
Supplementary Material to
Control What You Can: Intrinsically Motivated

Task-Planning Agent

Anonymous Author(s)
Affiliation
Address
email

The supplementary information is structured as follows. We start with the algorithmic details in the1

next section and elaborate on the goal proposal networks. We provide the pseudocode in Sec. B and2

further information on the environment in Sec. C. In Sec. D we discuss the oracle baselines followed3

by Sec. E providing further analysis of the ablation studies. Finally we report the parameters for the4

architectures and the training in Sec. F.5

A Details of the method6

A.1 Final task selector7

The task selector T [3] models the learning progress when attempting to solve a task and is im-8

plemented as a multi-armed bandit. The reward is given in Eq. 1. We use the absolute value of9

the learning progress |ρ| because the system should both learn when it can improve, but also if10

performance degrades [2]. Initially, the surprise term dominates the quantity. As soon as actual11

progress can be made ρ takes the leading role. The reward is non-stationary and the action-value is12

updated according to13

QT (i) = QT (i) + αT (rT (i)−QT (i)) (S1)

with learning rate αT . The task selector is to choose the (final) task for each rollout relative to their14

value accordingly. We want to maintain exploration, such that we opt for a stochastic policy with15

pT (τ = i) = QT (i)/
∑
j Q
T (j).16

A.2 Low-level control17

Each task i has its own policy πi which is trained separately using an off-policy deep RL algorithm.18

We use soft actor critic (SAC) [4] in the synthetic environment and DDPG+Her [1] in the robotics19

environment. Policies and the critic networks are parametrized by the goal (UVFA [6]).20

A.3 Subgoal sampling21

For each subtask the goal is selected with the maximal value in the attention map. However,22

coordinates of tasks that are still to be solved in the task-chain are fixed, because they can likely not23

be controlled by the current policy. Formally:24

s∗ =argmax
s′

Gi,j(s
′) (S2)

subject to s′mτ = smτ , ∀τ ∈ κ(i+)

where κ is the task-chain and κ(i+) denotes all tasks after i and including i. smτ selects the25

coordinates belonging to task τ , see Sec. 3.1. The goal for subtask j is then gj(s) = s∗mj . This is a26

convex program and its solution can be computed analytically.27

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

A.4 Intrinsic motivations28

For computing the success rate we use a running mean of the last Z = 10 attempts of the particular29

task:30

sri = 1/Z

Z∑
z=0

succi(−z) (S3)

where succi(−z) ∈ [0, 1] denotes the success in the z-th last rollout where task i was attempted to be31

solved.32

The learning progress ρi is then given as the finite difference of sri between subsequent attempts of33

task i.34

To compute the surprise signal surprisei, we compute the statistics of the prediction error over all the35

collected experience, i. e. we assume36

(ei(t)− ei(t− 1)) ∼ N (µi, σ
2
i) (S4)

and compute the empirical µ and σ. Denoting the finite difference by ėi, surprise within one rollout37

is then defined as38

surprisei(t) =

{
1 if |ėi(t)| > µi + θ · σi
0 otherwise.

(S5)

where θ is a hyperparameter that needs to be choose.39

A.5 Training details of the goal proposal network40

In an ever-changing environment as the ones presented in this paper, the goal proposal networks41

are a critical component of our framework that aim to learn relations between entities in the world.42

Transitions observed in the environment are labeled by the agent in interesting and undetermined43

transitions. Interesting transitions are those, in which a surprising event (high prediction error) occurs44

or which lead to an success in task i given some other task j was solved before, see Eq. 4. All other45

transitions are labeled as undetermined, since they might contain transition which are similar to those46

that are labeled interesting but didn’t spark high interest. Coming back to our running example:47

bumping into, hence suddenly moving, the tool might spark interest in the tool because of a suddenly48

jump in prediction error. In general, the behaviour of an object after the surprising event is unknown49

and label for these transitions is not clear. Conclusively, we discard all undetermined transition within50

a rollout that come after a transition with positive label.51

After removing all data that might prevent the goal proposal networks from learning the right relations52

it remains the problem that positive events are rare compared to the massive body of undetermined53

data. Hence, we balance the training data in each batch during training.54

To make efficient use of the few positive samples we collect in the beginning of the training we impose55

a structural prior on the goal proposal network given by Eq. 3. The weight matrices are depicted56

in Fig. S1. This particular structure restricts the hypothesis space of the component to positional57

relations between components in the observation space that contains entities in the environment. In58

the main text, Figure 7 shows a compact representation of the initial and final weight matrices for59

different tasks that are computed by taking the minimum over |w1| (left column) and |w2| (middle60

column) in Fig. S1.61

To understand the parametrization, consider to model that two components (k, l) of s should have the62

same value for a possitive signal, then w1
kl ≈ −w2

kl should be nonzero and w3
k = 0. In this case the63

corresponding term in the exponent of Eq. 4 is zero if sl = sk. We see that in the case of the learned64

G in Fig. S1 this relationship is true for the relevant components (position of agent, tool and object).65

A.6 Training / overall procedure66

All components of CWYC start in a complete uninformed state. A rollout starts by randomly scramble67

the environment. The (final) task is chosen by the task selector. The task planner constructs the68

task chain κ. Every 5 steps in the environment, the goal proposal networks computes a goal for the69

2

Init

ag
en
t

to
ol ...

agent

tool

...

ag
en
t

to
ol ... ag

en
t

to
ol ...

