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Abstract

With the prevalence of machine learning in high-stakes applications, especially the1

ones regulated by anti-discrimination laws or societal norms, it is crucial to ensure2

that the predictive models do not propagate any existing bias or discrimination. Due3

to the ability of deep neural nets to learn rich representations, recent advances in4

algorithmic fairness have focused on learning fair representations with adversarial5

techniques to reduce bias in data while preserving utility simultaneously. In this6

paper, through the lens of information theory, we provide the first result that7

quantitatively characterizes the tradeoff between demographic parity and the joint8

utility across different population groups. Specifically, when the base rates differ9

between groups, we show that any method aiming to learn fair representation10

admits an information-theoretic lower bound on the joint error across these groups.11

To complement our negative results, we also prove that if the optimal decision12

functions across different groups are close, then learning fair representation leads to13

an alternative notion of fairness, known as the accuracy parity, which states that the14

error rates are close between groups. Our theoretical findings are also confirmed15

empirically on real-world datasets. We believe our insights contribute to better16

understanding of the tradeoff between utility and different notions of fairness.17

1 Introduction18

With the prevalence of machine learning applications in high-stakes domains, e.g., criminal judgement,19

medical testing, online advertising, etc., it is crucial to ensure that the automated decision making20

systems do not propagate existing bias or discrimination that might exist in historical data [3, 5, 32].21

Among many recent proposals for achieving different notions of algorithmic fairness [13, 17, 35–37],22

learning fair representations has received increasing attention due to recent advances in learning23

rich representation with deep neural networks [6, 14, 27, 29, 34, 38]. In fact, a line of work has24

proposed to learn group-invariant representations with adversarial learning techniques in order to25

achieve statistical parity, also known as the demographic parity in the literature. This line of work26

dates at least back to Zemel et al. [37] where the authors proposed to learn predictive models that27

are independent of the group membership attribute. At a high level, the underlying idea is that28

if representations of instances from different groups are similar to each other, then the follow-up29

predictive models will certainly make decisions independent of group membership.30

On the other hand, it has long been observed that there is an underlying tradeoff between utility and31

demographic parity:32

“All methods have in common that to some extent accuracy must be traded-off for33

lowering the dependency.” [8]34

In particular, it is easy to see that in an extreme case where the group membership coincides with35

the target task, a call for exact demographic parity will inevitably remove the perfect predictor [17].36

Empirically, it has also been observed that a tradeoff exists between accuracy and fairness in binary37
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classification [40]. Clearly, methods based on learning fair representations are also bound by such38

inherent tradeoff between utility and fairness. But how does the fairness constraint trade for utility?39

Will learning fair representations help to achieve other notions of fairness besides the demographic40

parity? If yes, what is the fundamental limit of utility that we can hope to achieve under such41

constraint?42

To answer the above questions, through the lens of information theory, in this paper we provide the43

first result that quantitatively characterizes the tradeoff between demographic parity and the joint44

utility across different population groups. Specifically, when the base rates differ between groups,45

we provide a tight information-theoretic lower bound on the joint error across these groups. Our46

lower bound is algorithm-independent so it holds for all methods aiming to learn fair representations.47

When only approximate demographic parity is achieved, we also present a family of lower bounds to48

quantify the tradeoff of utility introduced by such approximate constraint. As a side contribution,49

our proof technique is simple but general, and we expect it to have broader applications in other50

learning problems using adversarial techniques, e.g., unsupervised domain adaptation [15, 39] and51

privacy-preservation under attribute inference attacks [16].52

To complement our negative results, we show that if the optimal decision functions across different53

groups are close, then learning fair representation helps to achieve an alternative notion of fairness,54

i.e., the accuracy parity, which states that the error rates are close between groups. Empirically,55

we conduct experiments on a real-world dataset that corroborate both our positive and negative56

results. We believe our theoretical insights contribute to better understanding of the tradeoff between57

utility and different notions of fairness, and they are also helpful in guiding the future design of58

representation learning algorithms to achieve algorithmic fairness.59

2 Preliminary60

We first introduce the notations used throughout the paper and formally describe the problem setup.61

We then briefly discuss some information-theoretic concepts that will be used in our analysis.62

Notations We use X ⊆ Rd and Y = {0, 1} to denote the input and output space. Accordingly, we63

use X and Y to denote the random variables which take values in X and Y , respectively. Lower case64

letters x and y are used to denote the instantiation of X and Y . To simplify the presentation, we65

use A ∈ {0, 1} as the sensitive attribute, e.g., race, gender, etc. 1 Let H be the hypothesis class of66

classifiers. In other words, for h ∈ H, h = h(X) : X → Y is the predictor that outputs a prediction.67

Note that even the predictor does not explicitly take the sensitive attribute A as input, this fairness68

through blindness mechanism can still be biased due to the potential correlations between X and A.69

In this work we study the stochastic setting where there is a joint distribution D over X,Y and A70

from which the data are sampled. To keep the notation consistent, for a ∈ {0, 1}, we use Da to mean71

the conditional distribution of D given A = a. For an event E, D(E) denotes the probability of E72

under D.73

Problem Setup Given a joint distribution D, the error of a predictor h under D is defined as74

ErrD(h) := ED[|Y − h(X)|]. Note that for binary classification problems, when h(X) ∈ {0, 1},75

ErrD(h) reduces to the true error rate of binary classification. To make the notation more compact,76

we may drop the subscript D when it is clear from the context. In this work we focus on group77

fairness where the group membership is given by the sensitive attribute A. Even in this context there78

are many possible definitions of fairness [31], and in what follows we provide a brief review of the79

ones that are mostly relevant to this work.80

Definition 2.1 (Demographic Parity). Given a joint distributionD, a classifier h satisfies demographic81

parity if h(X) is independent of A.82

When h is a deterministic classifier, demographic parity reduces to the requirement that D0(h(X) =83

