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A Notations for Appendix

We use x 2 R and x 2 Rd to denote scalars and vectors, respectively; X 2 R and X 2 Rd to denote
scalar and vector random variables, respectively. The i-th coordinate of x (or X) is xi (or Xi), and
the j-th data point is denoted by xj or Xj . The Euclidean norm in Rd is k · k2. For two vectors
↵,� 2 Rd, we use \(↵,�) 2 (0,⇡) to denote the angle between them and h↵,�i to denote their
inner product. We use b� to denote the unit vector of �, and �? to denote a vector orthogonal to �.
Finally, Id is the d-by-d identity matrix, and ei 2 Rd is the i-th standard basis vector.

B Elementary Properties of Log-concave Distributions

A function f : Rd ! R is log-concave if it satisfies:

f(↵(x) + (1� ↵)y) � f(x)↵f(y)1�↵,

for every x,y 2 Rd and 0  ↵  1. Equivalently, log f is a concave function. We consider log-
concave distribution f which further satisfies:

R
Rd f(x)dx = 1. The following is a classical result for

log-concave distributions, which says that the log-concavity property is preserved by marginalization
and convolution.
Theorem B.1. All marginals as well as the density function of a log-concave distribution is log-
concave. The convolution of two log-concave distributions is again a log-concave distribution.

The log-concave distribution on R has the following monotone likelihood ratio property:
Proposition B.2. A density function f on R is log-concave if an only if the translation family
{f(·� ✓) : ✓ 2 R} has a monotone likelihood ratio: for every ✓1 < ✓2, the ratio p(x�✓2)

p(x�✓1) is a
monotone nondecreasing function of x.
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Furthermore, log-concave distribution has finite moments of all order.
Lemma B.3. For a rotation invariant log-concave density: Rd ! R, all the moments exist.

Proof. It suffices to show that
R
x |x1|kf(x) dx < 1. By the rotation invariant property, we need to

show:
Z

|x1|k
Z

x2,...xd

f(x) dx2 . . . dxd dx1 < 1. (11)

Note that f2:d(x1) :=
R
x2,...xd

f(x) dx2 . . . dxd = exp(�g2:d(x1)) is the marginal distribution, thus
log-concave by Theorem B.1. The problem is now further reduced to show that a one-dimensional
symmetric log-concave distribution f(x) = exp(�g(x)) has finite moments. By the convexity,

g(x) � g(x0) + @g(x0)(x� x0), (12)

for some x0 > 0 and g0(x0) > 0. In particular, we have that shown that there exist x0, a, b > 0 such
that g(x) � b+ a(x� x0). Therefore,

Z

x

|x|k exp(�g(x)) dx

=2

Z

x�0
xk exp(�g(x)) dx

2

Z

x�0
xk exp(�b� a(x� x0)) dx

=2 exp(�b+ ax0)

Z

x�0
xk exp(�ax) dx < 1.

We refer the reader to [23] and [26] for a detailed review for other properties of log-concave
distributions.

C Analysis for d = 1

In this section, we prove the convergence results for d = 1. Especially, the proof of Theorem 4.1
is presented in Section C.1, and the convergence rate for some explicit log-concave distribution
examples is presented in Section C.2.

C.1 Proof of Theorem 4.1

Recall the shorthand notation:

F�,�(x) = g

✓
1

�
|x+ �|

◆
� g

✓
1

�
|x� �|

◆
.

When � = 1, we abbreviate F�,� as F� . For readability, the theorem is restated here:
Theorem 4.1 (Global Convergence, 1D). Suppose that f 2 F satisfies the regularity condition. The
LS-EM update (4), � 7! M(�⇤,�), has exactly three fixed points: 0, �⇤ and ��⇤. Moreover, the
following one-step bound holds:

|M(�⇤,�)� sign(��⇤)�⇤|  (�⇤,�,�) ·
��� � sign(��⇤)�⇤��,

where the contraction factor

(�⇤,�,�) := EX⇠fmin(|�|,|�⇤|),�

⇥
1� tanh

�
0.5Fmin(|�|,|�⇤|),�(X)

�⇤

satisfies 0 < (�⇤,�,�) < 1 when � 62 {0,�⇤,��⇤}.
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Proof. Without loss of generality, �⇤ > 0. It is easy to verify that M(�⇤, 0) = 0, therefore 0 is a
trivial fixed point. We can also assume � > 0,�⇤ > 0 (in the case for � < 0, replace �⇤ with ��⇤

in the proof.) By scaling �⇤ ! �
⇤

�
, � ! �

�
and M(�⇤,�) ! M(�⇤

,�)
�

, we can further assume that
� = 1 in the following analysis.

Now we establish the bound for |M(�⇤,�)� �⇤|. When � > �⇤,
M(�⇤,�)� �⇤ = M(�⇤,�)�M(�,�) + � � �⇤ (13)

= (� � �⇤)

✓
1� @M(z,�)

@z
|z2(�⇤,�)

◆
(14)

 sup
z2(�⇤,�)

✓
1� @M(z,�)

@z

◆
(� � �⇤). (15)

In (13), we decompose the difference using the self consistency property of the LS-EM operator
(Lemma C.1), i.e, M(�,�) = �. This allows us to apply the intermediate value theorem for function
M(·,�) with respect to the first argument in (14). A similar bound holds for the case � < �⇤:

�⇤ �M(�,�⇤)  sup
z2(�,�⇤)

✓
1� @M(z,�)

@z

◆
(�⇤ � �). (16)

Combining inequality (15) and (16), we conclude that: If ��⇤ > 0,

|M(�⇤,�)� �⇤|  sup
t2[0,1]


1� @M(z,�)

@z
|z=t�⇤+(1�t)�

�

| {z }
(�⇤,�)

|� � �⇤|. (17)

It remains to upper bound 1 � @M(z,�)
@z

, where z is between � and �⇤. The exact expression for
@M(z,�)

@z
can be computed as follows:

M(z,�) =EX⇠fzX tanh (0.5F�(X))

=

Z

x

f(x� z)(x) tanh (0.5F�(x)) dx

=

Z

x

f(x)(x+ z) tanh (0.5F�(x+ z))
| {z }

h(x,z)

dx. (Change of Variable)

Using the regularity condition, we can differentiate M(z,�) with respect to z by interchanging the
order of differentiation and integral: @

@z

R
x
h(x, z)dx =

R
x

@

@z
h(x, z)dx. Note that the expression

for @h(x,z)
@z

can be computed easily using the product rule:

@h(x, z)

@z
=f(x)

 
tanh (0.5F�(x+ z))

+ 0.5(x+ z)

✓
@

@x
F�(x+ z)

◆
tanh0 (0.5F�(x+ z))

!
,

where in the last step, we use the fact that @

@x
F�(x+ z) = @

@z
F�(x+ z). Therefore

@M(z,�)

@z
=EX⇠fz tanh (0.5F�(X))
| {z }

T1

+ EX⇠fz

⇥
0.5XF 0

�
(X) tanh0 (0.5F�(X))

⇤
| {z }

T2

.

