A Extra Lemmas

In this section we (re)state and prove some Lemmas.

First, we provide the proof of Lemma 1, restated below for convenience.

Lemma 1. Suppose n, < -+ forallt. Then
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Proof. Using the smoothness of F' and the definition of a1 from the algorithm, we have
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where in the second inequality we used Young’s inequality, the third one uses ||z + y||? < 2||z||* +
2||y||?, and the last one uses n; < 1/4L.

This next Lemma is a technical observation that is important for the proof of Lemma 2.

Lemma 3.

E[(Vf(x:,&) = VF(2:)) -0, (1 = ar)’€1] =0

E[(Vf(ze,&) — V(@i—1,&) — VF (@) + V(1)) -1 (1 — ar)*€-1] = 0.
Proof. From inspection of the update formula, the hypothesis implies that €;—1 = d¢—1 — VF(x;_1)

and x; are both independent of &;. Then, by first taking expectation with respect to &; and then with
respectto &1, ..., &1, we obtain

E [(Vf(@:, &) — VF(xy)) - ny(1— ar)’€—1]
=E[E[(Vf(x,&) = VF(x:)) -1, (1 = ar)?€alérs ., &1]] =0
Analogously, for the second equality we have
E[(Vf(xe, &) = V(we-1,&) — VF (@) + VF(we-1)) - 1,5 (1 — as)*€r—1]
=E[E[(Vf(2:,&) = V(@i1,&) — (VE(@) = VF(21))) -0, 5 (1= an)’€alérs o &a]]
=0. O

The following Lemma is a standard consequence of convexity.
Lemma4. Letay > 0anday,...,ap > 0. Then

t
Z <14 2=
t=1 a0+21 1@ o

Proof. By the concavity of the log function, we have

t
In (ao—i—Zai) In <ao+za@> > a
i=1

ao + Z’L 1 a; .
Summing over t = 1, ..., T both sides of the inequality, we have the stated bound. O
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A.1 Proof of Lemma 2

In this section we present the deferred proof of Lemma 2, restating the result below for reference
Lemma 2. With the notation in Algorithm 1, we have

E [l /m-1] < E 20} 1GF + (1 — ar)*(1 + 4L%n7_ ) €1 [1*/me—
+4(1 = a)* L2 |V F (o)) -

Proof. First, observe that
E [y V (@1, &) — VF ()]
E [l 1(IVf (e, &)II” + [VE (@) [|* = 2V f(24,&) - VF())]
=E [T’f 1E [ IVf( wu&)lf + HVF(CCf)H2 =2V f(=, &) - VF(mt)}ﬁl, e ,&—1]]
E [0}_1 (IV f (s, €)II° = [VF(2:)[?)]
<E [V, €07 - 5)
In the same way, we also have that
E [0, (1 = a)|Vf(®s,&) = Vf(@e-1,&) — VF(2:) + VF(201)]]
<E [ (1= )|V (@ &) — Vi@e1,))]?] - ©)
By definition of €; and the notation in Algorithm 1, we have €; = d; — VF(x;) = V f(x, &) +
(1 —ay)(di—1 — Vf(xi—1,&)) — VF (). Hence, we can write
E [0 el”] = B [0 43IV (@0, &) + (1= a)(der = V(@i-1,&)) — VE(24)|?]
=E [0, lac(Vf (@0, &) — VF (1) + (1 — ar)(Vf (21, &) = Vf(@11,&) — VF (1) + VF(241))
+ (L= ag)(dim1 — VE(z-1))|]
<E 200 ||V f(me,&) — VF () |? + 20, (1 — a)* |V f (4, &) — Vf(@e-1,&) — VF (@) + VF(@0-1)||
01 (1= a0)? €1 %]
208 IV f(@e, €)1 + 20, (1 = a0V f (e, &) — Vi (@01, &)I1° + 0,5 (1= an)*[ler—1 7]
220} 1 GF + 20, (1 — @) L2y — 2 ||? + 01 (1 — a0)? € ||°]
[2¢20] 1 GF +2(1 = a)?LPng || di—1|1* + n 2 (1 = a0)?[ler ]
22071 GF +2(1 — ai)* L €1 + VF (1) [I” + 0,5 (1 — ar)[ler—a %]
<E 201G +4(1 — )2 L2 (€1 || + [VF(@e-1)[1P) + 0,21 (1= a0)®[ler-1]|°]
=E[20] G} + iy (1= a)* (L +4L%07_ )| €1 |* + 4(1 — ar) L1 [V F (2 -1)]1%]