1) = D1(h(X) = 1), i.e., positive outcome is given to the two groups at the same rate. Demographic84

parity is also known as statistical parity, and it has been adopted as definition of fairness in a series of85

work [7, 8, 14, 18–20, 27, 29, 37]. However, as we shall quantify precisely in Section 3, demographic86

parity may cripple the utility that we hope to achieve, especially in the common scenario where87

the base rates differ between two groups, e.g., D0(Y = 1) 6= D1(Y = 1) [17]. In light of this, an88

alternative definition is accuracy parity:89

1Our main results could also be straightforwardly extended to the setting where A is a categorical variable.
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Definition 2.2 (Accuracy Parity). Given a joint distribution D, a classifier h satisfies accuracy parity90

if ErrD0(h) = ErrD1(h).91

In the literature, a break of accuracy parity is also known as disparate mistreatment [36]. Again, when92

h is a deterministic binary classifier, accuracy parity reduces to D0(h(X) = Y ) = D1(h(X) = Y ).93

Different from demographic parity, the definition of accuracy parity does not eliminate the perfect94

predictor when Y = A when the base rates differ between two groups. When costs of different error95

types matter, more refined definitions exist:96

Definition 2.3 (Positive Rate Parity). Given a joint distributionD, a deterministic classifier h satisfies97

positive rate parity if D0(h(X) = 1 | Y = y) = D1(h(X) = 1 | Y = y), ∀y ∈ {0, 1}.98

Positive rate parity is also known as equalized odds [17], which essentially requires equal true positive99

and false positive rates between different groups. Furthermore, Hardt et al. [17] also defined true100

positive parity, or equal opportunity, to be D0(h(X) = 1 | Y = 1) = D1(h(X) = 1 | Y = 1)101

when positive outcome is desirable. Last but not least, predictive value parity, also known as test102

fairness [9], asks for equal chance of positive outcomes across groups given predictions:103

Definition 2.4 (Predictive Value Parity). Given a joint distribution D, a probabilistic classifier h104

satisfies predictive value parity if D0(Y = 1 | h(X) = c) = D1(Y = 1 | h(X) = c), ∀c ∈ [0, 1].105

When h is a deterministic binary classifier that only takes value in {0, 1}, Chouldechova [9] showed106

an intrinsic tradeoff between predictive value parity and positive rate parity:107

Theorem 2.1 (Chouldechova [9]). Assume D0(Y = 1) 6= D1(Y = 1), then for any deterministic108

classifier h : X → {0, 1} that is not perfect, i.e., h(X) 6= Y , positive rate parity and predictive value109

parity cannot hold simultaneously.110

Similar tradeoff result for probabilistic classifier has also been observed by Kleinberg et al. [24],111

where the authors showed that for any non-perfect predictors, calibration and positive rate parity112

cannot be achieved simultaneously if the base rates are different across groups. Here a classifier h is113

said to be calibrated if D(Y = 1 | h(X) = c) = c,∀c ∈ [0, 1], i.e., if we look at the set of data that114

receive a predicted probability of c by h, we would like c-fraction of them to be positive instances115

according to Y [33].116

f -divergence Introduced by Ali and Silvey [2] and Csiszár [11, 12], f -divergence, also known as117

the Ali-Silvey distance, is a general class of statistical divergences to measure the difference between118

two probability distributions P and Q over the same measurable space.119

Definition 2.5 (f -divergence). Let P andQ be two probability distributions over the same space and120

assume P is absolutely continuous w.r.t. Q (P � Q). Then for any convex function f : (0,∞)→ R121

that is strictly convex at 1 and f(1) = 0, the f -divergence of Q from P is defined as122

Df (P || Q) := EQ
[
f

(
dP
dQ

)]
. (1)

The function f is called the generator function of Df (· || ·).123

Different choices of the generator function f recover popular statistical divergence as special cases,124

e.g., the KL-divergence. From Jensen’s inequality it is easy to verify that Df (P || Q) ≥ 0 and125

Df (P || Q) = 0 iff P = Q almost surely. Note that f -divergence does not necessarily leads to126

a distance metric, and it is not symmetric in general, i.e., Df (P || Q) 6= Df (Q || P) provided127

that P � Q and Q � P . We list some common choices of the generator function f and their128

corresponding properties in Table 1. Notably, Khosravifard et al. [22] proved that total variation is129

the only f -divergence that serves as a metric, i.e., satisfying the triangle inequality.130

3 Theoretical Analysis131

As we have briefly mentioned in Section 2, it is impossible to have imperfect predictor that is132

both calibrated and preserves positive rate parity when the base rates differ between two groups.133

Similar impossibility result also holds between positive rate parity and predictive value parity. On134

the other hand, while it has long been observed that demographic parity may eliminate perfect135

predictor [17], and previous work has empirically verified a tradeoff between the accuracy and136
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Table 1: List of different f -divergences and their corresponding properties. DKL(P || Q) denotes the
KL-divergence of Q from P andM := (P +Q)/2 is the average distribution of P and Q. Symm.
stands for Symmetric and Tri. stands for Triangle Inequality.

Name Df (P || Q) Generator f(t) Symm. Tri.