In Lemma C.2, we show that T1, T2 � 0. Consequently, we obtain a lower bound for @M(z,�)
@z

as
follows:

@M(z,�)

@z
�EX⇠fz tanh (0.5F�(X)) (18)

�EX⇠fmin(�,�⇤)
tanh

�
0.5Fmin(�,�⇤)(X)

�
. (19)
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Inequality (19) holds since EX⇠fz tanh (0.5F�(X)) increases with z and �, which is established in
Lemma C.2. Combining inequalities (17) and (19) yields the desired bound:

|M(�⇤,�)� �⇤|  EX⇠fmin(�,�⇤)
[1� tanh(0.5Fmin(�,�⇤)(X))]|� � �⇤|. (20)

(�⇤,�,�) 2 (0, 1) follows from Corollary C.5. From (20), we observe that M(�⇤,�,�) moves
closer to �⇤ whenever � > 0 and � 6= �⇤, therefore, �⇤ is the unique fixed point on � > 0. Similarly,
��⇤ is the unique fixed point on � < 0. We have completed the proof of Theorem 4.1.

C.1.1 Supporting Lemmas for Theorem 4.1

Lemma C.1. The LS-EM operator is consistent: M(�,�) = � for all �.

Proof. This follows from the following algebra:

M(�,�) =

Z

x

1

2
(f(x� �) + f(x+ �))x


f(x� �)� f(x+ �)

f(x� �) + f(x+ �)

�
dx

=
1

2

Z

x

x(f(x� �)� f(x+ �)) dx

=
1

2

Z

x

(x� �)f(x� �) dx� 1

2

Z
(x+ �)f(x+ �) dx+ �

= �,

where the last step holds since x ! xf(x) is an odd function. Consequently, the integral
R
x
(x �

�)f(x� �) dx and
R
x
(x+ �)f(x+ �) dx vanishes.

Lemma C.2. Suppose the density function f satisfies the regularity condition,

@M(z,�)

@z
=EX⇠fz tanh (0.5F�(X))
| {z }

T1

+ EX⇠fz

⇥
0.5XF 0

�
(X) tanh0 (0.5F�(X))

⇤
| {z }

T2

.

Moreover, T1 and T2 have following properties:

• If �z > 0, then T1 > 0 and T2 > 0;

• T1 is an increasing function with respect to both � and z.

Proof. Without loss of generality, we assume z > 0 and � > 0. Note that the integrand for both
T1 and T2 are odd in x. Moreover, they are both strictly positive on a subset of {x : x � 0} with a
positive measure when � > 0 following the property of F�(x) (See Lemma C.3):

• For tanh(0.5F�(x)), we have that F�(x) > 0 on x 2 (0,1). Thus the integrand for T1 is
strictly positive when x > 0.

• For xF 0
�
(x) tanh0 (0.5F�(x)), we have that x tanh0 (0.5F�(x)) > 0 when x > 0.

Moreover, F 0
�
(x) > 0 on a subset of (0,1) with positive measure. It follows that

xF 0
�
(x) tanh0 (0.5F�(x)) > 0 on a subset of (0,1) with positive measure.

Using Lemma C.4, we can show that both T1 and T2 are positive. To see how T1 changes with respect
to �, let us take the derivative with respect to � (again, regularity condition allows us to change the
order between differentiation and integration):

@T1

@�
= EX⇠fz0.5

@F�(X)

@�
tanh0(0.5F�(X)).

The integrand is even in x. Meanwhile, @F�(x)
@�

� 0 as a function of x and is positive on a subset of
(0,1) with positive measure from Lemma C.3. Therefore the integrand is again positive on a subset

14



of [0,1] with non-zero measure. We have that @T1
@�

> 0 and T1 is an increasing function with respect
to �.

To see how T1 changes with respect to z, let us take the derivative with respect to z:

@T1

@z
= EX⇠fz0.5

@F�(X)

@X
tanh0(0.5F�(X)).

The integrand is even in x. @F�(X)
@X

� 0 and is positive on a subset of (0,1) with positive measure
from Lemma C.3. Therefore, @T1

@z
> 0 and T1 is increasing with respect to z.

Lemma C.3 (Property of F�). F�(x) is an odd function in x with F�(x) > 0 on (0,1]. Both @F�(x)
@�

and @F�(x)
@x

are non-negative on [0,1]. Moreover, they are strictly positive as a function of x on a
subset of [0,1].

Proof. F�(x) is an odd function in x since

F�(�x) =g(|� x+ �|)� g(|� x� �|)
=g(|x� �|)� g(|x+ �|) = �F�(x).

It follows that @F�(x)
@x

and @F�(x)
@�

are even functions in x. When x � 0,

F�(x) =

⇢
g(x+ �)� g(� � x) x 2 [0,�]
g(x+ �)� g(x� �) x 2 (�,1).

Since g is strictly increasing on (0,1), it is easy to see that F�(x) > 0 when x > 0. Taking the
partial derivative with respect to x and � respectively, we have:

@F�(x)

@�
=

⇢
g0(x+ �)� g0(� � x) x 2 [0,�]
g0(x+ �) + g0(x� �) x 2 (�,1);

and
@F�(x)

@x
=

⇢
g0(x+ �) + g0(� � x) x 2 [0,�]
g0(x+ �)� g0(x� �) x 2 (�,1).

Since g is convex, the derivative is non-decreasing. It follows that both g0(x+ �)� g0(� � x) � 0
and g0(x+ �)� g0(x� �) � 0 in the range [0,�], and (�,1) respectively. Moreover, g is strictly
increasing on [0,1), it must have positive derivative in (0,1). Therefore, g0(x+�)+g0(x��) > 0
and g0(x+ �) + g0(� � x) > 0 on the range (�,1) and ([0,�]) respectively.

Lemma C.4 (positive integral). Let f 2 F . Let S ✓ R be a set with non-zero measure. Suppose that
h is an odd function with h(x) � 0 on [0,1] and h(x) > 0 on S. If z > 0, the following holds:

EX⇠fzh(X) > 0. (21)

Proof.

RX⇠fzh(X) =

Z

x

f(x� z)h(x) dx

=

Z

x�0
f(x� z)h(x) dx+

Z

x0
f(x� z)h(x) dx

=

Z

x�0
f(x� z)h(x) dx+

Z

x�0
f(x+ z)(�h(x)) dx (22)

=

Z

x�0
(f(x� z)� f(x+ z))h(x) dx

=

Z

x2S

(f(x� z)� f(x+ z))h(x) dx

(22) holds since h is an odd function: h(�x) = �h(x). Since f 2 F , f(x� z)� f(x+ z) > 0 on
x � 0. We thus conclude that the above integral is positive.
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Corollary C.5. If z > 0, 0 < Ex⇠z(1� tanh( g(x+z)�g(x�z)
2 )) < 1.