where in the first inequality we used Lemma 3 (See Appendix A) and ||z + y||* < 2||z|?
in the second inequality we used (5) and (6), in the third one the Lipschitzness and smoothness of the
functions £, and in the last inequality we used again || + y||* < 2||z||* + ||y]|>. O

<E
<E
=E
=E

B Non-adaptive Bound Without Lipschitz Assumption

In our analysis of STORM in Theorem 1 we assume that the losses are G-Lipschitz for some known
constant G with probability 1. Often this kind of Lipschitz assumption is avoided in other variance-
reduction analyses [18, 8, 25]. These works also require oracle knowlede of the parameter o. It
turns out that our use of this assumption is actually only necessary in order to facilitate our adaptive
analysis - in fact even for ordinary (non-variance-reduced) gradient descent methods the Lipschitz
assumption seems to be a common thread in adaptive analyses [16, 28]. If we are given access to the
true value of o, then we can choose a deterministic learning rate schedule in order to avoid requiring
a Lipschitz bound. All that needs be done is replace all instances of GG or GG; in STORM with the
oracle-tuned value o, which we outline in Algorithm 2 below.

The convergence guarantee of Algorithm 2 is presented in Theorem 2 below, which is nearly identical
to Theorem 1 but losses adaptivity to ¢ in exchange for removing the G-Lipschitz requirement.
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Algorithm 2 STORM without Lipschitz Bound
1: Input: Parameters k, w, c, initial point o
: Sample &
D G |V (1, &)
: d1 — Vf(a:l,gl)

2

3

4

50 Mo wf:/e,
6

7

8

: fort =1to T do
R e R
D Tpq1 & T — Medy
9: Q41 cnf
10:  Sample &4
1: Gy < [V (@ig1, &) |
122 dip1 < V@11, 841) + (1= appr)(de — V(> E41))
13: end for
14: Choose & uniformly at random from 1, . .., 7. (In practice, set * = x).
15: return &

Theorem 2. Under the assumptions in Section 3, for any b > 0, we write k = 2%7~. Set
¢ = 28L% + o2/(TLK?) = L2(28 + 1/(Th)) and w = max ((4Lk)3,2o2,(%)3>
o max ((4b)*,2, (28b + =15)®/64). Then, Algorithm 2 satisfies

2/3

T 1/3

MwE Mue
vamt)n?]s o
t=1

where M = 8(F(x1) — F*) + %00 1 B 1y(T 4 2),

1
—E
T

In order to prove this Theorem, we need a non-adaptive analog of Lemma 2:

Lemma 5. With the notation in Algorithm 2, we have

(1 a)2(1 + 4%, )llers ]l
Nt—1

+4(1 — a)* L1 |VF(z-1)[%]

||"-tH2 2.3 2
E|——| <E |2c™n;_10° +
M—1

Proof. The proof is nearly identical to that of Lemma 2: the only difference is that instead of using
the identity E[ni"_, |V f (¢, &) — VF(z0)|I’] < E[nj |V (e, &)%) = Elni_ G7], we directly
use the value of o: E[np_, ||V f(z4,&) — VEF(x,) %] < np_y0?. O

Now we can prove Theorem 2:

Proof of Theorem 2. This proof is also nearly identical to the analogous adaptive result of Theorem
1.

