L2(Q), [|V-(mm")||f1 €
LY(Q), (Q). Ifeither © is compact, or © and 0 — Fy are convex and 0* € int(©),

then OP5M is weakly consistent for 0.

Proof By assumption § — Fy(x) is continuous. Suppose O is compact, taking C' = O, note
2
|Fy| = ’HmTVx log py||, + 2V - (mmTVIngg)‘
= ‘HmTVI logpe“i +2(V - (mm?") - Vlogpy + Tr[mm ' V? lngg])‘

Sm 22 42V - (mm )| fr+ 2llmm T f2

which is integrable, so the conditions of Lemma 2.4 [56] are satisfied so 6 — QFy is continuous, and
supg | L 327 Fy(X;) — QFy| % 0, and thus from theorem 2.1 [56] GOSM 2y DSM £ © is convex,

note that the sum of convex functions is convex, so 6 — - L 5™ Fp(X;) is convex, and we can follow
a derivation analogous to the one in Theorem 3. ]
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D.2.2 Asymptotic Normality of DSM

Theorem 12 (Asymptotic Normality of DSM). Suppose X, 0 be open subsets of R? and R™

respectively. If (i) éBSM 25 0%, (ii) 0 — log pg () is twice continuously differentiable on a closed
ball B(e,0*) C ©, and

@) [mm'|| + |V - (mm")| < fi(z), and ||[Vilogp| + [[Ve-Vylogp|| +
V- V.V logpl| < fol@), with f1 fo, f1 5 € L*(Q)

(iv) for 0 € B(e,0%) VoV logp|® + ||V, logp]|
IVoVe V.V, logp|l < gi(x), and fig1 € L'(Q),

VoVoV, logp|| + HV@VQVI logp|| +

and (v) and the information tensor is invertible at 0*. Then

V(B = 0%) % N (0,97H0")QIV o Fo @ V- Fylg ™ (67))

Proof From (ii) § — Fy is twice continuously differentiable on a ball B(e,6*) C ©. Note
V(;% Ziv Fg(XZ) = % va VgFg(Xi), then Q[V@FQPSM (XZ)] = VGQ[FQI*DSM (XZ)] = 0. Note
Vo Fyosas (2)[| = [[mm T[[[| V2 log p|| [ Vo Vi log pl| + |V - (mmT)[[[ VeV log p
+ lmm ™ |[[[Ve V.V, log p
= fi(@) fa(@) [ fa (@) + 2.
Hence Vg Fyosu € L?(Q), so by the CLT

VAV k X7 Fpssi (X3) 5 N (0,Q[ Vo Fypsm @ Vo Fypsu]).
Now 0 + V¢V Fy(x) is continuous on B(e, #*) so we have:

IVoVoFy () = [[mm " (Vo Valogpl® + [|Va log pll| Ve Ve Ve log pl|)
+ IV (mm T )[[|Ve VeV log pl| + [[mm T [[[[ VoV V. Ve log p
~ fi(@)gi(x)
Combining the above, we have that the assumptions of Lemma 2.4 [56] applied to B(e,6*)
hold, and SUP (e 0% %Zf Opa gs Fy o« (X;) — Q0pa Ogs F|g- L, 0. As in Theorem 4

Q0paDgv Fylo+ = gap(0™) is the information tensor, which is continuous at 6* by Lemma 2.4. The
result follows by theorem 3.1 [56]. |

D.3 Strong Consistency and Central Limit Theorems for Exponential Families

Let X be an open subset of R?, © C R™. Consider the case when the density p lies in an exponential
family, i.e. pg(x) x exp((0,T(z))rm — c(8)) exp(b(x)), where # € R™ and sufficient statistic
T = (Ih,...,T,) : X - R™. Then VT € I'(X,R™*4) and V,logpy = Vb + 0 -V,T,
VoV logpy = V.TT.