Locomotion→ Tool

agent

tool

...

Tool→ Heavy object

agent

tool

...

Figure S1: Weights learned by goal proposal networks for different task transitions. The left column
shows the weights of w1, the middle column of w2 and the right column of w3 (see Eq. 3).

current task. Given the subgoal the goal-parametric policy of that task is used. Whenever the goal is70

reached (up to a certain precision) a switch to the next task occurs. Again the goal proposal network71

is employed to select a goal in this task, unless it is the final task where the final goal is obviously72

used. If a goal cannot be reached the task ends after TT steps. In practice we run 5 rollouts in parallel.73

Then all components are trained using the collected data. For the task selector and task planner we74

use Eq. S1 and Eq. 2, respectively. Forward model and Gs are trained using square-loss and Adam [5].75

The policies are trained according to SAC/DDPG+HER. Pseudo-code and implementation details76

can be found in Sections (B, F).77

B Pseudocode78

The pseudocode for the method is given in Algorithm 1.79

C Environments80

C.1 Synthetic environment81

The synthetic environment is depicted in Fig. 2a and is simulated by the physics engine MuJoCo.82

The agent is modeled by a ball that is controlled by applying force in the x and y axis, so the agent’s83

action corresponds to a 2-dimensional vector:84

a = (Fx, Fy) (S6)

3

Algorithm 1 CWYC

1: for episode in episodes do
2: sample main task τfinal ∼ T
3: sample main goal gτfinal from environment
4: compute task chain κ using B starting from τfinal
5: // κ contains list task indices
6: i = 1
7: while t < Tmax and no success in τfinal do
8: τ = τκ[i]
9: if τ 6= τfinal then

10: sample goal gτ from Gκ[i],κ[i+1] // Eq. S2
11: end if
12: try to reach gτ with policyτ
13: if succκ[i] then
14: i = i+ 1 // next task in task chain
15: end if
16: end while
17: store episode in history buffer
18: calculate statistics based on history
19: train policies for each task
20: train B // Sec. 3.2
21: train all G // Sec. 3.2
22: train T // Sec. 3.2
23: end for

The motion of the agent is subject to the laws of motion with the application of friction from the85

environment which makes it non-trivial to control. Other than the agent, the environment contains86

objects with different dynamics. The positions of the objects are part of the observation space of the87

agent along with a flag that specifies if the object has been picked up by the agent. We are dealing88

with a fully observable environment.89

We define the goal spaces of the tasks as corresponding to the position of the individual objects. Some90

objects are harder to move than others and have other objects as dependencies. This means that the91

agent has to find this relation between them in order to successfully master the environment.92

The types of objects that are used in the experiments are the following:93

• Static objects cannot be moved94

• Random objects move randomly in the environment, but cannot be moved by the agent95

• 50% light objects can be moved in 50% of the rollouts96

• Tool can be moved and used to move the heavy object97

• Heavy objects can be moved when using the tool98

The observation vector for d objects is structured as follows (x, y, o1x, o
1
y, . . . , o

d
x, o

d
y, ẋ, ẏ, p

1, . . . , pd),99

where (x, y) is the position of the agent, (oix, o
i
y) is the position of the i-th object and pi indicates100

whether the agent is in possession of the i-th object. The goal spaces are the coordinates of the agent101

(x, y) and the coordinates of each object (oix, o
i
y).102

C.2 Robotic environment103

The robotic environment is depicted in Fig. 2c. The state space is 40 dimensional. It consists of the104

agent position and velocity, the gripper state, the absolute and relative positions of the box and the105

hook, respectively, as well as their velocities and rotations.106

The environment is based on the OpenAI gym [3] PickAndPlace-v1 environment.107

Final goals for the reach and tool task are sampled close to the initial gripper and tool location,108

respectively. Final goals for the object task are spawned in close proximity to the initial box position109

4

random
obj

50%
obj

toollocostart

heavy
obj

Figure S2: Oracle dependency graph.