Proof. Since | tanh(·)| < 1,
EX⇠fz tanh(Fz(X)) < 1,

the left hand side of the inequality is proved. For the right hand side, we use the previous argument
that (1)Fz(x) > 0 and (2) Fz(·) is odd to conclude that

EX⇠fz tanh(Fz(X)) > 0

by Lemma C.4. The right hand side of the inequality is proved.

C.2 Convergence Rate for Special Distributions

In the following we compute an explicit convergence rate for popular distributions. Without loss of
generality, we can assume � = 1 and replace � by �

�
in the formal statement.

• Gaussian: f(x) = 1p
2⇡

exp
⇣
�x

2

2

⌘
, and tanh(0.5F�(x)) = tanh (�x). We compute

(�,�⇤,�) as follows: for any � > 0,

EX⇠f� [1� tanh (�X)]

=EX⇠f�

2 exp(��X)

exp(��X) + exp(�X)

EX⇠f� exp (��X) = exp

✓
��2

2

◆
.

Corollary C.6 (Gaussian). (�,�⇤,�) = exp
⇣
�min(|�|,|�⇤|)2

2�2

⌘
.

• Laplace: f(x) = 1
2 exp(�|x|), and tanh(0.5F�(x)) =

exp(�|x��|)�exp(�|x+�|)
exp(�|x��|)+exp(�|x+�|) .

EX⇠f� [1� tanh(0.5F�(X))]

=

Z

x

exp(�|x� �|) exp(�|x+ �|)
exp(�|x� �|) + exp(�|x+ �|) dx

=

Z

x��
exp(x� �)

exp(x+ �)

exp(x� �) + exp(x+ �)
dx

+

Z

x��
exp(�x+ �)

exp(�x� �)

exp(�x+ �) + exp(�x� �)
dx

+

Z

x2(��,�)
exp(x� �)

exp(�x� �)

exp(x� �) + exp(�x� �)
dx

=2
exp(��)

exp(��) + exp(+�)
+ exp(��)

Z
�

x=��

1

exp(x) + exp(�x)
dx

2
exp(��)

exp(��) + exp(+�)
+ 2

1

1 + exp(�2�)
exp(��)(1� exp(��)) (23)

=2
exp(��)

1 + exp(�2�)

where in (23) we used the numerical inequality:

1

exp(x) + exp(�x)
 1

1 + exp(�2�)
exp(�x) 8x 2 (0,�).

Corollary C.7 (Laplace). (�,�⇤,�) =
2 exp(�min(|�|,|�⇤|)

�/�0
)

1+exp(�2min(|�|,|�⇤|)
�/�0

)
. with �0 =

p
2 is the number that

makes the Laplace distribution has variance 1 for normalization purpose.
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• Logistic: f(x) = exp(x)
(1+exp(x))2 , and tanh(0.5F�(x)) =

(exp(�)�exp(��))(exp(2x)�1)
(exp(�)+exp(��))(1+exp(2x))+4 exp(x) .

EX⇠f� [1� tanh(0.5F�(X))]

=2

Z exp(x��)
(1+exp(x��))2

exp(x+�)
(1+exp(x+�))2

exp(x��)
(1+exp(x��))2 + exp(x+�)

(1+exp(x+�))2

dx

=2

Z
exp(x)

exp(��)(1 + exp(x+ �))2 + exp(�)(1 + exp(x� �))2
dx

=2

Z
exp(x)

exp(��) + exp(�) + 4 exp(x) + exp(2x)(exp(�) + exp(��))
dx

=2

Z
1

(exp(�x) + exp(x))(exp(��) + exp(�)) + 4
dx

=4

Z

x�0

1

(1 + exp(2x))(exp(��) + exp(�)) + 4 exp(x)
d [exp(x)]

=4

Z 1

s=1

1

(1 + s2)c+ 4s
ds,

where c = exp(��) + exp(�). We can further upper bound the last integral by the following:

=4

Z 1

s=1

1

(
p
cs+ 2p

c
)2 + c� 4

c

ds

4
1p
c
[� 1

x
]1
x=

p
c+ 2p

c

=
4p
c

1
p
c+ 2p

c

=
4

c+ 2
=

4

exp(�) + exp(��) + 2
< 1.

where in the second step, we use the fact that c � 2.
Corollary C.8 (Logistic). (�,�⇤,�) = 4

exp
⇣

min(|�|,|�⇤|)
�/�0

⌘
+exp

⇣
�min(|�|,|�⇤|)

�/�0

⌘
+2

with �0 =

⇡/
p
3 is the number that makes the logistic distribution has variance 1 for normalization purpose.

D Analysis for d > 1

In this section, we prove the convergence result for the setting d > 1. In Section D.1, we prove
for Lemma 4.4 that shows the population LS-EM update is two dimensional; in Section D.2, we
present the proof for Theorem 4.5 on the asymptotic convergence to the true location parameter; in
Section D.3, we prove Lemma 4.3 that demonstrates the non-contraction phenomenon of the LS-EM
update within a general log-concave distribution family.

D.1 Proof of Lemma 4.4

For readability we restate the lemma below.
Lemma 4.4 (LS-EM is 2-Dimensional). The LS-EM update satisfies: M(�⇤,�) 2 span(�,�⇤).
Moreover, if \(�,�⇤) = 0 or \(�,�⇤) = ⇡/2, then M(�⇤,�) 2 span(�).

Proof. Using the rotation invariance property of the log-concave distribution, the class we are
interested in, we use the following local orthonormal basis {v1, . . . ,vd}, with v1 = b�, and v2 = b�

?

satisfying span(v1,v2) =span(�,�⇤) and hv2,�
⇤i � 0. Under this basis, � and �⇤ have non-zero

entries only in the first two coordinates:

� = (k�k2, 0, . . . , 0), �⇤ = (h�⇤, b�i| {z }
�
⇤
1

, h�⇤, b�
?
i| {z }

�
⇤
2

, 0, . . . , 0).
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Here we use the shorthand notation �⇤
1 := h�⇤, b�i = k�⇤k2 cos(\�,�⇤) and �⇤

2 := h�⇤, b�
?
i =

k�⇤k2 sin(\�,�⇤). Meanwhile,

x� � = (x1 � k�k2, x2, . . . , xd), x� �⇤ = (x1 � �⇤
1 , x2 � �⇤

2 , x3, . . . , xd).