Kullback-Leibler DKL(P || Q) t log t 7 7
Reverse-KL DKL(Q || P) − log t 7 7
Jensen-Shannon DJS(P,Q) := 1

2
(DKL(P||M) +DKL(Q||M)) t log t− (t+ 1) log( t+1

2
) 3 7

Squared Hellinger H2(P,Q) := 1
2

∫
(
√
dP −

√
dQ)2 (1−

√
t)2/2 3 7

Total Variation dTV(P,Q) := supE |P(E)−Q(E)| |t− 1|/2 3 3

demographic parity [8, 19, 40] on various datasets, so far a quantitative characterization on the exact137

tradeoff between accuracy and various notions of parity is still missing. In what follows we shall138

prove a family of information theoretic lower bounds on the accuracy that hold for all the methods.139

Due to space limit, we defer most of the proofs to appendix, while only leaving one to showcase the140

high-level idea of our proof technique.141

3.1 Tradeoff between Accuracy and Demographic Parity142

Essentially, every prediction function induces a Markov chain: X
g−→ Z

h−→ Ŷ , where g is the143

feature transformation, h is the classifier on feature space, Z is the feature and Ŷ is the predicted target144

variable by h ◦ g. Note that simple models, e.g., linear classifiers, are also included by specifying145

g to be the identity map. With this notation, we first state the following theorem that quantifies an146

information-theoretic lower bound on the joint error across different groups:147

Theorem 3.1. Let Ŷ = h(g(X)) be the predictor. If Ŷ satisfies demographic parity, then ErrD0
(h ◦148

g) + ErrD1
(h ◦ g) ≥ dTV(D0(Y ),D1(Y )).149

Remark First of all, dTV(D0(Y ),D1(Y )) essentially measures the discrepancy of base rates across150

groups, and dTV(D0(Y ),D1(Y )) achieves its maximum value of 1 iff Y = A almost surely, i.e., Y151

indicates group membership. Second, Theorem 3.1 applies to all possible feature transformation152

g and predictor h. In particular, if we choose g to be the identity map, then Theorem 3.1 says that153

when the base rates differ, no algorithm can achieve a small joint error on both groups, and it also154

recovers the previous observation that demographic parity can eliminate the perfect predictor [17].155

Third, the lower bound in Theorem 3.1 is insensitive to the marginal distribution of A, i.e., it treats156

the errors from both groups equally. As a comparison, let α := D(A = 1), then ErrD(h ◦ g) =157

(1 − α)ErrD0
(h ◦ g) + αErrD1

(h ◦ g). In this case ErrD(h ◦ g) could still be small even if the158

minority group suffers a large error.159

Before we give the proof, we first present a useful lemma that lower bounds the prediction error by160

the total variation distance.161

Lemma 3.1. Let Ŷ = h(g(X)) be the predictor, then for a ∈ {0, 1}, dTV(Da(Y ),Da(Ŷ )) ≤162

ErrDa
(h ◦ g).163

Proof of Theorem 3.1. First of all, we show that if Ŷ = h(g(X)) satisfies demographic parity, then:164

dTV(D0(Ŷ ),D1(Ŷ )) = max
{
|D0(Ŷ = 0)−D1(Ŷ = 0)|, |D0(Ŷ = 1)−D1(Ŷ = 1)|

}
= |D0(Ŷ = 1)−D1(Ŷ = 1)|
= |D(Ŷ = 1 | A = 0)−D(Ŷ = 1 | A = 1)| = 0,

where the last equality follows from the definition of demographic parity. Now from Table 1, dTV(·, ·)165

is symmetric and satisfies the triangle inequality, we have:166

dTV(D0(Y ),D1(Y )) ≤ dTV(D0(Y ),D0(Ŷ )) + dTV(D0(Ŷ ),D1(Ŷ )) + dTV(D1(Ŷ ),D1(Y ))

= dTV(D0(Y ),D0(Ŷ )) + dTV(D1(Ŷ ),D1(Y )). (2)

The last step is to bound dTV(Da(Y ),Da(Ŷ )) in terms of ErrDa
(h ◦ g) for a ∈ {0, 1} using167

Lemma 3.1:168

dTV(D0(Y ),D0(Ŷ )) ≤ ErrD0
(h ◦ g), dTV(D1(Y ),D1(Ŷ )) ≤ ErrD1

(h ◦ g).
Combining the above two inequalities and (2) completes the proof. �169
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It is not hard to show that our lower bound in Theorem 3.1 is tight. To see this, consider the case170

A = Y , where the lower bound achieves its maximum value dTV(D0(Y ),D1(Y )) = 1. Now consider171

a constant predictor Ŷ ≡ 1 or Ŷ ≡ 0, which clearly satisfies demographic parity by definition. But in172

this case either ErrD0(h ◦ g) = 1,ErrD1(h ◦ g) = 0 or ErrD0(h ◦ g) = 0,ErrD1(h ◦ g) = 1, hence173

ErrD0(h ◦ g) + ErrD1(h ◦ g) ≡ 1, achieving the lower bound.174

To conclude this subsection, we point out that the choice of total variation in the lower bound is not175

unique. As we will see shortly, similar lower bounds could be attained using specific choices of the176

general f -divergence with some desired properties.177

3.2 Tradeoff in Adversarial Representation Learning178

Theorem 3.1 is an impossibility result on achieving accuracy and exact demographic parity jointly.179