D.3.1 Strong Consistency of the Minimum Diffusion Kernel Stein Discrepancy Estimator
We consider a RKHS H¢ of functions f : X — R? with matrix kernel &. Recall the Stein kernel is
k0 =V, logp - m(x)Km(y) "'V, logp + V, - (m(z)K) -V, - m + Tr[m(y)V, Vs - (m(z)K))

+Vy - (m(y)K) - m(x) "V logp + Va - (m(z)K) - m(y) 'V, logp

Given a (i.i.d.) sample X; ~ Q, we can define an estimator using the U -statistic

DKSDr,m({Xi}i21,P0)* = sty 2o1<icjon KO (X, X;)-
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For the case where the density p lies in an exponential family, then k° = T A0 4+ v + ¢ where
AeT(X x X,R™*™m) v € T'(X x X,R™) are given by (we set p = m ' VT T € T'(X , R¥*™))

A= ¢(2) K (2,y)¢(y)
= Vyb-m(y)K(y, 2)¢(x) + Vab - m(z) K (z,y)b(y)
Ve - (m(2)K) - ¢(y) + Vy - (m(y) K) - o(x)
c=Vib-m(@)K(z,y)m(y) "Vyb+ V- (m(2)K) - Vy - m+ Tr[m(y)V,V, - (m(z)K))
+Vy - (my)K) -m(x) Vb + Vo - (m(z)K) -m(y) " Vyb
Lemma 3. Suppose K is IPD, that VT has linearly independent rows, that m is invertible, and
9llL1 (@) < co. Then the matrix [, AQ ® Q is symmetric positive definite.

Proof The matrix B = f + AQ ® Q is symmetric

([, AQe2 Q)T = [, A(z,y)"Q(dz) ® Q(dy) = [, V,Tm(y)K (z,y) "m(z)"V,.TTQ(dr) ® Q(dy)
= [ VyTm(y) K (y, x)m(z) "V, TTQ(dy) ® Q(dz) = [, AQ® Q.

Moreover, set ¢ = m VT, so A(z,y) = ¢(x) " K(x,y)é(y). If v # 0, then u = ¢v # 0 as
VT has full column rank (i.e., the vectors {VT;} are linearly independent) and m is invertible, and
vl = [y lo(@)vllidz < [jv]l1 [ [|¢(x)[[1de < oo implies du; = u;dQ is a finite signed
Borel measure for each 7. Clearly
v ([, AQ®Q)v = [, u(z)" K (z,y)u(y)Q(dz)Q(dy)
= [ K(2,y)ijui(@)u (y)Q(dw) (dy)
= Jx K (@, y)ijni(da)p;(dy) =

Moreover since the kernel is IPD, if this equals zero then for all i: 0 = p;(C) = u,;Q(C)
¢:v,;Q(C) for all measurable sets C, which implies ¢v = 0 and thus v = 0.

Theorem 1. Suppose K is IPD with bounded derivative up to order 2, that VT has linearly
(Q). The

minimiser QDKSD of DKSD xm({Xi }Z 1, Pg) exists eventually, and converges almost surely to the
minimiser 9* of DKSDg m, (Q, Py).

Proof

Let X; : Q@ — X C R< be independent Q-distributed random vectors. The U-statistic
A, = ﬁ Y i<cicjen A(Xi, X;) is symmetric semi-definite. Since [, [|A[[dQ ® Q < oo,
by theorem 1 [30] the components of A,, converge to the components of B almost surely, and

since the matrix inverse is a continuous map, by the continuous mapping theorem the components
of A1 (the inverse exists eventually) converge almost surely to B~!. Hence the minimiser of

DKSD g.m ({X; 1, Pg)? = 0T A0 + v 0 + ¢ where v, = Ty i<icj<n V(Xi, X;) exists
eventually.
Az, y)| = Keollo(@)[[[|6(y)]]
[0l = Koo [V yblllm(y)[[[¢(2) || + Koo [ Vbl [m () [ #()|
+ ([IVam[l + [m(z) ) Ko o) + (IVymll + [[m(y) ) Koo ¢(2)]]
e = Koo [ Vab [ [[m(2) [[m)[[[[Vybl] + Koo (IVem]| + [[m(z) ) Vyml+
+ Koo [m)II(1 + [[m()[| + [|Vam])
oo (IVymll + [[m(y) DIVem|[[Vabll + Koo ([Vaml| + [[m(z) [ Vym]|[|V bl

and it follows from the integrability assumptions that Q ® Q|kJ| < co. Since the product and sum of
random variables that converge a.s. converge a.s., we have that éBKSD — 0* a.s.,

A — a.s. —
QBKSD = —%Anl’un — —%B 17.) - 0*
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D.3.2 Asymptotic Normality of the DKSD Estimator
We now consider the distribution of 1/7(6P%SP —¢*). Recall that A € T'(X,R™*™), v € T(X,R™),
and for n large enough A ! exists a.s., and 2552 = —2 A1y,

Theorem 2. Suppose |||, ||Vibl|l||m|, ||Vem|| + [[m] € L*(Q). Then the DKSD estimator is
asymptotically normal.

