
A Extra Lemmas

In this section we (re)state and prove some Lemmas.

First, we provide the proof of Lemma 1, restated below for convenience.
Lemma 1. Suppose ηt ≤ 1

4L for all t. Then

E[F (xt+1)− F (xt)] ≤ E
[
−ηt/4‖∇F (xt)‖2 + 3ηt/4‖εt‖2

]
.

Proof. Using the smoothness of F and the definition of xt+1 from the algorithm, we have

E[F (xt+1)] ≤ E
[
F (xt)−∇F (xt) · ηtdt +

Lη2t
2
‖dt‖2

]

= E
[
F (xt)− ηt‖∇F (xt)‖2 − ηt∇F (xt) · εt +

Lη2t
2
‖dt‖2

]

≤ E
[
F (xt)−

ηt
2
‖∇F (xt)‖2 +

ηt
2
‖εt‖2 +

Lη2t
2
‖dt‖2

]

≤ E
[
F (xt)−

ηt
2
‖∇F (xt)‖2 +

ηt
2
‖εt‖2 + Lη2t ‖εt‖2 + Lη2t ‖∇F (xt)‖2

]

≤ E
[
F (xt)−

ηt
2
‖∇F (xt)‖2 +

3ηt
4
‖εt‖2 +

ηt
4
‖∇F (xt)‖2

]
,

where in the second inequality we used Young’s inequality, the third one uses ‖x+ y‖2 ≤ 2‖x‖2 +
2‖y‖2, and the last one uses ηt ≤ 1/4L.

This next Lemma is a technical observation that is important for the proof of Lemma 2.
Lemma 3.

E
[
(∇f(xt, ξt)−∇F (xt)) · η−1t−1(1− at)2εt−1

]
= 0

E
[
(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)) · η−1t−1(1− at)2εt−1

]
= 0 .

Proof. From inspection of the update formula, the hypothesis implies that εt−1 = dt−1−∇F (xt−1)
and xt are both independent of ξt. Then, by first taking expectation with respect to ξt and then with
respect to ξ1, . . . , ξt−1, we obtain

E
[
(∇f(xt, ξt)−∇F (xt)) · η−1t−1(1− at)2εt−1

]

= E
[
E
[
(∇f(xt, ξt)−∇F (xt)) · η−1t−1(1− at)2εt−1|ξ1, . . . , ξt−1

]]
= 0 .

Analogously, for the second equality we have

E
[
(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)) · η−1t−1(1− at)2εt−1

]

= E
[
E
[
(∇f(xt, ξt)−∇f(xt−1, ξt)− (∇F (xt)−∇F (xt−1))) · η−1t−1(1− at)2εt−1|ξ1, . . . , ξt−1

]]

= 0 .

The following Lemma is a standard consequence of convexity.
Lemma 4. Let a0 > 0 and a1, . . . , aT ≥ 0. Then

T∑

t=1

at

a0 +
∑t
i=1 ai

≤ ln

(
1 +

∑t
i=1 ai
a0

)
.

Proof. By the concavity of the log function, we have

ln

(
a0 +

t∑

i=1

ai

)
− ln

(
a0 +

t−1∑

i=1

ai

)
≥ at

a0 +
∑t
i=1 ai

.

Summing over t = 1, . . . , T both sides of the inequality, we have the stated bound.
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A.1 Proof of Lemma 2

In this section we present the deferred proof of Lemma 2, restating the result below for reference
Lemma 2. With the notation in Algorithm 1, we have

E
[
‖εt‖2/ηt−1

]
≤ E

[
2c2η3t−1G

2
t + (1− at)2(1 + 4L2η2t−1)‖εt−1‖2/ηt−1

+4(1− at)2L2ηt−1‖∇F (xt−1)‖2
]
.