But what if we only aim to achieve approximate demographic parity? What is the tradeoff between180

demographic parity and accuracy in this scenario? In fact, from the perspective of representation181

learning, recent work [6, 14, 29, 38] have proposed to learn intermediate feature Z through deep182

neural networks, aiming to maintain task-relevant information while at the same time removing183

sensitive information related to A. To study the tradeoff in this setting, we introduce a relaxed version184

of total variation, known as theH-divergence [4]:185

Definition 3.1 (H-divergence). Let H be a hypothesis class on feature space Z , and AH be the186

collection of subsets of Z that are the support of some hypothesis in H, i.e., AH := {h−1(1) |187

h ∈ H}. The distance between two distributions D and D′ over Z based on H is: dH(D,D′) :=188

supA∈AH
|D(A)−D′(A)|.189

H-divergence is particularly favorable in the analysis of adversarial representation learning with190

binary classification problems, and it had also been generalized to the discrepancy distance [10, 30]191

for general loss functions. WhenH has a finite VC-dimension,H-divergence can be estimated using192

finite unlabeled samples from D and D′ [23]. From an algorithmic viewpoint,H-divergence admits a193

natural interpretation that 1− dH(D,D′) corresponds to the minimum sum of Type-I and Type-II194

error in distinguishing D and D′. To see this, realize195

1− dH(D,D′) = 1− sup
A∈AH

|D(A)−D′(A)|

= inf
A∈AH

1−D(A) +D′(A) = inf
h∈H
D(h(Z) = 0) +D′(h(Z) = 1). (3)

The second equality holds because for h ∈ H, we also have 1− h ∈ H. In (3) the hypothesis h acts196

as a discriminator trying to distinguish between D and D′. The above probabilistic interpretation197

exactly serves as the theoretical justification of recent work on using adversarial training to learn198

group-invariant representation Z through transformation g such that dH(Dg
0 ,D

g
1) is small, where Dg

a199

is the induced distribution of Da under g. The following proposition exactly characterizes an intrinsic200

tradeoff of these methods:201

Proposition 3.1. Let Ŷ = h(g(X)) be the predictor and λH := 1 − dH(D0(Ŷ ),D1(Ŷ )). Then202

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥ dH(D0(Y ),D1(Y )) + λH − 1.203

Remark As we show above, λH is the minimum sum of Type-I and Type-II errors in discriminating204

D0(Ŷ ) and D1(Ŷ ) using discriminators from H. Hence if the optimal discriminator from H fails205

to distinguish between D0(Ŷ ) and D1(Ŷ ), i.e., larger λH, the lower bound on the joint error across206

different groups will also get larger.207

In fact, a close scrutiny of the proof above shows that the lower bound in Proposition 3.1 holds even208

if different transformation functions are used on the corresponding groups:209

Corollary 3.1. Let Ŷ = h(ga(X)) be the predictors for group A = a, a ∈ {0, 1} and λH as defined210

in Proposition 3.1. Then ErrD0
(h ◦ g0) + ErrD1

(h ◦ g1) ≥ dH(D0(Y ),D1(Y )) + λH − 1.211

One interesting fact implied by Proposition 3.1 is that the lower bound of the joint error across groups212

scales linearly with λH, the optimal sum of Type-I and Type-II errors in distinguishing between213

D0(Ŷ ) andD1(Ŷ ). In the work of Zhang et al. [38], the authors proposed a model (Fig. 1 in [38]) that214

precisely tries to maximize λH by learning the model parameters of g through adversarial techniques.215

In this case our lower bound directly quantifies the loss of utility due to the increase of λH.216
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3.3 A Family of Information-Theoretic Lower Bounds217

In the last subsection we show that any adversarial discriminator that tries to distinguish between218

D0(Ŷ ) and D1(Ŷ ) by taking the predicted target variable Ŷ as input admits an inherent lower bound219

in terms of joint target error. This is the algorithm proposed by Zhang et al. [38] for mitigating biases.220

As a comparison, most other variants [1, 6, 14, 27] build an adversarial discriminator that takes as221

input the feature vector Z = g(X) instead. In this subsection we generalize our previous analysis222

with f -divergence to prove a family of lower bounds on the joint target prediction error for the latter223

variants. Based on our theoretical analysis, we conclude that matching the distributions from different224

groups within the feature space does not remove the tradeoff. In fact, a family of lower bounds also225

exist for these approaches.226

We require one last piece of ingredient before we state and prove the main results in this section.227

The following lemma is proved by Liese and Vajda [25] as a generalization of the data processing228

inequality for f -divergence:229

Lemma 3.2 (Liese and Vajda [25]). Let µ(Z) be the space of all probability distributions over Z .230

Then for any f -divergence Df (· || ·), any stochastic kernel κ : X → µ(Z), and any distributions P231

and Q over X , Df (κP || κQ) ≤ Df (P || Q).232

Roughly speaking, Lemma 3.2 says that data processing cannot increase discriminating information.233

Define dJS(P,Q) :=
√
DJS(P,Q) and H(P,Q) :=

√
H2(P,Q). Both dJS(·, ·) and H(·, ·) form a234

bounded distance metric over the space of probability distributions. Realize that dTV(·, ·), H2(·, ·)235

and DJS(·, ·) are all f -divergence. The following corollary holds:236

Corollary 3.2. Let h : Z → Y to any (randomized) hypothesis, and Dg
a be the induced distribution237

of Da by g, ∀a ∈ {0, 1}. Let Ŷ = h(g(X)) be the predictor, then 1). dTV(D0(Ŷ ),D1(Ŷ )) ≤238

dTV(Dg
0 ,D

g
1). 2). H(D0(Ŷ ),D1(Ŷ )) ≤ H(Dg

0 ,D
g
1). 3). dJS(D0(Ŷ ),D1(Ŷ )) ≤ dJS(Dg

0 ,D
g
1).239

Now we are ready to present the following main theorem of this subsection:240

Theorem 3.2. Let Ŷ = h(g(X)) be the predictor. Assume dJS(Dg
0 ,D

g
1) ≤ dJS(D0(Y ),D1(Y )) and241

H(Dg
0 ,D

g
1) ≤ H(D0(Y ),D1(Y )), then the following three inequalities hold:242

1. Total variation lower bound:243

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥ dTV(D0(Y ),D1(Y ))− dTV(Dg
0 ,D

g
1).

2. Jensen-Shannon lower bound:244

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥
(
dJS(D0(Y ),D1(Y ))− dJS(Dg

0 ,D
g
1)
)2
/2.