such that the box needs to be pulled closer to the robot but never pushed away. The box is spawned in110

close proximity to (closer to the robot) the upper end of the hook.111

D Oracle baselines112

D.1 CWYC with oracle goals113

To assess the maximum performance of CWYC in the described settings, we crafted an upper baseline114

in which all learned high-level components, except for the final task selector T , are fixed and set to115

their optimal value.116

In the distractor setting, every task is solved by first doing the locomotion task. The goal proposal117

network Gi,j(s) returns always the state value smi , reflecting the ground truth relation we try to118

learn.119

In the synthetic tool-use setting, the task graph depicted in Figure S2 is used. The goal proposal120

network Gi,j(s) returns always the state value smi , reflecting the ground truth relation we try to121

learn.122

D.2 HIRO/SAC with oracle reward123

To see if HIRO manages to solve the synthetic environment at all, we constructed a oracle version124

of HIRO. The oracle receives as input not only the distance from, e.g., tool to target position but125

additionally the distance from agent to tool. This signal is rich enough to allow HIRO to solve the126

tool manipulation task as shown in Fig. 8(d) in the main text, although it still takes a lot of time127

compared to CWYC. We trained the SAC baseline on the same hybrid reward as well.128

E Additional analysis of the ablation studies129

Without the surprise signal CWYC? neither learns a meaningful resource allocation schedule, see130

Fig. S3(a), nor a task dependency graph, see Fig. S3(b). This highlights again the critical role of the131

surprise signal.132

F Training Details and Parameters133

F.1 Synthetic environment134

• Training:135

parallel rollout workers: 5136

5

(a) ressource allocation (b) task dependency graph

Figure S3: (a) Ressource allocation and (b) task dependency graph for the ablated version CWYC?.
In (a) all tasks except locomotion behave identically because no progress is made.

• Environment:137

arena size: 20× 20
Tmax: 1600
δ: 1.0

138

• SAC:139

lr: 3× 10−4

batch size: 64
policy type: gaussian
discount: 0.99
reward scale: 5
target update interval: 1
tau (soft update) 5× 10−3

action prior: uniform
reg: 1× 10−3

layer size (π, q, v): 256
layers (π, q, v): 2
train iterations: 200
buffer size: 1× 106

140

• Forward model:141

lr: 10−4

batch size: 64
input: (ot−1, ut−1)
confidence interval: 5
network type: MLP
layer size: 100
θ: 5
layers: 9
train iterations: 100

142

• Final task selector:143

βT : 10−1

lr: 10−1

random_eps: 0.05
surprise history weighting: 0.99

144

• Task planner:145

βB : 10−3

avg. window size: 100
surprise history weighting: 0.99
sampling_eps: 0.05

146

• Goal proposal network:147

6

lr: 10−4

batch size: 64
L1 reg.: 0.0
L2 reg.: 0.0
γ init: 1.0
γ trainable: True
train iterations: 100

148

F.2 Robotic environment149

• Training:150

parallel rollout workers: 5151

• Environment:152

Tmax: 150
δ: 0.05153

• DDPG+HER:154

Q_lr: 10−3

pi_lr: 10−3

batch size: 256
polyak 0.95
layer size (π, q): 256
layers (π, q): 3
train iterations: 80
buffer size: 1× 106

action_l2: 1.0
relative goals: false
replay strategy: future
replay_k: 4
random_eps: 0.3
noise_eps: 0.2

155

• Forward model:156

lr: 10−4

batch size: 64
input: (ot−1, ut−1)
confidence interval: 3
network type: MLP
layer size: 100
θ: 3
layers: 9
train iterations: 100

157

• Final task selector:158

βT : 10−1

lr: 10−1

random_eps: 0.05
surprise history weighting: 0.99

159

• Task planner:160

βB : 10−3

avg. window size: 100
surprise history weighting: 0.99
sampling_eps: 0.05

161

• Goal proposal network:162

7

lr: 10−4

batch size: 64
L1 reg.: 0.0
L2 reg.: 0.0
γ init: 1.0
γ trainable: True
train iterations: 30

163

References164

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,165

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience166

replay. In Advances in Neural Information Processing Systems, pages 5048–5058, 2017.167

[2] Adrien Baranes and Pierre-Yves Oudeyer. Active Learning of Inverse Models with Intrinsically168

Motivated Goal Exploration in Robots. Robotics and Autonomous Systems, 61(1):69–73, January169

2013.170

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,171

and Wojciech Zaremba. Openai gym, 2016.172

[4] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy173

maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and174

Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,175

volume 80 of PMLR, pages 1861–1870. PMLR, 10–15 Jul 2018.176

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In in177

Proceedings of ICLR, 2015. arXiv preprint https://arxiv.org/abs/1412.6980.178

[6] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxi-179

mators. In International Conference on Machine Learning, pages 1312–1320, 2015.180

8