Proof. First, observe that

E
[
η3t−1‖∇f(xt, ξt)−∇F (xt)‖2

]

= E
[
η3t−1(‖∇f(xt, ξt)‖2 + ‖∇F (xt)‖2 − 2∇f(xt, ξt) · ∇F (xt))

]

= E
[
η3t−1E

[
‖∇f(xt, ξt)‖2 + ‖∇F (xt)‖2 − 2∇f(xt, ξt) · ∇F (xt)

∣∣ξ1, . . . , ξt−1
]]

= E
[
η3t−1(‖∇f(xt, ξt)‖2 − ‖∇F (xt)‖2)

]

≤ E
[
η3t−1‖∇f(xt, ξt)‖2

]
. (5)

In the same way, we also have that

E
[
η−1t−1(1− a2t )‖∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)‖2

]

≤ E
[
η−1t−1(1− a2t )‖∇f(xt, ξt)−∇f(xt−1, ξt))‖2

]
. (6)

By definition of εt and the notation in Algorithm 1, we have εt = dt − ∇F (xt) = ∇f(xt, ξt) +
(1− at)(dt−1 −∇f(xt−1, ξt))−∇F (xt). Hence, we can write

E
[
η−1t−1‖εt‖2

]
= E

[
η−1t−1‖∇f(xt, ξt) + (1− at)(dt−1 −∇f(xt−1, ξt))−∇F (xt)‖2

]

= E
[
η−1t−1‖at(∇f(xt, ξt)−∇F (xt)) + (1− at)(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1))

+ (1− at)(dt−1 −∇F (xt−1))‖2
]

≤ E
[
2c2η3t−1‖∇f(xt, ξt)−∇F (xt)‖2 + 2η−1t−1(1− at)2‖∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)‖2

+η−1t−1(1− at)2‖εt−1‖2
]

≤ E
[
2c2η3t−1‖∇f(xt, ξt)‖2 + 2η−1t−1(1− at)2‖∇f(xt, ξt)−∇f(xt−1, ξt)‖2 + η−1t−1(1− at)2‖εt−1‖2

]

≤ E
[
2c2η3t−1G

2
t + 2η−1t−1(1− at)2L2‖xt − xt−1‖2 + η−1t−1(1− at)2‖εt−1‖2

]

= E
[
2c2η3t−1G

2
t + 2(1− at)2L2ηt−1‖dt−1‖2 + η−1t−1(1− at)2‖εt−1‖2

]

= E
[
2c2η3t−1G

2
t + 2(1− at)2L2ηt−1‖εt−1 +∇F (xt−1)‖2 + η−1t−1(1− at)2‖εt−1‖2

]

≤ E
[
2c2η3t−1G

2
t + 4(1− at)2L2ηt−1(‖εt−1‖2 + ‖∇F (xt−1)‖2) + η−1t−1(1− at)2‖εt−1‖2

]

= E
[
2c2η3t−1G

2
t + η−1t−1(1− at)2(1 + 4L2η2t−1)‖εt−1‖2 + 4(1− at)2L2ηt−1‖∇F (xt−1)‖2

]
,

where in the first inequality we used Lemma 3 (See Appendix A) and ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2,
in the second inequality we used (5) and (6), in the third one the Lipschitzness and smoothness of the
functions f , and in the last inequality we used again ‖x+ y‖2 ≤ 2‖x‖2 + ‖y‖2.

B Non-adaptive Bound Without Lipschitz Assumption

In our analysis of STORM in Theorem 1 we assume that the losses are G-Lipschitz for some known
constant G with probability 1. Often this kind of Lipschitz assumption is avoided in other variance-
reduction analyses [18, 8, 25]. These works also require oracle knowlede of the parameter σ. It
turns out that our use of this assumption is actually only necessary in order to facilitate our adaptive
analysis - in fact even for ordinary (non-variance-reduced) gradient descent methods the Lipschitz
assumption seems to be a common thread in adaptive analyses [16, 28]. If we are given access to the
true value of σ, then we can choose a deterministic learning rate schedule in order to avoid requiring
a Lipschitz bound. All that needs be done is replace all instances of G or Gt in STORM with the
oracle-tuned value σ, which we outline in Algorithm 2 below.

