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1 Basic Notations and Definitions

We consider the following problem [1]

minimize
B∈O(c,D)

f(B) (1)

where f : RD×c → R is lower semi-continuous, possibly non-convex and non-smooth, and homoge-
nous that f(B) = f(BQ) for any Q ∈ O(c) . Note that the global minimum of (1) is not unique
as if B? is a global minimum, then any point in [B?] is also a global minimum.

For any A,B ∈ O(c,D), the principal angles between Span(A) and Span(B) are defined as [2]
φi(A,B) = arccos(σi(A

>B)), i = 1, . . . , c, where σi(·) denotes the i-th singular value. We then
define the distance between A and B as

dist(A,B) :=

√√√√2

c∑
i=1

(
1− cos(φi(A,B))

)
= inf

Q∈O(c)
‖B −AQ‖F , (2)

where the last term is also known as the orthogonal Procrustes problem and the last equality
follows from the result [3] that the optimal rotation matrix Q minimizing ‖B −AQ‖F is equal to
Q = UV >, where UΣV > is the SVD of A>B. We also define the projection of B onto [A] as

PA(B) = AQ?, where Q? = arg min
Q∈O(c)

‖B −AQ‖F . (3)

Since f can be non-smooth and non-convex, we utilize the Fréchet subdifferential, which general-
izes the gradient for smooth functions and the subdifferential in convex analysis. The subdifferential
of a lower semi-continuous function f at B is defined as

∂f(B) :=

{
D ∈ RD×c : lim inf

A→B

f(A)− f(B)− 〈D,A−B〉
‖B −A‖F

≥ 0

}
.

Roughly speaking, for each subgradient of f at B (i.e., for each D ∈ ∂f(B)), the graph of A 7→
f(B)+〈D,A−B〉 constructs a local supporting hyperplane to the graph of f at B. If f is a convex
function, then a local supporting hyperplane turns out to be a global one, and ∂f(B) reduces to{
D ∈ RD×c : f(A)− f(B) ≥ 〈D,A−B〉 for all A ∈ RD×c

}
[4]. If f is a smooth function, then

the subdifferential ∂f(B) is simply {∇f(B)}.
Since we consider problems on the Grassmannian, we use tools from Riemannian geometry to

state optimality conditions. From [1], the tangent space of the Grassmannian at [B] is defined as
{W ∈ RD×c : W>B = 0}, and the orthogonal projector onto the tangent space is I−BB>, which
is well-defined and does not depend on the class representative as AA> = BB> for any A ∈ [B].
If D ∈ ∂f(B), then we call (I − BB>)D a Riemannian subgradient of f at B; we define the
collection of all such Riemannian subgradients of f at B as

∂̃f(B) :=
{

(I−BB>)D : D ∈ ∂f(B)
}
. (4)

We say that B is a critical point of (1) if 0 ∈ ∂̃f(B), which is a necessary condition for being
a minimizer to (1) as shown in [5].

Armed with the Riemannian subgradient, a simple yet popular method for solving (1) is the
projected Riemannian subgradient method, which is stated in Algorithm 1.
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Algorithm 1 Projected Riemannian Subgradient Method

Initialization: set B0 and µ0;

1: for k = 0, 1, . . . do
2: obtain G(Bk) ∈ ∂̃f(Bk) satisfying (6) with B = Bk;
3: compute a step size µk according to a certain rule;
4: update the iterate:

B̂k+1 ← Bk − µkG(Bk), Bk+1 ← orth(B̂k+1); (5)

5: end for

1.1 (α, ε,B?)-Riemannian Regularity Condition (RRC)

Definition 1. We say that f : RD×c → R satisfies the (α, ε,B?)-Riemannian regularity condi-
tion (RRC) for parameters {α, ε} > 0 and B? ∈ O(c,D), if for every B ∈ O(c,D) satisfying

dist(B,B?) ≤ ε, there exists a Riemannian subgradient G(B) ∈ ∂̃f(B) such that

〈PB?(B)−B,−G(B)〉 ≥ α dist(B,B?). (6)

Let
ξ := sup {‖G(B)‖F : dist(B,B?) ≤ ε} (7)

denote an upper bound on the size of the Riemannian subgradients in a neighbrohood of B?. Assume
ξ < ∞. To compare α and ξ, we plug the Cauchy-Schwarz inequality 〈B − PB?(B),G(B)〉 ≤
‖G(B)‖F dist(B,B?) into (6), giving

‖G(B)‖F ≥ α, ∀ B /∈ [B?],dist(B,B?) ≤ ε, (8)

which implies that
ξ ≥ α. (9)

2 Proof of Proposition 1

We first repeat Proposition 1.

Proposition 1. Suppose that for some (α, ε,B?) the function f satisfies the (α, ε,B?)-RRC in
Definition 1. Let {Bk} be generated by Algorithm 1 with step size µk ≡ µ ≤ αε/ξ2 and initial
iterate B0 satisfying dist0 ≤ ε. Then, for all k ≥ 0, it holds that

dist(Bk,B
?) ≤ max

{
dist(B0,B

?)− µαk/2, µξ2/α
}
. (10)

Proof of Proposition 1. We first prove that B̂k+1 always has full column rank since G(Bk) is or-

thogonal to Bk. Let B̂k+1 = PΩQ> be a reduced SVD of B̂k+1, where Ω is an c × c diagonal

matrix with singular values w1, . . . , wc along the diagonals. Since B̂k+1 = Bk − µkG(Bk), we have

B̂
>
k+1B̂k+1 = I + µ2

k (G(Bk))
> G(Bk),
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where the equality follows because Bk ∈ O(c,D) is orthogonal to G(Bk). Thus, the eigenvalues of

B̂
>
k+1B̂k+1 is always greater than or equal to 1, which implies that w1, . . . , wc ≥ 1. Therefore, all

singular values of B̂k+1 are non-vanishing, which means B̂k+1 has full column rank. Additionally,
for any U ∈ O(c,D), it follows that

‖B̂k+1 −U‖2F − ‖Bk+1 −U‖2F
= ‖PΩQ>‖2F − ‖PQ>‖2F − 2 trace((Ω− I)P>UQ)

≥
c∑
i=1

ω2
i − 1− 2(ωi − 1) =

c∑
i=1

(ωi − 1)2 ≥ 0,

(11)

where we have chosen Bk+1 to be PQ>, and the last line directly follows Von Neumann’s inequality,
i.e., trace(F>G) ≤

∑
i σi(F )σi(G) where σ1(·) ≥ σ2(·) ≥ · · · ≥ 0.