Recall the expression (7) for the least-squares EM update:

�+ = EX⇠f�⇤,�
X tanh

�
0.5F�,�(X)

�
,

the j-th coordinate of �+ is:

�+
j
= Ex⇠f�⇤,�

xj tanh (0.5F�,�(x)) (24)

=

Z

x�j

Z

xj

1

�dCg

exp

✓
�g

✓�� 1
�
(x� �⇤)

��
2

◆◆
xj tanh (0.5F�,�(x))

| {z }
hj

dxj dx�j ,

where x�j denotes all the coordinates that is not xj . It is easy to see hj is an odd function in xj

when j � 3, therefore �+
j
= 0 for all j � 3 and the least-squares M-step preserves the 2 dimensional

structure. Moreover, when �⇤
1 = 0, i.e, � is in the orthogonal direction to �⇤, �+

2 = 0 as hj is an odd
function in x1. When �⇤

2 = 0, i.e, � is in the same direction as �⇤, �+
2 = 0 as hj is an odd function

in x2. In other words, Span(�⇤) and Span(�⇤?) are 1-dimensional invariant subspaces.

D.2 Proof of Theorem 4.5

From Lemma 4.4, we use the rotation invariance property to rewrite F�,�(x) as follows:

F�,�(x) = g

✓
1

�
k (x1 + k�k2, x2, . . . , xd) k2

◆
� g

✓
1

�
k (x1 � k�k2, x2, . . . , xd) k2

◆
.

F�,�(x) is an odd function in x1, and it is an even function in x2, . . . , xd. When � = 1, we use
F� for the short hand notation. Similar as before, by scaling: � ! 1

�
�, �⇤ ! 1

�
�⇤,M(�⇤,�) !

1
�
M(�⇤,�), we assume � = 1 in the following analysis. F� has a similar property as in Lemma C.3

in the 1-D case.
Corollary D.1 (property of F�). Suppose that � 6= 0. F�(x) > 0 when x1 > 0. Both @F�

x1
and @F�

k�k
are non-negative. Moreover, they are strictly positive as a function of x1 on a subset of (0,1) with
positive measure.

For readability we restate the theorem below.
Theorem 4.5 (Global Convergence, d-Dimensional). Suppose that f 2 F satisfies the regularity
condition. The LS-EM algorithm converges to sign(h�0,�⇤i)�⇤ from any randomly initialized point
�0 that is not orthogonal to �⇤.

Proof. Let �0 denote an initial point that is not in the orthogonal direction to �⇤. Without loss of
generality, we assume h�0,�⇤i > 0. There are two cases for �0, either �0 is in the span of �⇤ or
�0 is not in the direction of �⇤. In the previous case, the iterates remain in the direction of �⇤ and
converge to �⇤ from Lemma D.3.

In the latter case, we argue that all the accumulation points (existence by the boundedness of the
iterate) must be in the direction of �⇤. If there exists some t > 0 such that \(�t,�⇤) = 0, we are
reduced to the previous case where the iterates remain in the direction of �⇤. From now on, we
assume that \(�t,�⇤) > 0 for all t � 0.

Lemma D.2 establishes the crucial angle decreasing property of the variant EM update, which says
that the angle between the iterates and �⇤ strictly decreases, i.e, \(�t+1,�⇤) < \(�t,�⇤). Indeed�
\(�t,�⇤)

 
is a monotone decreasing sequence, thus this sequence converges to ✓1 � 0, with

\(�t,�⇤) � ✓1 for all t.

If ✓1 = 0, we are done. Otherwise, let {�nk} be a subsequence converging to an accumulation point
�1. We deduce that \(�1,�⇤) = ✓1 > 0 since any subsequence of

�
\(�t,�⇤)

 
converges to ✓1.
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By the continuity of variant EM operator, the subsequence {M(�nk ,�⇤)} converges to M(�1,�⇤).
Note that (1) {M(�nk ,�⇤)} =

�
�nk+1 and (2) \(M(�1,�⇤),�⇤) < ✓1. Thus, there must be

some k such that \(�nk+1,�⇤) is strictly between \(M(�1,�⇤),�⇤) and ✓1, contradicting with
the previous analysis that \(�t,�⇤) � ✓1 for all t > 0. This completes the argument showing that
all the accumulation points must be in the direction of �⇤.

Next we show that �⇤ is the only point of convergence.

Let F be the set of accumulation points of the iterates
�
�t
 

, which are all in the direction of �⇤.
Since h�0,�⇤i > 0, all the future iterates have positive correlation with �⇤ by Lemma D.4. In
particular, it implies that any limit point has non-negative correlation with �⇤. We first show that if
F contains �⇤, then it can not contain elements other than �⇤. Indeed, since �⇤ is a limit point, for
any ✏, there exists �k such that k�k � �⇤k < ✏ and \(�k,�⇤) is very small. We know that all the
iterates after �k remain in a local region of �⇤ of radius ✏ from Corollary D.7. Thus any other limit
points must be inside this local region. Since it holds for arbitrary ✏, �⇤ is the only limit point.

Similarly, we can show that F can not contain any non-zero �1 6= �⇤. Otherwise, we can use the
continuity of the least-squares EM operator to show that there exists some k such that �k falls into
a local neighborhood of �⇤ that does not include �1. (The reason is as follows: since �1 2 F ,
there exists t > 0 such that �t that is close to �1. Applying the least-squares EM operator to �t for
finitely many times produces an iterate that is very close to �⇤ by Theorem 4.1.) On the other hand,
we know that all the iterates after �k remain in a local region of �⇤ that does not include �1 once it
is inside from Corollary D.7, thus �1 can not be a limit point of the iterates, a contradiction.

There are only two possibilities left: (a) {0}, and (b) {�⇤}. We argue that (a) is not possible either.
(a) implies that limt �

t ! 0. In particular, there exist N such that for all n > N , k�nk2  1
8k�

⇤k2.
In Lemma D.8, we show that if all the iterates after �n are non-zero and have norm no greater than
1
8k�

⇤k2, the norm of the iterates must be lower bounded in the limit. Thus they can not converge to
0. (b) is the only possibility and we are done.

D.2.1 Supporting Lemmas for Theorem 4.5

Below we record several technical lemmas used in the proof of Theorem 4.5.

Lemma D.2 (Angle Decreasing). Suppose that the density function f satisfies the regularity condition.
�+
2 > 0 whenever �⇤

2 > 0 or �⇤
1 > 0 .

Proof. Assume � = 1. Define the following function:

�+
2 (t) =

Z

x

1

Cg

exp (�g (k (x1 � t�⇤
1 , x2 � �⇤

2 , x3, . . . , xd) k2))x2 tanh(0.5F�(x)) dx.