Proof From the integrability assumptions, it follows that v, A € L?(Q® Q), and since X’ has finite
Q ® Q-measure, v, A € L'(Q ® Q). Assume first that m = 1. Hence the tuple U,, = (v,, 4,) :
Q—R%L with E[U,] = ([, vQ®Q, [, AQ® Q) = (U1, U,) , is asymptotically normal
V(U = E[U,]) % N(0,4%)
where, setting 1’ = v — Uy and A° = A — U,
S =E[([y*(Xy d@ > fX A(X,)dQ()) ® ([ v°<X,y d@(y),fX A(X, y)d@( )l
0(

[ 00 (2, y)dQ(y (z,2)dQ(2)dQ(z) [, v :v y) [+ A%(z,2)dQ(2)dQ(x)
<Ji (z,)dQ(y fX Oz, 2)dQ(2)dQ(x) f (, f: O(z,2)d dQ(m))

Since PKSD = ¢(U,,), 6* = g(U) where g(z,y) = —%w/y we can apply the delta method which
states

VA(OPESD — 0%) = \/n(g(U,) — g(U)) % N (0,4Vg(U)SVg(U)T)

and Vg(U) = (—1/2U,,U;/2U3). Now let m be arbitrary. Since A € L?(Q) then setting
A’=A- [, AQ® Q we find

VA(An = E[A,]) 5 N(0,4%1), = [ [y A%z, 9)dQy) ® [, A°(w,y)dQ(y)]dQ(x)
and similarly , with v° = v — [vdQ ® dQ

Va(vn — Efv]) S N(0,455), = [+ [y (2, 9)dQ(y) ® [, °(z,y)dQ(y)]dQ(x).
and

V(v An) = E[(vn, Ap)]) % N(0,43)
where
Y= fx[(fxv 2, y)dQ(y), [ A°(z,y)dQ(y ) (fx (2,9)dQ(y), [ A%z, y)dQ(y ))]d@(x)

Let D = R™ x R™*™, which we equip with coordinates z;;; = (z;, y,x). Consider the function
g:D — R™, (2,y) = —3y~tz, so g(v,, A,) = O0K5P. Note ¥ € D x Dand Vg : D —
End(D,R™) = R™ x D, so that Vg(U)XVg(U)"T € R™*™. First consider the matrix inversion
h(y) =y~ 1, so Vh(y) € Rm>m)x(mxm) and Vh(y) ) (er) = Oyerhij. Since h(y)i;yj1 = i we
have 0 = Ok, (h(y)ijyji) = Okr (R(Y) i)yt + P(Y)1i0jk0r1 = Okr(h(y)ij)yjt + I(y)irdr and

VR(Y) is)(kr) = Or (0(Y)ij)Yi1h(W)is = —hirdrih(y)is = —h(y)ih(y)rs
and clearly f : x — x, then V f(2) = 1,,,%m. Moreover
9yavgi(z) = Oyav (N(y)ij f(2) ;) = Oyas (M(Y)ij) x5 = —M(Y)iah(Y)vjzj, 021 9i(2) = h(y)a
Then
(Va(2)2)ir = 00giZur = Giat Xty + i yob Dyavr = M) i Xpty + Oyav (A(Y)is) T X yary
=h(y)aZet, = h(Y)iah(y)ostsXyer,,
)

(Vg(2)2Vg(2) Nic = (V9(2)2)ir(V9(2))er = (V9(2)2)ir0rge
= h(y)ilzzlrargc - h(y)mh(y)bsxszyabrargc
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with
h(y)iller rJc = h(y)ilzzlmbazbgc + h(y)ilzzlyas yasJc
= h(y)ilExlxbh(y)cb - h(y)illeyashca(y)h(y)sjfﬂj
and

_h(y)iah(y)bsmszyabrargc = _h(y)iah(y)bsxs (E ab ka ek Ge + Eyabyldayldgc)