We now prove (10) by induction. It is clear that (10) holds when k = 0. Now assume that (10)
holds at the k-th iteration, which implies that dist(Bk,B

?) ≤ ε. Then,

dist2(Bk+1,B
?) ≤ ‖Bk+1 − PB?(Bk)‖2F

≤ ‖B̂k+1 − PB?(Bk)‖2F
= ‖Bk − µG(Bk)− PB?(Bk)‖2F
= ‖Bk − PB?(Bk)‖2F − 2µ〈Bk − PB?(Bk),G(Bk)〉+ µ2‖G(Bk)‖2F
≤ dist2(Bk,B

?)− 2αµdist(Bk,B
?) + µ2ξ2,

(12)

where the second line utilizes (11), and the last line utilizes the Riemannian regularity condition (6).

It is clear from (12) that dist2(Bk+1,B
?) ≤ dist2(Bk,B

?) if dist(Bk,B
?) ≥ µξ2

2α . In particular,

when dist(Bk,B
?) ≥ µξ2

α , we have

dist2(Bk+1,B
?) ≤ dist2(Bk,B

?)− αµdist(Bk,B
?) + µ2ξ2 − αµdist(Bk,B

?)

≤
(

dist(Bk,B
?)− µα

2

)2
,

which implies that

dist(Bk+1,B
?) ≤ dist(Bk,B

?)− µα

2

since dist(Bk,B
?) ≥ µξ2

α ≥ µα.

On the other hand, when dist(Bk,B
?) ≤ µξ2

α , it also follows from (12) that

dist2(Bk+1,B
?) ≤ max

{(
µξ2

α

)2

− 2µα
µξ2

α
+ µ2ξ2, µ2ξ2

}

= max

{(
µξ2

α

)2

− µ2ξ2, µ2ξ2

}

≤ max

{(
µξ2

α

)2

− µ2ξ2, µ2ξ2
ξ2

α2

}

=

(
µξ2

α

)2

,
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where the first inequality follows that h(t) := t2 − 2αµt is increasing in [t′,∞] for any t′ such that
h(t′) ≥ 0, and the second inequality utilizes (9). Thus by induction, (10) holds for all k ≥ 0.

3 Proof of Theorem 1

We first repeat Theorem 1 (which is a lightly stronger result than the one presented in the paper).

Theorem 1. Suppose that f satisfies the (α, ε,B?)-RRC in Definition 1. Let {Bk} be the sequence
generated by Algorithm 1 with step size

µk = µ0β
k (13)

and initialization B0 satisfying dist(B0,B
?) ≤ ε. Assume

µ0 ≤
α dist0

2ξ2
and

√
1− 2

αµ0

dist0
+
µ2
0ξ

2

dist20
=: β ≤ β < 1, (14)

for some dist(B0,B
?) ≤ dist0 ≤ ε, where ξ is defined in (7). Then, the sequence {Bk} satisfies

dist(Bk,B
?) ≤ dist0 β

k for all k ≥ 0. (15)

Proof of Theorem 1. We first show that β in (14) is well-defined and satisfies 0 < β < 1. To see

this, on one hand, µ0 ≤ α dist0/2ξ
2 and (9) together imply 1 − 2αµ0/dist0 ≥ 0. On the other

hand, −2αµ0/dist0 + µ2
0ξ

2/dist20 < 0 is a decreasing function of µ0 when µ0 ∈ (0, α dist0/2ξ
2]. In

particular, when µ0 = α dist0/2ξ
2, we have β =

√
1− 3α2/4ξ2, giving the fastest decaying rate by

setting β = β.
We now prove (15) by induction. It is clear that (15) holds when k = 0. Now assume that

(15) holds at the k-th iteration, which implies that dist(Bk,B
?) ≤ dist0 β

k. Since Bk satisfies the
Riemannian regularity condition (6), we know that (12) holds:

dist2(Bk+1,B
?) ≤ dist2(Bk,B

?)− 2αµk dist(Bk,B
?) + µ2

kξ
2

= (dist(Bk,B
?)− αµk)2 + µ2

k(ξ2 − α2). (16)

From dist(Bk,B
?) ≤ dist0 β

k and

dist0 β
k ≥ 2

µ0ξ
2

α
βk ≥ 2αµ0β

k = 2αµk ≥ αµk,

where the first inequality is due to the assumption (14) and the second inequality follows ξ ≥ α in
(9). Therefore, (16) achieves its maximum at dist(Bk,B

?) = dist0 β
k. Plugging this observation

into (16) gives

dist2(Bk+1,B
?) ≤ dist20 β

2k − 2αµk dist0 β
k + µ2

kξ
2

= dist20 β
2k − 2αµ0 dist0 β

2k + µ2
0β

2kξ2

= dist20 β
2k

(
1− 2

αµ0

dist0
+
µ2
0ξ

2

dist20

)
≤ dist20 β

2(k+1),

(17)
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where the last line holds because β ≥ β =
√

1− 2 αµ0

dist0
+

µ2
0ξ

2

dist20
. Hence, the proof is completed by

induction.