3. Hellinger lower bound:245

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥
(
H(D0(Y ),D1(Y ))−H(Dg

0 ,D
g
1)
)2
/2.

Remark All the three lower bounds in Theorem 3.2 imply a tradeoff between demographic parity246

and the joint error across groups through learning group-invariant feature representations. When247

Dg
0 = Dg

1 , which also impliesD0(Ŷ ) = D1(Ŷ ), all three lower bounds get larger, in this case we have248

max{dTV(D0(Y ),D1(Y )), 12d
2
JS(D0(Y ),D1(Y )), 12H

2(D0(Y ),D1(Y ))} = dTV(D0(Y ),D1(Y )),249

and this reduces to the tight lower bound in Theorem 3.1.250

3.4 Group-Invariant Representation Leads to Accuracy Parity251

In previous subsections we prove a family of information-theoretic lower bounds that demonstrate an252

inherent tradeoff between demographic parity and joint error across groups. Specifically, we show253

that group-invariant representation will also inevitably compromise utility. A natural question to254

ask then, is, what kind of parity can group-invariant representation bring us? To complement our255

negative results, in this subsection we show that learning group-invariant representation helps to256

reduce discrepancy of errors (utilities) across groups.257

First of all, since we work under the stochastic setting where Da is a joint distribution over X and258

Y conditioned on A = a, then any function mapping h : X → Y will inevitably incur an error due259

to the noise existed in the distribution Da. Formally, for a ∈ {0, 1}, define the optimal function260
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h∗a : X → Y under the absolute error to be h∗a(X) := mDa(Y | X), where mDa(Y | X) denotes261

the median of Y given X under distribution Da. Now define the noise of distribution Da to be262

nDa
:= EDa [|Y −h∗a(X)|]. With these notations, we are now ready to present the following theorem:263

264 Theorem 3.3. For any hypothesisH 3 h : X → Y , the following inequality holds:265

|ErrD0
(h)−ErrD1

(h)| ≤ nD0
+nD1

+dTV(D0(X),D1(X))+min{ED0
[|h∗0−h∗1|],ED1

[|h∗0−h∗1|]}.
266 Remark Theorem 3.3 upper bounds the discrepancy of accuracy across groups by three terms: the267

noise, the distance of representation across groups and the discrepancy of optimal decision functions.268

In an ideal setting where both distributions are noiseless, i.e., same people in the same group are269

always treated equally, the upper bound simplifies to the latter two terms. If we further require that270

the optimal decision functions h∗0 and h∗1 are close to each other, i.e., optimal decisions are insensitive271

to the group membership, then Theorem 3.3 implies that a sufficient condition to guarantee accuracy272

parity is to find group-invariant representation that minimizes dTV(D0(X),D1(X)).273

4 Experiments274

Our theoretical results on the lower bound between demographic parity and the sum of joint error275

across groups imply that over-training the feature transformation function to achieve group-invariant276

representation will lead to large joint errors. On the other hand, our upper bound also implies that277

group-invariant representation help to achieve accuracy parity. To verify these theoretical implications,278

in this section we conduct experiments on a real-world benchmark dataset, the UCI Adult dataset2, to279

present empirical results with various metrics.280

Dataset The Adult dataset contains 30,162/15,060 training/test instances for income prediction.281

Each instance in the dataset describes an adult from the 1994 US Census. Attributes include gender,282

education level, age, etc. In this experiment we use gender (binary) as the sensitive attribute, and we283

preprocess the dataset to convert categorical variables into one-hot representations. The processed284

data contains 114 attributes. The target variable (income) is also binary: 1 if ≥ 50K/year otherwise 0.285

For the sensitive attribute A, A = 0 means Male otherwise Female. In this dataset, the base rates286

across groups are different: Pr(Y = 1 | A = 0) = 0.310 while Pr(Y = 1 | A = 1) = 0.113. Also,287

the group ratios are different: Pr(A = 0) = 0.673.288

Network Architecture To validate the effect of learning group-invariant representation with adver-289

sarial debiasing techniques [6, 29, 38], we perform a controlled experiment by fixing the baseline290

network architecture to be a three hidden-layer feed-forward network with ReLU activations. The291

number of units in each hidden layer are 500, 200, and 100, respectively. The output layer corresponds292

to a logistic regression model. This baseline without debiasing is denoted as NoDebias. For debiasing293

with adversarial learning techniques, the adversarial discriminator network takes the feature from294

the last hidden layer as input, and connects it to a hidden-layer with 50 units, followed by a binary295

classifier whose goal is to predict the sensitive attribute A. This model is denoted as AdvDebias.296

Compared with NoDebias, the only difference of AdvDebias in terms of objective function is that297

besides the cross-entropy loss for target prediction, the AdvDebias also contains a classification loss298

from the adversarial discriminator to predict the sensitive attribute A. In the experiment, all the299

other factors are fixed to be the same for these two methods, including learning rate, optimization300

algorithm, training epoch, and also batch size. To see how the adversarial loss affects the joint error,301

the demographic parity as well as the accuracy parity, we vary the coefficient ρ for the adversarial302

loss between 0.1, 1.0 and 5.0.303

The experimental results are listed in Table 2. Note that in the table |ErrD0
− ErrD1

| could be un-304

derstood as measuring an approximate version of accuracy parity, and similarly dTV(D0(Ŷ ),D1(Ŷ ))305

measures the closeness of the prediction function to demographic parity. From the table, it is then306

clear that with increasing ρ, both the overall error ErrD (sensitive to the marginal distribution of A)307

and the joint error ErrD0
+ ErrD1

(insensitive to the imbalance of A) are increasing. As expected,308

dTV(D0(Ŷ ),D1(Ŷ )) is drastically decreasing with the increasing of ρ. Furthermore, |ErrD0
−ErrD1

|309

is also gradually decreasing, but much slowly than dTV(D0(Ŷ ),D1(Ŷ )). This is due to the existing310

noise in the data as well as the shift between the optimal decision functions across groups, as indicated311

by our upper bound in Theorem 3.3. To conclude, all the empirical results are consistent with our312

theoretical findings.313

2https://archive.ics.uci.edu/ml/datasets/adult
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Table 2: Adversarial debiasing on demographic parity, joint error across groups, and accuracy parity.