�+
2 = �+

2 (1). We observe that �+
2 (0) = 0 since the integrand is an odd function in x1. The mean

value theorem tells us:

�+
2 =

@

@t
�+
2 (t) |t2(0,1) .
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Under the regularity condition, we can differentiate inside the integral and obtain the following
expression for the derivative of �+

2 (t) with respect to t:

@

@t
�+
2 (t)

=
@

@t

Z

x

1

Cg

exp (�g (k (x1, x2 � �⇤
2 , x3, . . . , xd) k2))x2 tanh(0.5F�(x+ t�⇤

1e1)) dx

=0.5�⇤
1

Z

x

1

Cg

exp (�g (k (x1, x2 � �⇤
2 , x3, . . . , xd) k2))x2

@F�

@x1
tanh0(0.5F�(x+ t�⇤

1e1)) dx

=0.5�⇤
1 ·

Z

x2

Z

x2�0

1

Cg

(f (x1 � t�⇤
1 , x2 � �⇤

2 , x3, . . . , xd)� f (x1 � t�⇤
1 , x2 + �⇤

2 , x3, . . . , xd)) ·

x2

✓
@

@x1
F�(x)

◆
tanh0(0.5F�(x)) dx2 dx�2

=0.5�⇤
1 ·

Z

x1,2

Z

x2�0,x1�0

1

Cg

(f (x1 � t�⇤
1 , x2 � �⇤

2 , x3, . . . , xd)� f (x1 � t�⇤
1 , x2 + �⇤

2 , x3, . . . , xd)

+ f (x1 + t�⇤
1 , x2 � �⇤

2 , x3, . . . , xd)� f (x1 + t�⇤
1 , x2 + �⇤

2 , x3, . . . , xd))·

x2

✓
@

@x1
F�(x)

◆
tanh0(0.5F�(x)) dx2 dx1 dxbar1,2.

The last step holds as x2

⇣
@

@x1
F�(x)

⌘
tanh0(0.5F�(x)) is an even function in x1. When �⇤

2 > 0

and x2 > 0, the difference term of the density function:

f (x1 � t�⇤
1 , x2 � �⇤

2 , x3, . . . , xd)� f (x1 � t�⇤
1 , x2 + �⇤

2 , x3, . . . , xd) > 0,

f (x1 + t�⇤
1 , x2 � �⇤

2 , x3, . . . , xd)� f (x1 + t�⇤
1 , x2 + �⇤

2 , x3, . . . , xd) > 0,

and x2 tanh
0(0.5F�(x)) > 0. Moreover, @

@x1
F�(x) � 0 and it is strictly positive as a function

of x1 on a subset of (0,1) with a positive measure from Corollary D.1 . We thus conclude that
@

@t
�+
2 (t) > 0 and �+

2 > 0.

Lemma D.3 (Fixed Point Structure in span(�⇤)). Suppose that the density function f satisfies the
regularity condition, 0,�⇤ and ��⇤ are the only fixed points of the least-squares EM update in
span(�⇤).

Proof. Assume � = 1. By Lemma 4.4, span(�⇤) is an invariant subspace. We only need to consider
�+
1 , which makes the problem one dimensional.

�+
1 =

Z

x

1

Cg

exp

 
� g (k(x1 � k�⇤k2, x2, . . . , xd)k2)

!
x1 tanh(0.5F�(x)) dx. (25)

0 is a trivial fixed point and we assume that k�k > 0 in the following. Conditioning on x2, . . . , xd,
g
�
1
�
k(x1, x2, . . . , xd)k2

�
is an even convex function in x1, and it is strictly increasing when x1 � 0.

Theorem 4.1 tells us that:
���
Z

x1

1

C2:d
exp

 
� g (k(x1 � k�⇤k2, x2, . . . , xd)k2)

!
x1 tanh(0.5F�(x)) dx1 � k�⇤k2

���

2:d(k�k2, k�⇤k2,�)
��k�k2 � k�⇤k2

��,

for some 2:d(k�k2, k�⇤k2,�) 2 (0, 1). C2:d is the normalization factor for the density that is
proportional to

exp

 
� g (k(x1 � k�⇤k2, x2, . . . , xd)k2)

!

conditioning on x2, . . . , xd. Now integrating over x2, . . . , xd, we get
���+

1 � k�⇤k2
�� <

��k�k2 �
k�⇤k2

�� for all k�k2 > 0. The conclusion follows.

20



Establishing Local Convergence In the following, we denote B(�⇤,�) as the bound for the
least-squares EM update. By Cauchy-Schwartz, we know that

k�+
i
k2 

q
EX⇠f�⇤,�

X2
i

8i.

Since the least-squares EM update is a two dimensional object, we can bound �+ by
q
EX⇠f�⇤,�

(X2
1 +X2

2 ) := B(�⇤,�).

Lemma D.4 (Along b�). Suppose that the density f satisfies the regularity condition. We further
assume that

sup
t2[0,1],k�kB(�⇤

,�)

Z
1

�dCg

(exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆
@

@x2
[x1 tanh (0.5F�,�(x))] dx

is bounded by D1(�
⇤,�) in absolute value. When k�k2 > 0 and �⇤

1 > 0, the least-squares EM
update satisfies: �+

1 > 0 and
|�+

1 � �⇤|  1(�
⇤,�,�)

��k�k2 � �⇤
1

��+D1(�
⇤,�)�⇤

2 .

for some 1(�,�
⇤,�) 2 (0, 1).

Proof. Assume � = 1. Recall that:

�+
1 =

Z

x1�0

1

�dCg

 
exp (�g (k(x1 � �⇤

1 , x2 � �⇤
2 , x3, . . . , xd)k2))

+ exp (�g (k(x1 + �⇤
1 , x2 � �⇤

2 , x3, . . . , xd)k2))
!

· x1 tanh (0.5F�(x)) dx.

When k�k2 > 0, the integrand is strictly positive as g
�
1
�
k(x1 + k�k, x2, . . . , xd)k2

�
�

g
�
1
�
k(x1 � k�k2, x2, . . . , xd)k2

�
> 0 on the region where x1 > 0. Thus

�+
1 > 0.

This implies that k�+k2 > 0 whenever k�k2 > 0.

Let us consider the following (slightly modified) quantity:

�++
1 =

Z
1

Cg

exp (�g (k(x1 � �⇤
1 , x2, . . . , xd)k2))x1 tanh (0.5F�(x)) dx

=

Z

x�1

Z

x1

1

Cg

exp (�g (k(x1 � �⇤
1 , x2, . . . , xd)k2))x1 tanh (0.5F�(x)) dx1 dx�1.