4 Proof of Theorem 2

We first repeat the DPCP problem. Given a dataset X̃ = [X O]Γ ∈ RD×L, where X ∈ RD×N
are inlier points spanning a d-dimensional subspace S of RD, O are outlier points, and Γ is an
unknown permutation, the DPCP problem is

minimize
B∈O(c,D)

f(B) := ‖X̃>B‖1,2 =

L∑
i=1

‖x̃>i B‖2, (18)

One choice for its Riemannian subgradient is

G(B) = (I−BB>)

L∑
i=1

x̃i sign(x̃>i B), sign(a) :=

{
a/‖a‖2 if a 6= 0,

0 if a = 0.
(19)

Let us recall several quantities: the first one, related to the outliers, characterizes the maximum
Riemannian subgradient of 1

M

∑M
i=1 ‖o>i B‖2:

ηO :=
1

M
max

B∈O(c,D)

∥∥∥(I−BB>)

M∑
i=1

oi sign(o>i B)
∥∥∥
F
, (20)

which appears in [6] when B is on SD−1. The second one is related to the inliers and is given by

cX ,min :=
1

N
min

b∈S∩SD−1
‖X>b‖1, (21)

which is referred to as the permeance statistic in [7]. These quantities reflect how well distributed the
inliers and outliers are, with larger values of cX ,min (respectively, smaller values of ηO) corresponding
to more uniform distributions of inliers (respectively, outliers).

We require one more result concerning the principal angles between two subspaces as follows.

Definition 2. [8] Suppose U ∈ RD×p and V ∈ RD×q are two orthonormal bases. Suppose p ≥ q.
Then the principal angles between Span(U) and Span(V ), φ1(U ,V ) ≤ φ2(U ,V ) ≤ · · · ≤ φq(U ,V ),
are defined as

φi(U ,V ) = arccos(σi(U
>V ))

for all i ∈ {1, 2, . . . , q}, where σi(·) denotes the i-th largest singular value. The largest principal
angle φq(U ,V ) is referred to as the subspace angle between Span(U) and Span(V ).

Lemma 1. [8] Suppose U ∈ RD×p and V ∈ RD×q are two orthonormal bases and
[
U U⊥

]
is an

orthonormal basis of RD. Suppose p ≥ q. Then the principal angles between Span(U) and Span(V )
and the principal angles between Span(U⊥) and Span(V ) satisfy the following relationship[π

2
, . . . ,

π

2
, φq(U ,V ), . . . , φ1(U ,V )

]
=
[π

2
− φ1(U⊥,V ), . . . ,

π

2
− φq(U⊥,V ), 0, . . . , 0

]
,

where extra π
2 ’s and 0’s are added on either side to match the sizes.
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We now review Theorem 2 and then prove it.

Theorem 2 ((α, ε,B?)-Riemannian regularity condition for the DPCP problem (18)). For any

ε <
√

2
(
1−MηO/NcX ,min

)
, the DPCP problem (18) satisfies (α, ε,B?)-Riemannian regularity

condition with B? = [S⊥] and α = ((1− ε2/2)NcX ,min −MηO)/
√

2c, where S⊥ is an orthonormal
basis for S⊥. Also,

‖G(B)‖F ≤
√
N ‖X‖2 +MηO, ∀B ∈ O(c,D). (22)

Proof of Theorem 2. We first establish the following result which is key to the Riemannian regu-
larity condition for the DPCP problem.

Lemma 2. Let B? = [S⊥]. Then, for any B ∈ O(c,D), we have

〈−G(B),PB?(B)−B〉 ≥ sin(φmax)(cos(φmax)NcX ,min −MηO), (23)

where φmax := φmax(B,S⊥) is the largest principal angle between B and S⊥.

Proof. Let S ∈ RD×d be an orthonormal basis of the subspace S and let S⊥ ∈ RD×c be an
orthonormal basis of the orthogonal complement S⊥. We rewrite B as

B = SS>B + S⊥(S⊥)>B,

where SS>B represents the projection of B onto the subspace S, while the other term S⊥(S⊥)>B
represents the projection of B onto the complement S⊥. Let (S⊥)>B = U cos(Φ)R> be the
canonical SVD of (S⊥)>B, where cos(Φ) is a diagonal matrix with cos(φ1), . . . , cos(φc) along its
diagonal, U ∈ Rc×c,R ∈ Rc×c are orthonormal matrices. Here φi is the i-th principal angles
between B and S⊥. When φ1 = · · · = φc = 0, it implies that B ∈ [S⊥], i.e., B is equivalent to S⊥.

Without loss of generality, we assume c ≤ d.1 In this case, we can then rewrite S>B =
V sin(Φ)R>, where V ∈ Rd×c is an orthonormal matrix. Thus, we have

B = SV sin(Φ)R> + S⊥U cos(Φ)R>. (24)

After defining
G = SV cos(Φ) sin(Φ)R> − S⊥U sin2(Φ)R>, (25)

we have

〈−G(B),PB?(B)−B〉 = 〈−G(B),S⊥UR>〉

= −

〈
(I−BB>)

 L∑
j=1

x̃j sign(x̃>j B)

 ,S⊥UR>

〉

=

〈
N∑
j=1

xj sign(x>j B) +

M∑
j=1

oj sign(o>j B),G

〉

=

N∑
j=1

〈
x>j SV cos(Φ) sin(Φ), sign(x>j SV sin(Φ))

〉
−

〈
G, (I−BB>)

M∑
j=1

oj sign(o>j B)

〉
(26)

1For the case c > d, we have at least φ1 = · · · = φc−d = 0. Similar to the case c ≤ d, we can also rewrite

S>B = V sin(Φ)R>, where V =
[
0 V

]
with V ∈ Rd×d an orthonormal matrix. Thus, we also have (24) and the

following proofs are the same.
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where the very last line utilizes sign(aR>) = sign(a)R> (R ∈ Rc×c is an orthonormal matrix) and
the fact that G ∈ Span(B⊥).