ErrD ErrD0
+ ErrD1

|ErrD0
− ErrD1

| dTV(D0(Ŷ ),D1(Ŷ ))

NoDebias 0.157 0.275 0.115 0.189
AdvDebias, ρ = 0.1 0.159 0.278 0.116 0.190
AdvDebias, ρ = 1.0 0.162 0.286 0.106 0.113
AdvDebias, ρ = 5.0 0.166 0.295 0.106 0.032

5 Related Work314

Fairness Frameworks There is a broad literature on fairness, notably in social choice theory, ethics,315

economics and machine learning. Two central notions of fairness have been extensively studied,316

i.e., group fairness and individual fairness. In a seminal work, Dwork et al. [13] define individual317

fairness as a measure of smoothness of the classification function. Under the assumption that number318

of individuals is finite, the authors proposed a linear programming framework to maximize the utility319

under their fairness constraint. However, their framework requires apriori a distance function that320

computes the similarity between individuals, and their optimization formulation does not produce321

an inductive rule to generalize to unseen data. Based on the definition of positive rate parity, Hardt322

et al. [17] proposed a post-processing method to achieve fairness by taking as input the prediction323

and the sensitive attribute. In a concurrent work, Kleinberg et al. [24] offer a calibration technique324

to achieve fairness as well. However, both of the aforementioned two approaches require sensitive325

attribute during the inference phase, which is not available in many real-world scenarios.326

Regularization Techniques The line of work on fairness-aware learning through regularization327

dates at least back to Kamishima et al. [21], where the authors argue that simple deletion of sensitive328

features in data is insufficient for eliminating biases in automated decision making, due to the possible329

correlations among attributes and sensitive information [28]. In light of this, the authors proposed a330

prejudice remover regularizer that essentially penalizes the mutual information between the predicted331

goal and the sensitive information. In a more recent approach, Zafar et al. [35] leveraged a measure332

of decision boundary fairness and incorporated it via constraints into the objective function of logistic333

regression as well as support vector machines. As discussed in Section 2, both approaches essentially334

reduce to achieving demographic parity through regularization.335

Representation Learning In a pioneer work, Zemel et al. [37] proposed to preserve both group and336

individual fairness through the lens of representation learning, where the main idea is to find a good337

representation of the data with two competing goals: to encode the data for utility maximization338

while at the same time to obfuscate any information about membership in the protected group.339

Due to the power of learning rich representations offered by deep neural nets, recent advances in340

building fair automated decision making systems focus on using adversarial techniques to learn341

fair representation that also preserves enough information for the prediction vendor to achieve his342

utility [1, 6, 14, 27, 34, 38]. Madras et al. [29] further extended this approach by incorporating343

reconstruction loss given by an autoencoder into the objective function to preserve demographic344

parity, equalized odds, and equal opportunity.345

6 Conclusion346

In this paper we theoretically and empirically study the important problem of quantifying the tradeoff347

between utility and fairness in learning group-invariant representations. Specifically, we prove a348

novel lower bound to characterize the tradeoff between demographic parity and the joint utility across349

different population groups when the base rates differ between groups. In particular, our results imply350

that any method aiming to learn fair representation admits an information-theoretic lower bound on351

the joint error, and the better the representation, the larger the joint error. Complementary to our352

negative results, we also show that learning fair representation leads to accuracy parity if the optimal353

decision functions across different groups are close. These theoretical findings are also confirmed354

empirically on real-world datasets. We believe our results take an important step towards better355

understanding the tradeoff between utility and different notions of fairness. Inspired by our lower356

bound, one interesting direction for future work is to design instance-weighting algorithm to balance357

the base rates during representation learning.358

8



References359

[1] Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller. One-network adversarial360

fairness. In 33rd AAAI Conference on Artificial Intelligence, 2019.361

[2] Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence of one362

distribution from another. Journal of the Royal Statistical Society: Series B (Methodological),363

28(1):131–142, 1966.364

[3] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.365

[4] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations366

for domain adaptation. In Advances in neural information processing systems, pages 137–144,367

2007.368

[5] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in369

criminal justice risk assessments: The state of the art. Sociological Methods & Research, page370

0049124118782533, 2018.371

[6] Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H Chi. Data decisions and theoretical implications372

when adversarially learning fair representations. arXiv preprint arXiv:1707.00075, 2017.373

[7] Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classifi-374

cation. Data Mining and Knowledge Discovery, 21(2):277–292, 2010.375

[8] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with independency376

constraints. In 2009 IEEE International Conference on Data Mining Workshops, pages 13–18.377

IEEE, 2009.378

[9] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism379

prediction instruments. Big data, 5(2):153–163, 2017.380

[10] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. Sample selection381

bias correction theory. In International Conference on Algorithmic Learning Theory, pages382

38–53. Springer, 2008.383

[11] Imre Csiszár. Eine informationstheoretische ungleichung und ihre anwendung auf beweis der384

ergodizitaet von markoffschen ketten. Magyer Tud. Akad. Mat. Kutato Int. Koezl., 8:85–108,385