Again, we consider the potential &, = F'(x;) + W ||€¢||? and upper bound ®;,; — ®; for each
t.

Since w > (4Lk)3, we have r, < ;. Further, since a;1 = cn?, we have ay4 < meuikw < 1 for
all t. Then, we first consider 7; *|l€; 41> — 1,-%; || €:/|?. Using Lemma 5, we obtain
E [0 e |? = n 2 llex)?]
1—a 2(1+4L%n2) | e]|? &|?
<E 2027)?024_ ( t+1)°( ; ;) lle| +4(1 —at+1)2L27hHVF(33t)H2 _ ||nt||
t t—1

<E | 2%50% + (n (1= aper) (1 +42%02) — 1) ledl® + AL [V F (=)
——

Ay B, Cy
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Let us focus on the terms of this expression individually. For the first term, A;, observe that w > 202
to obtain:

I S i Y g
A = 2c*nyo” =
t=1 t=1 w+t0 t=1 t+

< 2k302 In(T+2) .

For the second term B;, we have
By < (" =ty 4 HAL, — ar))lled® = (07t =0y +m(A0% = o) e

Let us focus on + —

for a minute. Using the concavity of z'/3, we have (z + y)'/? <

) Mt 7]1 1 -
x/3 4 yx=2/3 /3. Therefore:
1 1 1 o\ 1/3 o\ 1/3 o?
- = t - t—1 } <
mo m-1k [(w + ) (w+ (¢ = 1)) = 3k(w+ (t —1)02)?/3
o? o?
< <
= 3k(w — 02 +to?)2/3 ~ 3k(w/2 + to?)2/3
92/3 52 922/352 92/352 o2

S (w0228 = 38 S Tap@ S qpEe
where we have used that that w > (4Lk)? to have n, < .
Further, since ¢ = 28L2 + 02 /(7Lk?), we have
ne(4L% — ¢) < —24L%*n; — o*n, /(TLE?) .
Thus, we obtain B; < —24L%n;| €;||?. Putting all this together yields:

lecall® _ ey _ K T
32LQZ< mr ) = 16z +Z SIVE@)* = =Flled®| - @

Now, we analyze the potential ®,. This analysis is completely identical to that of Theorem 1, and is
only reproduced here for convenience. Since 7, < 77, we can use Lemma 1 to obtain

n 3n 1 1
Bfpu - 0 <E |- LIVF@) + 2 el + ot el - m—Tled?]

Summing over ¢ and using (7), we obtain

1 1
E[® E F(xy)|? 24 p—— P
(P11 — Z [ V()| + || ell” + 207, lett1ll” — 3202, [l €]

<E ]{/‘302 T+2 il||VF ||2
<Eierz! g IVE(@)

Reordering the terms, we have

3.2

k°c
<E [8(‘1’1 = ®r1) + o5y

T
E Z’?tHVF(SUt)HQ 27,

t=1

In (T + 2)}

! ke
< 8(F(xy) — F*) + ME[HQH ]+ Y3 1H(T +2)

w302 k32
< o R
< 8(F(xy) — F*) + 1I2% + 572 In(T + 2),

where the last inequality is given by the definition of d; and 7 in the algorithm.

At this point the rest of the proof could proceed in an identical manner to that of Theorem 1. However,
since 7); is now idependent of V F'(z;) by virtue of being deterministic, we can simplify the remainder
of the proof somewhat by avoiding the use of Cauchy-Schwarz inequality.
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Since 7; is deterministic, we have E [23:1 nt||VF(:ct)H2} > nrlE [23:1 |VF(x:)||?|. Then
divide by T'nr to conclude

2/3

T 1/3

MU) MU)O'
vamt)nﬂs o
t=1

where we have used the definition M = 8(F(x1) — F*) + % + % In(T + 2) and the identity
(a—l—b)l/?’ < a1/3 +b1/3 ]
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