We now bound the first term in the last line of (26) by

N∑
j=1

〈
x>j SV sin(Φ) cos(Φ), sign(x>j SV sin(Φ))

〉
≥ cos(φc)

N∑
j=1

〈
x>j SV sin(Φ), sign(x>j SV sin(Φ))

〉
= cos(φc)

N∑
j=1

∥∥x>j SV sin(Φ)
∥∥
2
≥ cos(φc) sin(φc)

N∑
j=1

|x>j Svc|

≥ cos(φc) sin(φc)NcX ,min,

where the first inequality follows because 0 ≤ φ1 ≤ φ2 ≤ · · ·φc ≤ π
2 , and the last inequality utilizes

(21) since Svc ∈ S ∩ SD−1. On the other hand, the second term in the last line of (26) can be
bounded by ∣∣∣∣∣∣

〈
G, (I−BB>)

M∑
j=1

oj sign(o>j B)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈
SV cos(Φ) sin(Φ)R> − S⊥U sin2(Φ)R>, (I−BB>)

M∑
j=1

oj sign(o>j B)

〉∣∣∣∣∣∣
≤ sin(φc)

∣∣∣∣∣∣
〈
SV cos(Φ)R> − S⊥U sin(Φ)R>, (I−BB>)

M∑
j=1

oj sign(o>j B)

〉∣∣∣∣∣∣
≤ sin(φc)

∥∥∥∥∥∥(I−BB>)

M∑
j=1

oj sign(o>j B)

∥∥∥∥∥∥
F

≤ sin(φc)MηO

where the first inequality follows because 0 ≤ φ1 ≤ φ2 ≤ · · ·φc ≤ π
2 , the second inequality utilizes

the fact that SV cos(Φ)R> − S⊥U sin(Φ)R> is an orthonormal matrix, and the last inequality
follows from (20). This completes the proof.

We now turn to prove the (α, ε,B?)-Riemannian regularity condition. First note that

‖PB?(B)−B‖2F = 2

c∑
i=1

(1− cos (φi)) ≤ 2c (1− cos (φc))

= 4c sin2

(
φc
2

)
≤ 2c sin2 (φc) ,

(27)

where the last inequality utilizes sin(α) ≥
√

2 sin(α/2) for any α ∈ [0, π2 ]. Combining (27) together
with (23) give

〈−G(B),PB?(B)−B〉 ≥ cos(φc)NcX ,min −MηO√
2c

‖PB?(B)−B‖F . (28)
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On the other hand, we have

‖B − PB?(B)‖2F = 2

c∑
i=1

(1− cos(φi)) ≥ 2(1− cos(φc)),

which implies that cos(φc) ≥ 1− ‖B−PB? (B)‖2F
2 . This together with (28) and ‖B − PB?(B)‖F ≤ ε

complete the proof of the (α, ε,B?)-Riemannian regularity condition. The rest is to prove (22).

Proof of (22) For convenience, denote by sign(X>B) =
[
sign(x>1 B) · · · sign(x>NB)

]>
. Using

(20) and the fact that ‖ sign(X>B)‖F ≤
√
N allows us to bound the Riemannian subgradient in

(19) as

‖G(B)‖F ≤
∥∥∥(I−BB>)X sign(X>B)

∥∥∥
F

+
∥∥∥(I−BB>)

M∑
j=1

oj sign(o>j B)
∥∥∥
F

≤
∥∥∥(I−BB>)X

∥∥∥
2

∥∥∥ sign(X>B)
∥∥∥
F

+MηO

≤
√
N ‖X‖2 +MηO,

where the second inequality follows from ‖AB‖F ≤ ‖A‖2‖B‖F .

5 Proof of Corollary 2

Definition 3 (Random model for ODL [9]). Assume A ∈ RD×D is a fixed but unknown orthonormal

matrix. The data is generated as X̃ = AS, where each column of S ∈ RD×D is an i.i.d. Bernoulli-
Gaussian random vector with parameter ρ ∈ (0, 1) that controls the sparsity.

We first repeat the Riemannian regularity condition for the ODL problem.

Theorem 3. [9, Theorem 3.6] Assume ρ ∈ [1/D, 1/2] in the random model of Definition 3. There
exist universal constants C, c > 0 such that if N ≥ CD4ζ−2ρ−2 log(D/ζ), ∀ζ ∈ (0, 1), then with
probability at least 1− exp(−cNρ3ζ2D−3/ logN) the ODL problem satisfies (6) for any b ∈ Iiζ with
G(b) and B? = ei for any i, and

α = 1
16ρ(1− ρ)ζD−

3
2 . (29)

Now we repeat Corollary 2 and then prove it.

Corollary 2. Let {bk} be the sequence generated by Algorithm 1 for the ODL problem with b0 ∈ Iiζ
(ζ ≤ 55

64) and step size µk = µ0β
k, where µ0 and β satisfy the conditions in Theorem 1 with ξ = 2

and ε =
√

2, and α = 1
16ρ(1− ρ)ζD−

3
2 . Under the same setup as in Theorem 3, with probability at

least 1− exp(−cNρ3ζ2D−3/ logN), {bk} converges to ei at an R-linear rate, i.e.,

dist(bk, ei) ≤ βk dist(b0, ei). (30)
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Proof. To apply Theorem 1, we require an upper bound on the norm of the Riemannian subgradi-
ents. It follows from [9, Proposition 3.7] that if N ≥ CD logD, then supB∈SD−1 ‖G(B)‖2 ≤ 2 with
probability at least 1−exp(−cNρ/ logN). We also require bk ∈ Iiζ for all k so that the Riemannian

regularity condition (6) holds at all the iterates. A sufficient condition to guarantee bk ∈ Iiζ is that

µk ≤ min{ 1
100 ,

1−ζ
9 }

1
D1/2 [9, Proposition D.2]. Plugging (29), ε =

√
2, and ξ = 2 into (14) gives

µk ≤ µ0 ≤ ζ
64D3/2 ≤ min{ 1

100 ,
1−ζ
9 }

1
D1/2 since ζ ≤ 55

64 .

6 Initialization

Lemma 3. Consider a spectral initialization B0 by taking the bottom c eigenvectors of X̃ X̃>.
Then, it satisfies

‖B0 − PB?(B0)‖2F ≤
∑c
j=1 σ

2
j (O)−

∑D
j=D−c+1 σ

2
j (O)

σ2
d(X )

, (31)

where σ` denotes the `-th largest singular value.