= —h(Y)iah(y)bss (Eyaryr My ) ek — Syavyrah(y)ah(y)ajz;).-
Note we have
Yow = [x J2 % (2,9)dQ(y) @ [ v°(x,2)dQ(2)dQ(x) = [, T(z) @ T(x)dQ(x)
Yoy = [y [x 0°(2,9)dQ(y) ® [, A%z, 2)dQ(2)dQ(z) = [, T(z) ® L(z)dQ(x)
Syy = [ Jo A%(2,9)dQ(y) @ [, A%(z,2)dQ(2)dQ(z) = [, L(z) ® L(2)dQ(z)
then
AVg(U1,Uz)SVg(Ur,Uz) T = [, (Us'T) ® (TU; 1)dQ
-2 [ (U 'LUs ' Uy) ® (TU; 1) dQ

+ [ (U 'LU;'Uy) @ (U3 LU 'UL)dQ

D.3.3 Diffusion Score Matching Asymptotics

Consider the loss function
L(z,0) = <V10gp9,mmTV10gp9> + Q(V ~(mm™) - Vlogps + Tr[mm—'—V2 logpg]).
For the exponential family L(x,0) = 67 A0 + v 0 + ¢, where (we set S = mm ")
A=VTSVTT
T =2Vh-SVTT +2V-5-VTT 4+ 2Tr[SV?T;]e;
c=Vb-SVb+2V -5 -Vb+ 2Tr[SVVI].
Theorem 13. Suppose m is invertible and {N'T;} are linearly independent. Then if A,v € L'(Q),

QESM eventually exists and is strongly consistent. If we also have A,v € L*(Q), then QESM is

asymptotically normal.

Proof Let M = fAdQ H= [vdQ.If A=VTmm'VT"T = VTm(VTm)" sorank(4) =
rank(VI'm(VTm) ") = rank(VT'm) = rank(VT) = rank(VT ") if m is invertible. So if the

vectors {V7;} are linearly independent, then V7' has full column rank. Then A it is symmetric
positive (strictly) definite and the minimum of L(0) = [ L(x,0)dQ(x) is 0* = —3 M~ H which for

sufficiently large n can be estimated by the random variable §25M = — 1 M1 H,, which converges
a.s. to 6.

We consider the tuple U,, = (H,,, M,,), so E[U,,] = (H, M). Since A,v € L?(Q), then
Vi(Un = (H,M)) % N(0,T)
where, setting 1’ = v — H, A% = A — M
I =E[(v°, A% @ (v°, A)].
Let D = R™ x R™*™ and consider g : D — R™, defined by g(z,y) = —1y~'z. Using the Delta
method

Vr(PSM — g%y L N (0,4Vg(H, M)TVg(H, M)T)
where, proceeding as in Appendix D.3.2, we ﬁnd
4Vg(H, M)IVg(H, M)" = [,.(M ® (VYM~1)dQ
— QfX( 1A(’/\/l‘lH) ® (’UOM_l)dQ
+ [ (MTTAMH) @ (MTTA M~ H)dQ

31



E Proofs of Robustness of Minimum Stein Discrepancy Estimators

In this section, we provide conditions on the Stein operator (and Stein class) to obtain robust estimators
in the context of DKSD and DSM. In particular we prove Proposition 7 and derive the influence
function of DSM.

E.1 Robustness of Diffusion Kernel Stein Discrepancy

Let T : Po — © with T(P) = argming DKSDgk ,,,(P||Pg) be defined by IF(2,Q) =

lim;0(T(Q+1(6, —Q)) —T(Q))/t. Denote Q; = Q+t(5, — Q), : = T(Qy), 6p = T(Q). Note
that by the first order optimality condition:

Vo [y [3 k°Q: @ Q¢lg, = Vo, DKSD g 1, (Q[[Pg) = 0.
By the MVT, there exists  on the line joining 6y and 6; for which

0= fX fX Vok®)6,Qr ® Q; + fX fX VoVok®|5Q; @ Qu(6; — bo).

Expanding

Q: ® Q:Vok®|g, = t*(3. — Q) ® (8. — Q)Vek®|g, + 2tQ, Vok® g, (2, 9)
where we have used the optimality condition. On the other hand
Q ® Q:VoViek?|5 = (1 - 2t)Q® QVVk|g + 12 (0, — Q) @ (0. — Q)VoVek®|5 + 2tQ, Ve Vok®[4(2, y).
Hence

QyVok®lo, (z,y) = 3 ((1 = 20)Q ® QVVek®|5 + 2tQ, Vo Vek®|5(2,y)) 52 + O(t),
and taking the limit ¢ — 0, § — 6, and using a derivation as in the proof of Theorem 4
QyVok®|oy(2,9) = 3 [ [ VoVok?|o,dQ @ dQIF(2,Q) = g(do) IF (2, Q)

hence the influence function is given by

IF(2,Q) = g(6o) ™" [y Vok®lo, (2,1)dQ(y).