The convergence guarantee of Algorithm 2 is presented in Theorem 2 below, which is nearly identical
to Theorem 1 but losses adaptivity to σ in exchange for removing the G-Lipschitz requirement.
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Algorithm 2 STORM without Lipschitz Bound
1: Input: Parameters k, w, c, initial point x1

2: Sample ξ1
3: G1 ← ‖∇f(x1, ξ1)‖
4: d1 ← ∇f(x1, ξ1)
5: η0 ← k

w1/3

6: for t = 1 to T do
7: ηt ← k

(w+σ2t)1/3

8: xt+1 ← xt − ηtdt
9: at+1 ← cη2t

10: Sample ξt+1

11: Gt+1 ← ‖∇f(xt+1, ξt+1)‖
12: dt+1 ← ∇f(xt+1, ξt+1) + (1− at+1)(dt −∇f(xt, ξt+1))
13: end for
14: Choose x̂ uniformly at random from x1, . . . ,xT . (In practice, set x̂ = xT ).
15: return x̂

Theorem 2. Under the assumptions in Section 3, for any b > 0, we write k = bσ
2
3

L . Set

c = 28L2 + σ2/(7Lk3) = L2(28 + 1/(7b3)) and w = max
(

(4Lk)3, 2σ2,
(
ck
4L

)3)
=

σ2 max
(
(4b)3, 2, (28b+ 1

7b2 )3/64
)
. Then, Algorithm 2 satisfies

1

T
E

[
T∑

t=1

‖∇F (xt)‖2
]
≤ M w1/3

k

T
+
M wσ2/3

k

T 2/3
,

where M = 8(F (x1)− F ?) + w1/3σ2

4L2k + k3c2

2L2 ln(T + 2).

In order to prove this Theorem, we need a non-adaptive analog of Lemma 2:
Lemma 5. With the notation in Algorithm 2, we have

E
[‖εt‖2
ηt−1

]
≤ E

[
2c2η3t−1σ

2 +
(1− at)2(1 + 4L2η2t−1)‖εt−1‖2

ηt−1

+4(1− at)2L2ηt−1‖∇F (xt−1)‖2
]
.

Proof. The proof is nearly identical to that of Lemma 2: the only difference is that instead of using
the identity E[η3t−1‖∇f(xt, ξt) − ∇F (xt)‖2] ≤ E[η3t−1‖∇f(xt, ξt)‖2] = E[η3t−1G

2
t ], we directly

use the value of σ: E[η3t−1‖∇f(xt, ξt)−∇F (xt)‖2] ≤ η3t−1σ2.

Now we can prove Theorem 2:

Proof of Theorem 2. This proof is also nearly identical to the analogous adaptive result of Theorem
1.

Again, we consider the potential Φt = F (xt) + 1
32L2ηt−1

‖εt‖2 and upper bound Φt+1 −Φt for each
t.

Since w ≥ (4Lk)3, we have ηt ≤ 1
4L . Further, since at+1 = cη2t , we have at+1 ≤ ck

4Lw1/3 ≤ 1 for
all t. Then, we first consider η−1t ‖εt+1‖2 − η−1t−1‖εt‖2. Using Lemma 5, we obtain

E
[
η−1t ‖εt+1‖2 − η−1t−1‖εt‖2

]

≤ E
[
2c2η3t σ

2 +
(1− at+1)2(1 + 4L2η2t )‖εt‖2

ηt
+ 4(1− at+1)2L2ηt‖∇F (xt)‖2 −

‖εt‖2
ηt−1

]

≤ E


2c2η3t σ

2

︸ ︷︷ ︸
At

+
(
η−1t (1− at+1)(1 + 4L2η2t )− η−1t−1

)
‖εt‖2︸ ︷︷ ︸

Bt

+ 4L2ηt‖∇F (xt)‖2︸ ︷︷ ︸
Ct


 .
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Let us focus on the terms of this expression individually. For the first term, At, observe that w ≥ 2σ2

to obtain:
T∑

t=1

At =
T∑

t=1

2c2η3t σ
2 =

T∑

t=1

2k3c2σ2

w + tσ2
≤

T∑

t=1

2k3c2

t+ 1

≤ 2k3c2 ln (T + 2) .