Proof. Note that for any B ⊥ S, ‖X̃>B‖2F = ‖O>B‖2F = trace(B>OO>B) =
∑c
j=1 b

>
j OO>bj ≤∑c

j=1 σ
2
j (O). Thus, since B0 is the optimal solution to arg minB∈O(c,D) ‖X̃>B‖2F , we have

‖X̃>B0‖2F ≤
c∑
j=1

σ2
j (O).

On the other hand, let S be an orthonormal basis for S and let Θ be the coefficients of X in S,
i.e., X = SΘ, we have

‖X̃>B0‖2F = ‖X>B0‖2F + ‖O>B0‖2F = ‖X>SS>B0‖2F + ‖O>B0‖2F
= ‖Θ>S>B0‖2F + ‖O>B0‖2F ≥ σ2

min(Θ)‖S>B0‖2F + ‖O>B0‖2F

≥ σ2
d(X )‖B0 − PB?(B0)‖2F +

D∑
j=D−c+1

σ2
j (O),

where we first utilize the fact that X lies in S such that X = SS>X , the inequality follows because
‖AB‖2F = trace(A>ABB>) ≥ σmin(A>A)‖BB>‖F for any A,B, and the last line follows from

‖S>B0‖2F = ‖SS>B0‖2F = ‖B0 − S⊥(S⊥)>B0‖2F = ‖B0 − PB?(B0)‖2F . Combining the above
two equations gives

‖B0 − PB?(B0)‖2F ≤
∑c
j=1 σ

2
j (O)−

∑D
j=D−c+1 σ

2
j (O)

σ2
d(X )

.

7 Random Spherical Model

In this section, we consider the following random spherical model.

10



Definition 1. For any given subspace S of dimension d < D, a random spherical model refers to
that the columns of O drawn independently and uniformly at random from the unit sphere SD−1,
and the columns of X are drawn independently and uniformly at random from the intersection of
the unit sphere with the subspace S.

We require the following result from [10, Lemma 4] concerning cX ,min.

Lemma 4. [10, Lemma 4] Under the random spherical model in Definition 1, we have

P
(
cX ,min ≥ cd − (2 +

t

2
)/
√
N

)
≥ 1− 2e−

t2

2 ,

where

cD :=
(D − 2)!!

(D − 1)!!
·
{

2
π , D is even,
1, D is old,

where k!! :=

{
k(k − 2)(k − 4) · · · 4 · 2, k is even,
k(k − 2)(k − 4) · · · 3 · 1, k is old.

(32)

Lemma 5. Let o1, . . . ,oM be uniformly distributed on SD−1. Then for any t > 0

P

[
ηO &

√
cD log (cDD) + t√

M

]
≤ 2 exp(−t2/2), (33)

where c = D − d is the co-dimensions.

Its proof is given in Section 10.
The following results provide concentration inequalities for the singular values appeared in (31)

when the inliners and outliers are generated from a random spherical model.

Lemma 6. [11, Theorem 5.39] Under the random spherical model in Definition 1, then for every
t > 0, there exist constants C1, C2 such that

P

(
σ1(O) ≥

√
M + C2

√
D + t√

D

)
≤ e−C1t

2

,

P

(
σD(O) ≤

√
M − C2

√
D − t√

D

)
≤ e−C1t

2

,

P

(
σd(X ) ≤

√
N − C2

√
d− t√

d

)
≤ e−C1t

2

.

(34)

The following result establishes that the spectral initialization satisfies the condition dist2(B0,S
⊥) <

2 (1−MηO/NcX ,min) with high probability when the data are generated from a random spherical
model.

Corollary 3. Consider the same random spherical model as in Definition 1. Then for any positive
number t < min{

√
N −C2

√
d, 2cd

√
N − 4}, with probability at least 1− 4e−t

2/2− 3e−C1t
2

, the spec-
tral initialization B0 in Lemma 3 satisfies the condition dist2(B0,S

⊥) < 2 (1−MηO/NcX ,min) ,

11



provided that

2cd
√
M(C2

√
D + t)

D(
√
N − C2

√
d− t)2

+
C0(
√
cMD log(cDD) +

√
Mt)

cdN − (2 + t
2 )
√
N

< 1,

cdN − (2 + t/2)
√
N > C0

(√
cD log(cDD) + t

)√
M,

(35)

where cd and cD are defined in (32), and C0, C1 and C2 are universal constants indepedent of
N,M,D, d and t.

Proof. This follows by combining Lemma 3,Lemma 4, Lemma 5, and Lemma 6.

Note that the first line in (35) suggests O
(
cd
√
M√

DN
+
√
cD logD

√
M

N

)
< 1, while the seond line

of (35) suggests that O
(√

cD logD
√
M

N

)
< 1. The combination of both implies that the projected

Riemannian subgradient method with a spectral initialization can converge to S⊥ in a linear rate

when there are M = O
(

D
c2(d+D logD)2N

2
)

outliers.

8 Comparision with the Regularity Condition for Smooth
Function

Aside from the weak convexity and shaprness, another regularity condition related to Definition 1
is the one proposed in [12]: we say a continuously differentiable function g satisfies the (α, γ, ε)-
regularity condition if for all x ∈ RD such that dist(x,X ) ≤ ε, we have

〈PX (x)− x,−∇g(x)〉
≥ α dist2(x,X ) + γ‖∇g(x)‖2.

(36)

We now compare (6) with (36). On one hand, (36) has similar form to (6) as both attempt to
provide lower bounds for the inner product between the gradient (or Riemannian subgradient) and
the vector x−PX (x) for any x that is close to X . On the other hand, (36) mainly differs from (6)
in two aspects. First note that unlike (36), there is no ‖G(B)‖ term (which is ‖∇g(x)‖2 in (36)) in
(6). This is mainly because as we illustrated before, the Riemannian subgradient does not vanish
even when B approaching B?. Thus, it is impossible to include the ‖G(B)‖ term into (6) as its left
hand side (LHS) goes to 0 when B tends to B?. Besides, (6) involves the term dist(B,B?), while
(36) has the term dist2(x,X ). If we apply the Cauchy-Schwarz inequality to the LHS of (36), we
obtain

γ‖∇g(x)‖ ≤ dist(x,X )− dist2(x,X )

‖∇g(x)‖
,

which implies ∇g(x) → 0 when dist(x,X ) → 0. This is in sharp contrast to (8). Informally
speaking, the regularity condition in (36) describes certain geometric property of smooth functions
while the Riemannian regularity condition in Definition 1 characterizes certain geometric property
of non-smooth functions.