We aim to show the estimator is B-robust, that is z — |[IF(z,Q)| is bounded. Sup-
pose that the additional assumptions hold.  Then there exists a function ¢ such that
J{sp(z), K(z,9)Ve,5p(y))Q(dy) < ||sp(x)||c(x) which is bounded in 2 € X. Following a similar
argument, and using the assumptions, a similar limit will hold for all terms in [ V,k%(z, y)dQ(y).
It follows that sup, ¢ x [|[IF(z, Q)| < oo.

E.2 Robustness of Diffusion Score Matching
The scoring rule S : X x Py — R of DSM is
S(z,Pg) = §||m Vs logpgﬂg + V- (mmTVlogpy)(x)
Indeed the proof of Theorem 2 we have
[ylm™Vlogq||*dQ = — [, V - (mm” V log )dQ.
which implies QS(-,Q) = —3 [,||m " Vlog qHQdQ, SO
QS(-,Py) — QS(-,Q) = fx<%||mTVm logp(;”; + %HmTVlog qH2 +V- (mmTngpg))dQ
= DSM,, (Q|Py).

From 4.2 [15] the influence function is then IF (z,Py) = gpsm(0) ~'s(z, 0), where
s(z,0) =VyS(z,0) = %vganvz log pel|3 + VoV, - (mmTVw logpg)

— 1V, TV, logpull3 + Vo ((Va - (mmT), Vlog po) + Tr[mm ™ V2 log po])

= V.Vglogpgmm 'V, logpg + (ViVelogpe) Vs - (mmT) + Tr[mm 'V, V.|V logpe

and where gpsm(6) = PoVoVeS(+,0) is the information metric associated with DSM. Hence the
estimator is bias-robust iff z — s(z, 9°5M) is bounded.
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F Additional Numerical Experiments

In this section, we provide further details and expand on the numerical experiments in the main paper.

F.1 Efficiency of Minimum SD Estimators for Scale Parameters of Symmetric Bessel
distributions

In this section, we extend the results from the main text and compares SM with KSD based on a
Gaussian kernel and a range of lengthscale values for the scale parameter of the symmetric Bessel
distribution. The results, given in Fig. 1, are also based on n = 500 IID realisations in d = 1. Similar
results to those for the location parameter are obtained: KSD can deal with rougher densities, as

illustrated when s = 0.6.

Scale, s=0.6 Scale, s=1 Scale, s=2
v : ] AT

—— H
: 7 Estimator
: — sMm

KsD, 1=0.5
— KSD,I=1.0  -eee- truth
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5
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100 10t 10% 100 100 107 100 100 102
6, 0> 6>

Figure 5: Minimum SD Estimators for the Scale of a Symmetric Bessel Distribution. We consider the
case where 0] = 0 and 65 = 1 and n = 500 for a range of smoothness parameter values s in d = 1.

F.2 Bias Robustness of Minimum SD Estimators for the Symmetric Bessel and
Non-standardised Student-t Distributions

In this section, we explore the robustness of minimum SD estimators for the two other examples in
the main paper: the symmetric Bessel distribution (v = 1000) and the non-standardised student-t
distribution. We once again select a diffusion matrix of the form m(z) = 1/(1 + ||z||*), and fix
« = 1 in both cases. This choice is refered to as “robust DKSD”. On the other hand, we call “efficient
DKSD” the DKSDs with choices of m as highlighted in the main text (and which were chosen to
improve efficiency in both cases). The results are provided in Fig. 6. In each case, we used n = 500
data points, 80 of which were corrupted by a Dirac at some value of given on the x-axis. Both in
the student-t and symmetric Bessel distribution, we notice that the “efficient DKSD” has an [; error
which grows with the value of the Dirac, whereas the “robust DKSD” is bounded as a function of this

Dirac.

Student-t Symmetric Bessel

20

15 1.0

— M

— KsD

—— efficient DKSD
robust DKSD

10
0.5

5:‘ - -\

40 60 0 2
Dirac Dirac

Figure 6: The Robustness of Minimum SD Estimators for the Symmetric Bessel and Student-t
Distributions. Left: Student-t distribution. Right: Symmetric Bessel distribution.
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