1964.386

[12] Imre Csiszár. Information-type measures of difference of probability distributions and indirect387

observation. studia scientiarum Mathematicarum Hungarica, 2:229–318, 1967.388

[13] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness389

through awareness. In Proceedings of the 3rd innovations in theoretical computer science390

conference, pages 214–226. ACM, 2012.391

[14] Harrison Edwards and Amos Storkey. Censoring representations with an adversary. arXiv392

preprint arXiv:1511.05897, 2015.393

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François394

Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural395

networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.396

[16] Jihun Hamm. Minimax filter: Learning to preserve privacy from inference attacks. The Journal397

of Machine Learning Research, 18(1):4704–4734, 2017.398

[17] Moritz Hardt, Eric Price, Nati Srebro, et al. Equality of opportunity in supervised learning. In399

Advances in neural information processing systems, pages 3315–3323, 2016.400

[18] James E Johndrow, Kristian Lum, et al. An algorithm for removing sensitive information:401

application to race-independent recidivism prediction. The Annals of Applied Statistics, 13(1):402

189–220, 2019.403

9



[19] Faisal Kamiran and Toon Calders. Classifying without discriminating. In 2009 2nd International404

Conference on Computer, Control and Communication, pages 1–6. IEEE, 2009.405

[20] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regu-406

larization approach. In 2011 IEEE 11th International Conference on Data Mining Workshops,407

pages 643–650. IEEE, 2011.408

[21] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier409

with prejudice remover regularizer. In Joint European Conference on Machine Learning and410

Knowledge Discovery in Databases, pages 35–50. Springer, 2012.411

[22] Mohammadali Khosravifard, Dariush Fooladivanda, and T Aaron Gulliver. Confliction of the412

convexity and metric properties in f-divergences. IEICE Transactions on Fundamentals of413

Electronics, Communications and Computer Sciences, 90(9):1848–1853, 2007.414

[23] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data streams. In415

Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pages416

180–191. VLDB Endowment, 2004.417

[24] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair418

determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.419

[25] Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information420

theory. IEEE Transactions on Information Theory, 52(10):4394–4412, 2006.421

[26] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on422

Information theory, 37(1):145–151, 1991.423

[27] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational424

fair autoencoder. arXiv preprint arXiv:1511.00830, 2015.425

[28] Kristian Lum and James Johndrow. A statistical framework for fair predictive algorithms. arXiv426

preprint arXiv:1610.08077, 2016.427

[29] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially428

fair and transferable representations. In International Conference on Machine Learning, pages429

3381–3390, 2018.430

[30] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning431

bounds and algorithms. arXiv preprint arXiv:0902.3430, 2009.432

[31] Arvind Narayanan. Translation tutorial: 21 fairness definitions and their politics. In Proc. Conf.433

Fairness Accountability Transp., New York, USA, 2018.434

[32] Executive Office of the President. Big data: A report on algorithmic systems, opportunity, and435

civil rights. Executive Office of the President, 2016.436

[33] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness437

and calibration. In Advances in Neural Information Processing Systems, pages 5680–5689,438

2017.439

[34] Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and Stefano Ermon. Learning440

controllable fair representations. In Artificial Intelligence and Statistics, pages 2164–2173,441

2019.442

[35] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi.443

Fairness constraints: Mechanisms for fair classification. arXiv preprint arXiv:1507.05259,444

2015.445

[36] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi.446

Fairness beyond disparate treatment & disparate impact: Learning classification without dis-447

parate mistreatment. In Proceedings of the 26th International Conference on World Wide Web,448

pages 1171–1180. International World Wide Web Conferences Steering Committee, 2017.449

10



[37] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representa-450

tions. In International Conference on Machine Learning, pages 325–333, 2013.451

[38] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with452

adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and453

Society, pages 335–340. ACM, 2018.454

[39] Han Zhao, Remi Tachet des Combes, Kun Zhang, and Geoffrey J Gordon. On learning invariant455

representation for domain adaptation. In International Conference on Machine Learning, 2019.456

[40] Indre Zliobaite. On the relation between accuracy and fairness in binary classification. arXiv457

preprint arXiv:1505.05723, 2015.458

11



A Proofs459

Lemma 3.1. Let Ŷ = h(g(X)) be the predictor, then for a ∈ {0, 1}, dTV(Da(Y ),Da(Ŷ )) ≤460

ErrDa(h ◦ g).461

Proof. For a ∈ {0, 1}, we have:462

dTV(Da(Y ),Da(Ŷ )) = |Da(Y = 1)−Da(h(g(X)) = 1)| = |EDa
[Y ]− EDa

[h(g(X))]|
≤ EDa

[|Y − h(g(X))|] = ErrDa
(h ◦ g). (4)

�463

Proposition 3.1. Let Ŷ = h(g(X)) be the predictor and λH := 1 − dH(D0(Ŷ ),D1(Ŷ )). Then464

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥ dH(D0(Y ),D1(Y )) + λH − 1.465

Proof. First, it is easy to show that ∀H and any distributions D,D′ and D′′, the following triangle466

inequality holds:467

dH(D,D′) = sup
A∈AH

|D(A)−D′(A)| ≤ sup
A∈AH

|D(A)−D′′(A)|+ |D′′(A)−D′(A)|

≤ sup
A∈AH

|D(A)−D′′(A)|+ sup
A∈AH

|D′′(A)−D′(A)| = dH(D,D′′) + dH(D′′,D′).