12
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Figure 1: The convergence of Algorithm 1 (the Riemannian SubGM with geometrically diminishing
step size) for the DPCP problems with β = 0.8 and µ0 determined by line search method. Here
γ = M

M+N denotes the outlier ratio.

9 Additional Experiments

9.1 DPCP for Robust Subspace Learning

We use synthetic experiments under different settings to further verify the projected Riemannian
subgradient method with geometrically diminishing step sizes for the DPCP problem. We randomly
sample a subspace S of dimension d < D − 1, and uniformly at random sample N inliers and M
outliers with unit `2-norm. Denote by γ = M

M+N the outlier ratio. We set β = 0.8 for geometrically
diminishing step size with initial step size obtained by one iteration of a backtracking line search.
We define B0 to be the bottom eigenvector of X̃ X̃>. Figure 1 displays the convergence of θ (to 0)
with different d, N and outlier ratio γ. In particular, Figure 1a shows the convergence of θ with
D = 30, N = 500, γ = 0.7 and different subspace dimension d. We obsrve linear convergence in
this case, irrespectively the subspace dimension d. In Figure 1b, we set D = 30, d = 25, N = 500
and vary the outlier ratio γ from 0.1 to 0.9. We also observe linear convergence expept for the case
γ = 0.9, in which we have much more outliers than inliers. Finally we display experiments with
varied N in Figure 1c. We also observe linear convergence for Algorithm 1 given sufficient number
of inliers.

9.2 Orthogonal Dictionary Learning

As illustrated in the paper, we first generate a random orthogonal dictionary A ∈ RD×D with
D = 70. Set the sparsity level ρ = 0.3 and the number of data points N ≈ 10D1.5 = 5857. The
initialization B0 is randomly generated from the unit sphere SD−1. Figure 2 displays the effect of
the initial step size µ0 and the decaying factor β for Algorithm 1 with geometrically diminishing
step size µk = µ0β

k. We observe similar phenomena as for the DPCP problem. First observe from
Figure 2a that, as expected, β controls the convergence speed: a value of β too small (β = 0.7) may
result in no convergence, in agreement with (14) and (15); whereas when β ≥ 0.8, the algorithm
converges in a linear rate, with a larger value of β resulting in a slower convergence speed (comparing
β = 0.8, 0.9, 0.95). Figure 2b displays the effect of µ0 when β is fixed. We observe that a value of
µ0 too small (µ0 = 1) results in no convergence. This can be explained following the discussion
after Theorem 1: when µ0 is small, then the smallest allowable decaying factor β in (14) increases

13



when µ0 decreases and particularly β → 1 when µ0 → 0, thus contradicting the requirement β ≥ β
in (14) when we fix β = 0.9 and set µ0 too small (µ0 = 1).
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Figure 2: Convergence of Algorithm 1 with different initial step size µ0 and decaying factor β for
dictionary learning.

10 Proof of Lemma 5

10.1 Preliminaries

Suppose X1, . . . , Xn are n independent and identically distributed (i.i.d.) random observations from
a probability measure P on a measurable space (X ,A). Given a measurable function f : X → R,
the empirical process evaluated at f is defined as

Gnf :=
√
n

(
1

n

n∑
i=1

f(Xi)−
∫
f dP

)
, (37)

where
∫
f dP is the expectation of f under P and 1

n

∑n
i=1 f(Xi) is called the empirical distribu-

tion. There are several results concerning the supreme of Gnf over a given class F of measurable
functions.

Define an envelope function F : X → R such that |f | ≤ F for every f ∈ F . The Lr(P )-norm is
defined as ‖f‖Lr(P ) = (

∫
|f |r dP )1/r. We need one more definition for the so-called bracket number

which (informally speaking) measures the size of a class functions F . Given two functions l and u,
the bracket [l, u] is the set of all functions f with l ≤ f ≤ u. An ε-bracket in Lr(P ) is a bracket
[l, u] with

∫
(u − l)r dP ≤ εr (since l ≤ u, it is equivalent to say ‖u − l‖Lr(P ) ≤ ε). The bracket

number N[](ε,F , L2(P )) is the minimum number of ε-brackets needed to cover F .

Lemma 7 ( [13], Cor. 19.35). For any class F of measurable functions with envelope function F ,

E

[
sup
f∈F
|Gnf |

]
. J[](‖F‖P,2,F , L2(P )), (38)
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where J[](‖F‖P,2,F , L2(P )) is called the bracketing integral:

J[](‖F‖L2(P ),F , L2(P )) =

∫ ‖F‖L2(P )

0

√
log
(
N[](ε,F , L2(P ))

)
d ε. (39)

Lemma 8 (McDiarmid’s Inequality, [14]). Let Z1, . . . , Zn be real-valued independent random vari-
ables. Let f : Rn → R be a function that satisfies

sup
z1,··· ,zn,z′i

∣∣∣∣∣f(z1, · · · , zi−1, zi, zi+1, · · · , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, · · · , zn)

∣∣∣∣∣ ≤ ci,
for every i = 1, · · · , n. Then

P

[∣∣∣∣∣f(Z1, · · · , Zn)− E

[
f(Z1, · · · , Zn)

]∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
.