It is easy to see that conditioning on x2, . . . , xd, the inner integral is a one-dimensional least-squares
EM operator with current estimate k�k2 and the true parameter �⇤

1 . Applying Theorem 4.1, we have
���
Z

x1

1

C2:d
exp (�g (k(x1 � �⇤

1 , x2, . . . , xd)k2))x1 tanh (0.5F�(x)) dx1 � �⇤
1

���

2:d(min(�⇤
1 , k�k2),�)

��k�k2 � �⇤
1

��,
where 2:d(min(�⇤

1 , k�k2),�) < 1 is a contraction factor depending on x2, . . . , xd. Integrating over
x2, . . . , xd, we obtain

|�++
1 � �⇤

1 |  1(min(�⇤
1 , k�k2),�)

��k�k2 � �⇤
1

��. (26)

Next we bound �+
1 � �++

1 . The regularity condition allows us to change the order of differentiation
and integral.

�+
1 � �++

1

=
@

@t

Z
1

Cg

(exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆
x1 tanh (0.5F�(x)) dx

�
|t2(0,1)

=�⇤
2

Z
1

Cg

(exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆
@

@x2
[x1 tanh (0.5F�(x))] dx

�

D1(�
⇤,�)�⇤

2 , (27)
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where in the last step, we used the assumption that the integral is uniformly bounded by D1(�
⇤,�),

which only depends on �⇤ and � (This assumption is usually satisfied by the regularity condition.)

Combining (26) and (27), we can bound �+
1 � �⇤

1 as follows:

|�+
1 � �⇤

1 | =|�++
1 � �⇤

1 + �+
1 � �++

1 |
|�++

1 � �⇤
1 |+ |�+

1 � �++
1 |

1(min(�⇤
1 , k�k),�)

��k�k2 � �⇤
1

��+D1(�
⇤,�)�⇤

2 , (28)

and the conclusion follows.

Lemma D.5 (Orthogonal to �⇤). Assume that the density function f satisfies the regularity condition.
We further assume that

sup
t2[0,1],k�k2B(�⇤

,�)

Z
1

�dCg

exp

✓
g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆ ���x2
@

@x2
[0.5F�,�(x)]

��� dx

is uniformly bounded by D2(�
⇤,�). The following holds:

|�⇤
2 � �+

2 |  2(�,�
⇤,�)�⇤

2 +D2(�
⇤,�)�⇤

2

for some 2(�,�
⇤,�) 2 (0, 1).

Proof. Assume � = 1. Recall that

�+
2 =

Z
1

�dCg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � �⇤
2 , . . . , xd)k1

◆◆
· x2 tanh (0.5F�(x)) dx.

Consider the following quantity:

�++
2 :=

Z
1

�dCg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2, . . . , xd)k2
◆◆

· x2 tanh (0.5F�(x)) dx = 0,

since the integrand is an odd function in x2. Using the mean value theorem, we have:

�+
2 =

@

@t

Z
1

�dCg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆
x2 tanh (0.5F�(x)) dx |t2[0,1] .

Under the regularity condition, we can interchange the order of differentiation and the integral:

�+
2 =�⇤

2 ·
Z

1

Cg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆
tanh (0.5F�(x)) dx

+ �⇤
2 ·

Z
1

Cg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆
x2

@

@x2
[0.5F�(x)] dx.

(29)

Let us define:

2(k�k,�⇤,�) := sup
t2(0,1)

Z
1

�dCg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1 , x2 � t�⇤
2 , . . . , xd)k2

◆◆
tanh (0.5F�,�(x)) dx.

The first term for �+
2 (29) is non-negative and is bounded by 2(�,�

⇤,�)�⇤
2 and the second term of

�+
2 (29) is bounded by D2(�

⇤,�)�⇤
2 by the assumption. The conclusion follows.

Proposition D.6 (Local Quantitative bound). Suppose that the density function f satisfies the regu-
larity condition, and further assume that the conditions in Lemma D.4 and D.5 holds. Then there
exists H(�⇤,�) such that the following holds:

k�+ � �⇤k22  (�,�⇤,�)2k� � �⇤k22 +H(�⇤,�) sin(\(�,�⇤)). (30)

where (�,�⇤,�) < 1.
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Proof. Since the least-squares EM update is bounded, we can assume that k�k2 is bounded without
loss of generality. Furthermore, k�k2  B(�⇤,�).

k�+ � �⇤k22 =k�+
1 � �⇤

1k2 + k�+
2 � �⇤

2k2
(1|k�k2 � �⇤

1 |+D1�
⇤
2)

2 + (2�
⇤
2 +D2�

⇤
2)

2

=2
1|k�k2 � �⇤

1 |2 + 2D1�
⇤
21|k�k2 � �⇤

1 |+D2
1(�

⇤
2)

2+

2
2(�

⇤
2)

2 + 2D2�
⇤
22�

⇤
2 +D2

2(�
⇤
2)

2

2k� � �⇤k2 +H(�⇤,�) sin(\(�,�⇤)).

In the last step,  = max(1,2), and H absorbs all the coefficient of �⇤
2 in the cross term. It is easy

to check that H only depends on �⇤ and � as k�k2 is bounded by B(�⇤,�).

Establishing Local Stable Region Define

⌧ := max
�2N�⇤ (⌧)

(�,�⇤,�) (31)

be the worst-case contraction factor in the ⌧ -neighborhood of �⇤, namely N�⇤(⌧) =
{� : k� � �⇤k2  ⌧k�⇤k2}.
Corollary D.7 (Local Stable Region). Let D be a positive number satisfying D  1

2k�
⇤k2. Suppose

that �0 2 Rd is such that (1) sin(\(�0,�⇤))  D
2(1�2

0.5)
H(�⇤

,�) (2) k�0 � �⇤k2  D, where H(�⇤,�)

is defined in Corollary D.6. The following holds for the least-squares EM update �1 starting at �0:

k�1 � �⇤k2  D, sin(\(�1,�⇤))  D2(1� 2
0.5)

H(�⇤,�)

Proof. Applying Proposition D.6, we have

k�1 � �⇤k2 (�0,�⇤,�)2k� � �⇤k22 +H(�⇤,�) sin(\(�,�⇤))

2
0.5D

2 +H(�⇤,�)
D2(1� 2

0.5)

H(�⇤,�)
= D2.

On the other hand, by the angle decreasing property, sin(\(�1,�⇤))  sin(\(�,�⇤))  D
2(1�2

0.5)
H(�⇤

,�) ,
thus the corollary is proved.

Establishing Norm Incerasing Region
Lemma D.8. There exists ✓ > 0 such that k�+k2 > k�k2 whenever � 2 N0(

1
8k�

⇤k2) and
\(�⇤,�)  ✓.

Proof. Let us recall the expression for �+
1 and �++

1 (defined in Lemma D.4):

�+
1 =

Z

x�1

Z

x1

1

�dCg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1, x2 � �⇤
2, . . . , xd)k2

◆◆

· x1 tanh (0.5F�,�(x)) dx1 dx�1,

�++
1 =

Z

x�1

Z

x1

1

�dCg

exp

✓
�g

✓
1

�
k(x1 � �⇤

1, x2, . . . , xd)k2
◆◆

· x1 tanh (0.5F�,�(x)) dx1 dx�1.