For the second term Bt, we have

Bt ≤ (η−1t − η−1t−1 + η−1t (4L2η2t − at+1))‖εt‖2 =
(
η−1t − η−1t−1 + ηt(4L

2 − c)
)
‖εt‖2 .

Let us focus on 1
ηt
− 1

ηt−1
for a minute. Using the concavity of x1/3, we have (x + y)1/3 ≤

x1/3 + yx−2/3/3. Therefore:

1

ηt
− 1

ηt−1
=

1

k

[(
w + tσ2

)1/3 −
(
w + (t− 1)σ2

)1/3] ≤ σ2

3k(w + (t− 1)σ2)2/3

≤ σ2

3k(w − σ2 + tσ2)2/3
≤ σ2

3k(w/2 + tσ2)2/3

≤ 22/3σ2

3k(w + tσ2)2/3
≤ 22/3σ2

3k3
η2t ≤

22/3σ2

12Lk3
ηt ≤

σ2

7Lk3
ηt,

where we have used that that w ≥ (4Lk)3 to have ηt ≤ 1
4L .

Further, since c = 28L2 + σ2/(7Lk3), we have

ηt(4L
2 − c) ≤ −24L2ηt − σ2ηt/(7Lk

3) .

Thus, we obtain Bt ≤ −24L2ηt‖εt‖2. Putting all this together yields:

1

32L2

T∑

t=1

(‖εt+1‖2
ηt

− ‖εt‖
2

ηt−1

)
≤ k3c2

16L2
ln (T + 2) +

T∑

t=1

[
ηt
8
‖∇F (xt)‖2 −

3ηt
4
‖εt‖2

]
. (7)

Now, we analyze the potential Φt. This analysis is completely identical to that of Theorem 1, and is
only reproduced here for convenience. Since ηt ≤ 1

4L , we can use Lemma 1 to obtain

E[Φt+1 − Φt] ≤ E
[
−ηt

4
‖∇F (xt)‖2 +

3ηt
4
‖εt‖2 +

1

32L2ηt
‖εt+1‖2 −

1

32L2ηt−1
‖εt‖2

]
.

Summing over t and using (7), we obtain

E[ΦT+1 − Φ1] ≤
T∑

t=1

E
[
−ηt

4
‖∇F (xt)‖2 +

3ηt
4
‖εt‖2 +

1

32L2ηt
‖εt+1‖2 −

1

32L2ηt−1
‖εt‖2

]

≤ E

[
k3c2

16L2
ln (T + 2)−

T∑

t=1

ηt
8
‖∇F (xt)‖2

]
.

Reordering the terms, we have

E

[
T∑

t=1

ηt‖∇F (xt)‖2
]
≤ E

[
8(Φ1 − ΦT+1) +

k3c2

2L2
ln (T + 2)

]

≤ 8(F (x1)− F ?) +
1

4L2η0
E[‖ε1‖2] +

k3c2

2L2
ln(T + 2)

≤ 8(F (x1)− F ?) +
w1/3σ2

4L2k
+
k3c2

2L2
ln(T + 2),

where the last inequality is given by the definition of d1 and η0 in the algorithm.

At this point the rest of the proof could proceed in an identical manner to that of Theorem 1. However,
since ηt is now idependent of∇F (xt) by virtue of being deterministic, we can simplify the remainder
of the proof somewhat by avoiding the use of Cauchy-Schwarz inequality.
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Since ηt is deterministic, we have E
[∑T

t=1 ηt‖∇F (xt)‖2
]
≥ ηTE

[∑T
t=1 ‖∇F (xt)‖2

]
. Then

divide by TηT to conclude

1

T
E

[
T∑

t=1

‖∇F (xt)‖2
]
≤ M w1/3

k

T
+
M wσ2/3

k

T 2/3
,

where we have used the definition M = 8(F (x1)− F ?) + w1/3σ2

4L2k + k3c2

2L2 ln(T + 2) and the identity
(a+ b)1/3 ≤ a1/3 + b1/3

15