Lemma 9 (Vector-valued Comparison Inequality for Rademacher Process, [15], Corollary 2). Let
F be a class of functions f : RD → Rc and let hi : Rc → R be 1-Lipschitz functions. Then, for any
v1, . . . ,vN ∈ RD, we have

E

[
sup
f∈F

N∑
i=1

εihi(f(vi))

]
≤
√

2E

[
sup
f∈F

N∑
i=1

ε>i f(vi)

]
, (40)

where εi are indepedent Rademacher random variables, and each εi ∈ Rc is indepenent and it
contains indepedent Rademacher random variables.

Lemma 10 (Rademacher Symmetrization, [16], Thm. 1.1). Let F be a class of functions f : RD →
R such that 0 ≤ f(v) ≤ 1. Let εi be Rademacher random variables. Then for independent and
identically distributed random variables v1, . . . ,vn, we have

E

[
sup
f∈F

(
1

N

N∑
i=1

f(vi)− E[f(v)]

)]
≤ 2E

[
sup
f∈F

1

N

N∑
i=1

εif(vi)

]
, (41)

E

[
sup
f∈F

(
E[f(v)]− 1

N

N∑
i=1

f(vi)

)]
≤ 2E

[
sup
f∈F

1

N

N∑
i=1

εif(vi)

]
. (42)

We also require the covering number of S(D, c), which could be easily derived from the stan-
dard result for the sphere. Denote by Nε an ε-net of S(D, c) if every point B ∈ S(D, c) can be
approximated to within ε by some point B′ ∈ Nε. The minimal cardinality of an ε-net, denoted by
N (SD−1, ε), is called the covering number of S(D, c).

Lemma 11. (Covering Number of S(D, c), [11, Lemma 5.2]) For every ε > 0, the covering number
of the sphere SD−1 satisfies

N (SD−1, ε) ≤
(

1 +
2

ε

)cD
. (43)
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We finally require one more result converning the probability that
∥∥sign(o>B)− sign(o>B′)

∥∥
is small when B is very close to B′.

Lemma 12. Denote by B(B, ε1) the set of points that around B:

B(B, ε1) :=
{
B′ ∈ O(c,D) : ‖B −B′‖2 ≤ ε1

}
.

Let o ∈ SD−1 be drawn independently and uniformaly at random from the unit sphere SD−1.
For any B ∈ SD−1 and ε2 > 0, define

A :=
{
o ∈ RD :

∥∥sign(o>B)− sign(o>B′)
∥∥ ≤ ε2, ∀ B′ ∈ B((B), ε1)

}
. (44)

Then

P
[
o ∈ Ac

]
. cDD

ε21
ε22
,

where . means smaller than up to a universal constant which is independent of D.

Proof. We first bound the difference between sign(o>B) and sign(o>B′) by

∥∥sign(o>B)− sign(o>B′)
∥∥ =

∥∥∥∥∥ o>B

‖o>B‖
− o>B′∥∥o>B′∥∥

∥∥∥∥∥ =

∥∥∥∥∥
∥∥o>B′∥∥ o>B − ∥∥o>B∥∥ o>B′

‖o>B‖
∥∥o>B′∥∥

∥∥∥∥∥
=

∥∥∥∥∥
∥∥o>B′∥∥ o>(B −B′)−

(∥∥o>B∥∥ − ∥∥o>B′∥∥)o>B′
‖o>B‖

∥∥o>B′∥∥
∥∥∥∥∥

≤
∥∥B −B′

∥∥
‖o>B‖

+

∣∣∥∥o>B∥∥ − ∥∥o>B′∥∥∣∣
‖o>B‖

≤ 2

∥∥B −B′
∥∥

‖o>B‖
≤ 2

ε1
‖o>B‖

.

Thus, as long as
∥∥o>B∥∥ ≥ ε1

2ε2
, we have

∥∥sign(o>B)− sign(o>B′)
∥∥ ≤ ε2. Without loss of gener-

ality, suppose B =
[
e1 · · · ec

]
. Then, the probability that o ∈ Ac is bounded by the probability

that
∥∥o>B∥∥ ≤ ε1

2ε2
:

P
[
o ∈ Ac

]
≤ P

[∥∥o>B∥∥ ≤ ε1
2ε2

]
≤ P

[
o1 ≤

ε1
2ε2

]
. cDD

ε21
ε22
.

where o1 is the first element in o, and the last inequality follows from [10, Lemma 12].

10.2 Proof of Lemma 5

Before givin out the main proofs, we first preset the following useful result concerning the expecta-
tion of ηO.

Lemma 13. Suppose o1, · · · ,oM , are drawn independently and uniformly at random from the unit
sphere SD−1. Then

E

 sup
B,G∈O(c,D),G⊥B

∣∣∣∣∣∣
M∑
j=1

〈
sign(B>oj),G

>oj

〉∣∣∣∣∣∣
 .
√
cD log

(√
cDD

)√
M, (45)
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where . means smaller than up to a universal constant which is independent of D and M .

Proof. The main idea for proving Lemma 13 is to view

1√
M

sup
B,G∈O(c,D),G⊥B

∣∣∣∣∣∣
M∑
j=1

〈
sign(B>oj),G

>oj

〉∣∣∣∣∣∣
as an empirical process and then utilize Lemma 7. Towards that end, define the set

F := {(B,B) : B,G ∈ O(c,D),G ⊥ B} .

We further define the parameterized function as

fB,G(o) :=
〈

sign(B>o),G>o
〉
.

The class of functions we are interested in is F := {fB,G : (B,G) ∈ F}.
Note that for any fB,G ∈ F (i.e., (B,G) ∈ F), we have

E [fB,G(o)] = E
[〈

sign(B>o),G>o
〉]

= 0,

which together with (37) indicates that

M∑
j=1

〈
sign(B>o),G>o

〉
=
√
MGMfB,G,

where GMfB,G is the empirical process of fB,G.
To utilize Lemma 7, the rest of the proof is to show the corresponding bracketing integral is

finite for our problem. Since |fB,G(o)| ≤ ‖o‖2 for any (B,G) ∈ F, we know F (o) = ‖o‖2 is the
envelope function of F and ‖F‖P,2 = 1. Thus, we only need to consider the the bracket integral
J[](1,F , L2(P )), where P is now a probability measure on B(B,G). To that end, we first compute
the bracket number N[](ε,F , L2(P )).