�++
1 is a modified iterate compared to �+

1 , and their discrepancy becomes smaller and smaller as
\(�⇤,�) goes to 0 (�++

1 = �+
1 when \(�⇤,�) = 0). For the modified iterate �++

1 , it has a fixed
point k�⇤k2 cos(\(�⇤,�)) along the b� direction. Moreover, �++

1 has the following two properties
inherited from the structure of an one dimensional update:

• �++
1 is increasing in k�k2;
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Figure 2: The shaded region S(✓) is where �++
1 > k�k2.

• �++
1 > k�k2 whenever k�k2 < k�⇤k2 cos(\(�⇤,�)).

In Figure 2, we illustrate the norm increasing region for �++
1 :

S(✓) :=
�
� : �++

1 > k�k2,\(�⇤,�)  ✓
 
.

By the continuity of the least-squares EM update, it is easy to see that the norm increasing region for
�+
1 :

eS(✓) :=
�
� : �+

1 > k�k2,\(�⇤,�)  ✓
 

is close to S(✓) when ✓ is small (note that S(✓) = eS(✓) when ✓ = 0). Since for some ⇥0 > 0,
N0(1/8k�⇤k2) \ {� : \(�⇤,�)  ✓} ✓ S(⇥0), i.e, (⇥0) contains a (bounded) cone-shape region.
We conclude that for sufficiently small ✓, N0(1/8k�⇤k2) \ {� : \(�⇤,�)  ✓} ✓ eS(✓). In other
words, eS(✓) contains all those �, whose angle with �⇤ is less than ✓ and whose norm is less than
1
8k�

⇤k2.

Proposition D.9. Suppose �t ✓ N0(
1
8k�

⇤k2) is a sequence of least-squares EM iterates and �t 6= 0
for all t, then it is impossible that limt �

t = 0.

Proof. We argue by contradiction. By the angle decreasing property of the iterates, there exists ✓ > 0
and T , such that \(�⇤,�t)  ✓ for all t � T . By Lemma D.8, we know that k�t+1k2 > k�tk2 �
k�T k2 > 0 for all t � T . Thus, the norm of the iterates is lower bounded by a positive number and
it is impossible for the iterates to converge to 0.

D.3 Proof of Lemma 4.3

For readability we restate the lemma below.
Lemma 4.3 (Non-contraction in `2). Consider a log-concave density of the form g(x) / kxkr2 with
r � 1. When r 2 [1, 2], 0 is the only fixed point of LS-EM in the direction ortoghonal to �⇤. When
r 2 (2,1), there exists a fixed point other than 0 in the orthogonal direction. Consequently, when
r > 2, there exists � such that kM(�⇤,�)� �⇤k2 > k� � �⇤k2.

Proof. Assume � = 1. �+
1 is an increasing function in k�k2 by Lemma D.10. Let us understand the

derivative of @�
+
1

@k�k2
|k�k2=0 in (36) when \(�,�⇤) = ⇡

2 . The expression is the following:

D1(k�⇤k2, f) :=
@�+

1

@k�k2
|k�k2=0 (32)

=

Z

x

1

Cg

exp (�g (k(x1, x2 � k�⇤k, . . . , xd)k2))x1
@

@x1
g (k(x1, . . . , xd)k2) dx

=

Z

x

1

Cg

exp(�g(k(x1, x2 � k�⇤k, . . . , xd)k2)x1
@

@x1
g(k(x1, . . . , xd)k2) dx.

(33)
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By a simple calculation, we have that when k�⇤k = 0, D1 = 1. Let us further take the derivative
with respect to k�⇤k2:

d

dk�⇤k2
D1(k�⇤k2, f) =EX⇠f�⇤X1

@2

@X1@X2
g(k(X1, . . . , Xd)k2). (34)

Here f�⇤(x) = 1
Cg

exp(�g(k(x1, x2 � �⇤
2 , x3, . . . , xd)k2)) (slightly different from the previous

sections). In the special case where g(x) = ckxkr2 for some r � 1 and c > 0,

d

dk�⇤k2
D1(k�⇤k2, f) = EX⇠f�⇤ r(r � 2)X2

1X2kXk
r
2�2
2 . (35)

Since the integrand is an odd function in X2, Lemma C.4 tells us that the above derivative is positive
when r � 2; and the above derivative is negative when r < 2. This implies that when r < 2,
D1(k�⇤k2, f) < 1, and when r > 2, D1(k�⇤k2, f) > 1. In particular, when r > 2, there is a
positive fixed point e� (i.e., e�

+

1 = ke�k) for the least-squares EM operator in the orthogonal axis.
Using the dynamics of the one dimensional LS-EM operator, we have that whenever k�k2 < ke�k2,
k�+ � e�k2 < k� � e�k2 for some � in the orthogonal direction. Consequently, k�+ � �⇤k2 >
k� � �⇤k2. We have completed the proof of Lemma 4.3

Lemma D.10. Under the regularity condition, �+
1 is a strictly increasing function of k�k2.

Proof. Assume � = 1. Note that �+
1 is a function of k�k2 and k�⇤k2. We are interested in how �+

1
will change with respect to k�k2. Under the regularity condition, we can take the derivative with
respect to k�k2, which gives

@�+
1

@k�k2

=

Z

x�1

Z

x1

1

Cg

f (x1 � �⇤
1 , x2 � �⇤

2 , x3, . . . , xd) · x1
@

@k�kF�(x) tanh
0(0.5F�(x)) dx1 dx�1

=

Z

x�1

Z

x1�0

 
1

Cg

f (x1 � �⇤
1 , x2 � �⇤

2 , x3, . . . , xd)�
1

Cg

f (x1 + �⇤
1 , x2 � �⇤

2 , x3, . . . , xd)

!

· x1
@

@k�kF�(x) tanh
0(0.5F�(x)) dx dx�1.

We note that when x1 > 0 and �⇤
1 > 0, x1 tanh

0(0.5F�(x)) > 0 and
f (x1 � �⇤

1 , x2 � �⇤
2 , x3, . . . , xd) > f (x1 + �⇤

1 , x2 � �⇤
2 , x3, . . . , xd). Meanwhile, @

@k�kF�(x) is

positive on a subset of (0,1) with positive measure by Corollary D.1. Therefore, @�
+
1

@k�k2
> 0, and

�+
1 is an increasing function in k�k.