Again, we apply a chain of triangle inequalities as we did in the proof of Theorem 3.1:468

dH(D0(Y ),D1(Y )) ≤ dH(D0(Y ),D0(Ŷ )) + dH(D0(Ŷ ),D1(Ŷ )) + dH(D1(Ŷ ),D1(Y ))

≤ dTV(D0(Y ),D0(Ŷ )) + dTV(D1(Ŷ ),D1(Y )) + dH(D1(Ŷ ),D1(Y ))

≤ ErrD0(h ◦ g) + ErrD1(h ◦ g) + 1− λH.
The second inequality follows from the definition of H-divergence and the last one is due to (4).469

Arranging the terms on both sides completes the proof. �470

Theorem 3.2. Let Ŷ = h(g(X)) be the predictor. Assume dJS(Dg
0 ,D

g
1) ≤ dJS(D0(Y ),D1(Y )) and471

H(Dg
0 ,D

g
1) ≤ H(D0(Y ),D1(Y )), then the following three inequalities hold:472

1. Total variation lower bound:473

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥ dTV(D0(Y ),D1(Y ))− dTV(Dg
0 ,D

g
1).

2. Jensen-Shannon lower bound:474

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥
(
dJS(D0(Y ),D1(Y ))− dJS(Dg

0 ,D
g
1)
)2
/2.

3. Hellinger lower bound:475

ErrD0
(h ◦ g) + ErrD1

(h ◦ g) ≥
(
H(D0(Y ),D1(Y ))−H(Dg

0 ,D
g
1)
)2
/2.

Proof. We prove the three inequalities respectively. The total variation lower bound follows the476

same idea as the proof of Theorem 3.1 and the inequality dTV(D0(Ŷ ),D1(Ŷ )) ≤ dTV(Dg
0 ,D

g
1) from477

Corollary 3.2. To prove the Jensen-Shannon lower bound, realize that dJS(·, ·) is a distance metric478

over probability distributions. Combining with the inequality dJS(D0(Ŷ ),D1(Ŷ )) ≤ dJS(Dg
0 ,D

g
1)479

from Corollary 3.2, we have:480

dJS(D0(Y ),D1(Y )) ≤ dJS(D0(Y ),D0(Ŷ )) + dJS(Dg
0 ,D

g
1) + dJS(D1(Ŷ ),D1(Y )).

Now by Lin’s lemma [26, Theorem 3], for any two distributions P and Q, we have d2JS(P,Q) ≤481

dTV(P,Q). Combine Lin’s lemma with Lemma 3.1, we get the following lower bound:482 √
ErrD0(h ◦ g) +

√
ErrD1(h ◦ g) ≥ dJS(D0(Y ),D1(Y ))− dJS(Dg

0 ,D
g
1).

Apply a simple AM-GM inequality, we can further bound the L.H.S. by483 √
2
(
ErrD0

(h ◦ g) + ErrD1
(h ◦ g)

)
≥
√
ErrD0

(h ◦ g) +
√

ErrD1
(h ◦ g).

Under the assumption that dJS(Dg
0 ,D

g
1) ≤ dJS(D0(Y ),D1(Y )), taking the square at both sides then484

completes the proof for the second inequality. The proof for Hellinger’s lower bound follows exactly485

as the one for Jensen-Shannon’s lower bound, except that we need to use H2(P,Q) ≤ dTV(P,Q) ≤486 √
2H(P,Q), ∀P,Q, instead of Lin’s lemma. �487
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Theorem 3.3. For any hypothesisH 3 h : X → Y , the following inequality holds:488

|ErrD0(h)−ErrD1(h)| ≤ nD0+nD1+dTV(D0(X),D1(X))+min{ED0 [|h∗0−h∗1|],ED1 [|h∗0−h∗1|]}.

489 Proof. First, we show that for a ∈ {0, 1}, ErrDa(h) cannot be too large if h is close to h∗a:490

|ErrDa(h)− nDa | = |ErrDa(h)− ErrDa(h
∗
a)| =

∣∣EDa [|Y − h(X)|]− EDa [|Y − h∗a(X)|]
∣∣

≤ EDa
[|h(X)− h∗a(X)|].

Next, we bound |ErrD0
(h)− ErrD1

(h)| by:491

|ErrD0
(h)− ErrD1

(h)| ≤ nD0
+ nD1

+
∣∣ED0

[|h(X)− h∗0(X)|]− ED1
[|h(X)− h∗1(X)|]

∣∣.
To simplify the notation, define εa(h, h′) := EDa

[|h(X)− h′(X)|] so that492 ∣∣ED0
[|h(X)− h∗0(X)|]− ED1

[|h(X)− h∗1(X)|]
∣∣ = ∣∣ε0(h, h∗0)− ε1(h, h∗1)∣∣.

To bound
∣∣ε0(h, h∗0)− ε1(h, h∗1)∣∣, realize that |h(X)− h∗a(X)| ∈ {0, 1}. On one hand, we have:493 ∣∣ε0(h, h∗0)− ε1(h, h∗1)∣∣ = ∣∣ε0(h, h∗0)− ε0(h, h∗1) + ε0(h, h

∗
1)− ε1(h, h∗1)

∣∣
≤
∣∣ε0(h, h∗0)− ε0(h, h∗1)∣∣+ ∣∣ε0(h, h∗1)− ε1(h, h∗1)∣∣

≤ ε0(h∗0, h∗1) + dTV(D0(X),D1(X)),

where the last inequality is due to
∣∣ε0(h, h∗1)−ε1(h, h∗1)∣∣ = ∣∣D0(|h−h∗1| = 1)−D1(|h−h∗1| = 1)

∣∣ ≤494

supE |D0(E)−D1(E)| = dTV(D0,D1). Similarly, by subtracting and adding back ε1(h, h∗0) instead,495

we can also show that
∣∣ε0(h, h∗0)− ε1(h, h∗1)∣∣ ≤ ε1(h∗0, h∗1) + dTV(D0(X),D1(X)). Combining all496

the inequalities above finishes the proof. �497
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