Since our function fB,G is parameterized by (B,G), covering the class of functions F is related
to covering the set F. For any fixed (B,G) ∈ F, define the set of points that around (B,G):

B((B,G), ε1) :=

{
(B′,G′) ∈ F :

√
‖B −B′‖2F + ‖G−G′‖2F ≤ ε1

}
.

Then, denote by

A :=
{
o ∈ RD :

∥∥sign(o>B)− sign(o>B′)
∥∥ ≤ ε2, ∀ (B′,G′) ∈ B((B,G), ε1)

}
.

When B is close to B′, then A should cover most of o. If o ∈ A, then for any (B′,G′) ∈
B((B,G), ε1) we have

|fB,G(o)− fB′,G′(o)| =
∣∣∣〈sign(B>o),G>o

〉
−
〈

sign(B′>o),G′>o
〉∣∣∣

=
∣∣∣〈sign(B>o), (G−G′)>o

〉
−
〈(

sign(B′>o)− sign(B>o)
)
,G′>o

〉∣∣∣
≤
∥∥G−G′

∥∥ +
∥∥∥sign(B′>o)− sign(B>o)

∥∥∥
≤ ε1 + ε2.
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On the other hand, if o ∈ Ac, then for any (B′,G′) ∈ B((B,G), ε1) we have

|fB,G(o)− fB′,G′(o)| =
∣∣∣〈sign(B>o),G>o

〉∣∣∣+
∣∣∣〈sign(B′>o),G′>o

〉∣∣∣ ≤ 2.

To summary, we have

|fB,G(o)− fB′,G′(o)| ≤ ε1δA(o) + 2δAc(o), ∀ (B′,G′) ∈ B((B,G), ε1). (46)

We now define a bracket [l, u] by

l(o) = fB,G(o)− ε1δA(o)− 2δAc(o),

u(o) = fB,G(o) + ε1δA(o) + 2δAc(o),

where the indicator function δA(o) is defined as δA(o) =

{
1, o ∈ A
0, o ∈ Ac . Due to (46), we have

fB′,G′ ∈ [l, u] for all (B′,G′) ∈ B((B,G), ε1). Also,

‖u− l‖L2(P ) = ‖2ε1δA(o) + 4δAc(o)‖L2(P ) =
√

4(ε1 + ε2)2P[o ∈ A] + 16P[o ∈ Ac]

< 2(ε1 + ε2) + 4
√
P[o ∈ Ac] ≤ 2(ε1 + ε2) + 4

√
c1cDD

ε1
ε2
,

(47)

and the last inequality follows because P[o ∈ Ac] ≤ c1cDDε
2
1 according to Lemma 12 with c1 a

universial constant
Finally, the number of brackets to cover F is equal to the number of such balls B((B,G), ε1)

that cover F. Utilizing Lemma 11, the covering number for F is

N (F, ε1) ≤

(
1 +

2
√

2

ε1

)2cD

. (48)

Recall the definition that the bracket number N[](ε,F , L2(P )) is the minimum number of ε-
brackets needed to cover F , where an ε-bracket in L2(P ) is a bracket [l, u] with ‖u − l‖L2(P ) ≤ ε.

Thus, by letting ε2 =
√
ε1 and 2(ε1 +

√
ε2) + 4

√
c1cDD

√
ε1 = ε and plugging this into (48), we

obtain the bracket number

N[](ε,F , L2(P )) ≤
(

1 + c2
cDD

ε2

)2cD

,

where c2 is a universal constant. Now plug this into Lemma 7 gives

1√
M

E

[
sup

B,G∈O(c,D),G⊥B

∣∣∣∣∣∣
M∑
j=1

〈
sign(B>oj),G

>oj

〉∣∣∣∣∣∣
]
.
∫ 1

0

√(
1 + c2

cDD

ε2

)2cD

d ε

.
√
cD log (cDD) .
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We are now ready to prove Lemma 5. Let o′k be any points of SD−1. Since the product of compact

spaces is compact, there exist B∗,G∗ ∈ O(c,D) for which the value supB,G∈SD−1,B⊥g |
∑M
j=1 sign(B>oj)g

>oj |
is achieved. Then, we have∣∣∣∣∣ sup

B,G∈O(c,D),G⊥B

∣∣∣∣∣
M∑
j=1

〈
sign(B>oj),G

>oj

〉 ∣∣∣∣∣ (49)

− sup
B,G∈O(c,D),G⊥B

∣∣∣∣∣∑
j 6=k

〈
sign(B>oj),G

>oj

〉
+
〈

sign(B>o′k),G>o′k

〉 ∣∣∣∣∣
∣∣∣∣∣ (50)

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
M∑
j=1

〈
sign(B∗>oj),G

∗>oj

〉∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
j 6=k

〈
sign(B∗>oj),G

∗>oj

〉
+
〈

sign(B∗>o′k),G∗>o′k

〉∣∣∣∣∣∣
∣∣∣∣∣∣ (51)

≤

∣∣∣∣∣ 〈sign(B∗>ok),G∗>ok

〉
−
〈

sign(B∗>ok),G∗>o′k

〉 ∣∣∣∣∣ ≤ 2, (52)

where the second inequality follows from the reverse triangle inequality. Applying Lemma 8 with
ck = 2 and using Lemma 13, we obtain

P

 sup
B,G∈O(c,D),G⊥B

∣∣∣∣∣
M∑
j=1

〈
sign(B>oj),G

>oj

〉 ∣∣∣∣∣ & √cD log (cDD)
√
M + ε

 ≤ 2 exp

(
− 2ε2

4M

)
.

(53)
Finally, set ε = t

√
M to get

P

 sup
B,G∈O(c,D),G⊥B

∣∣∣∣∣
M∑
j=1

〈
sign(B>oj),G

>oj

〉 ∣∣∣∣∣ & (√cD log (cDD) + t
)√

M

 ≤ 2 exp(−t2/2).

(54)
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