E Regularity Condition

The regularity condition is a technical condition that makes changing the order of differentiation and
integration valid. Formally, let us first recall the measure theory statement of Leibniz’s integral rule

Proposition E.1 (Theorem 16.8 of [7]). Let S be an open subset of R, and ⌦ be a measure space.
Suppose f : S ⇥ ⌦ ! R satisfies the following conditions: (1) f(s,!) is a Lebesgue-integrable
function of ! for each s 2 S; (2) For almost all ! 2 ⌦, the derivative fs exists for all s 2 S; (3)
There is an integrable function ✓ : ⌦! R such that |fs(s,!)|  ✓(!) for all s 2 S and almost every
! 2 ⌦. It follows that:

d

ds

Z

⌦
f(s,!) d! =

Z

⌦
fs(s,!) d!. (36)
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In the above proposition, S is the parameter space, and ! is the random variable. Recall the
least-squares EM update function:

M(�⇤,�) =EX⇠f�⇤,�
X tanh(0.5F�,�(X)),

F�,�(X) =g

✓
1

�
kX + �k2

◆
� g

✓
1

�
kX � �k2

◆
.

Using the rotation invariant property of the distribution, we adopt a local orthogonal basis as in
Lemma 4.4. The above two functions are equivalent to the following:

M(�⇤,�) =

Z

x

1

�dCg

exp (�g (k(x1 � �⇤
1 , x2 � �⇤

2 , x3, . . . , xd)k2))x tanh(0.5F�,�(x)) dx,

F�,�(x) =g

✓
1

�
k(x1 + k�k2, x2, . . . , xd)k2

◆
� g

✓
1

�
k(x1 � k�k2, x2, . . . , xd)k2

◆
.

Indeed, from the above representation for M(�⇤,�), we can think of the M function as a function in
three variables: �⇤

1 ,�
⇤
2 and k�k2. Define, for each i = 1, . . . , d,

Mi(z1, z2, z2)

:=

Z

x

1

�dCg

exp

✓
�g

✓
1

�
k(x1 � z1, x2 � z2, x3, . . . , xd)k2

◆◆
·

xi tanh

✓
0.5

✓
g

✓
1

�
k(x1 + z3, x2, . . . , xd)k2

◆
� g

✓
1

�
k(x1 � z3, x2, . . . , xd)k2

◆◆◆
dx.

(37)

The regularity condition for f 2 F ensures that for each i = 1, . . . , d, j = 1, 2, 3, the following
holds:

@M(z1, z2, z3)

@zj

=

Z

x

1

�dCg

@

@zj

h
exp (�g (k(x1 � z1, x2 � z2, x3, . . . , xd)k2)) ·

xi tanh

✓
0.5

✓
g

✓
1

�
k(x1 + z3, x2, . . . , xd)k2

◆
� g

✓
1

�
k(x1 � z3, x2, . . . , xd)k2

◆◆◆i
dx.

In other words, we can differentiate the least-squares EM update with the parameter by putting
the differentiation operator inside the integral. Note that the main technique for analyzing the
least-squares EM update is the sensitivity analysis, in which we regularly differentiate M(z1, z2, z3)
with one of the parameters.

In view of Leibniz’s rule:

• The integrand is bounded by |xi| since the tanh(·) function is uniformly bounded by 1.
EX⇠f�⇤,�

|xi| < 1 for all i.

• g is a convex function on R+, therefore, it is differentiable on R+ except on a measure 0 set.
k · k2 is differentiable except at the origin. Thus, by the composition rule, we infer that the
integrand is differentiable with zj (j = 1, 2, 3) for almost all x 2 Rd.

• When we differentiate M(z1, z2, z3) with zj , the parameter space is bounded. We differen-
tiate M1 with respect to z1 in Lemma D.4, and its value is taken between min(k�k2,�⇤

1)
and max(k�k2,�⇤

1); We differentiate M2 with respect to z1 in Lemma D.2, and its value
is taken between 0 and �⇤

1 ; We differentiate M1 with respect to z2 in D.4, and its value
is taken between 0 and �⇤

2 ; We differentiate M2 with respect to z2 in Lemma D.5 and its
value is between 0 and �⇤

2 ; We differentiate M1 with respect to z3 and its value is between
0 and k�k2. Since k�k2 is bounded by a function of �⇤ and �, the above parameter space
Sj(�

⇤,�) for zj (j = 1, 2, 3) is all bounded. Therefore,it suffices to ensure the integrability
of the derivative (with respect to zj).

Therefore, in order to verify the regularity condition for a log concave distribution, one needs to
ensure the derivative of integrand in Mi (i = 1, 2) with respect to j (j = 1, 2, 3) is integrable over
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the parameter space Sj(�
⇤,�). It suffices to show the following quantity is finite:

Z

x

1

�dCg

sup
zj2Sj(�⇤

,�)

�����
@

@zj

h
exp (�g (k(x1 � z1, x2 � z2, x3, . . . , xd)k2)) ·

xi tanh

✓
0.5

✓
g

✓
1

�
k(x1 + z3, x2, . . . , xd)k2

◆
� g

✓
1

�
k(x1 � z3, x2, . . . , xd)k2

◆◆◆i����� dx

(38)

As an example, consider a general polynomial family, it is easy to verify that the above condition
holds as a log concave distribution has finite moments of all the order.

F Finite Sample Analysis

In this section, we provide proofs for analysis of the LS-EM algorithm in the finite sample case. Proof
of Proposition 5.1 is presented in Section F.1, which establishes an one-iteration bound. Proposition
5.2 and Proposition 5.3 are proved in Section F.2 for the global convergence. In Section F.3, we
discuss the implication for some special distributions including Gaussian, Laplace and Logistic.

F.1 Proof of Proposition 5.1

Proposition 5.1 (1-d Finite Sample). Suppose the density function f 2 F satisfies the regularity
condition. With � 2 R being the current estimate, the finite-sample LS-EM update (8) satisfies the
following bound with probability at least 1� �:

|e�+ � �⇤|  (�⇤,�,�) · |� � �⇤|+ (�⇤ + Cf�) ·O
 r

1

n
log

1

�

!
, (9)

where (�⇤,�,�) is contraction factor defined in Theorem 4.1 and Cf is the Orlicz  1 norm (i.e.,
the sub-exponential parameter) of a random variable with density f 2 F .

Proof. In the 1-d finite sample case, the least-squares EM update is

fM(�⇤,�) =
1

n

nX

i=1

xi tanh(0.5F�,�(x
i))

Since | tanh(·)|  1, each summand zi := xi tanh(0.5F�,�(xi)) is a sub-exponential random
variable with  1 Orlicz norm upper bounded by �⇤ + �Cf . This is because each xi ⇠ f�⇤,� is a
sub-exponential random variable (see Lemma F.2) with  1 Orlicz norm O(�⇤ + �Cf ), where Cf is
the  1 Orlicz norm of a random variable with density f . Using Bernstein’s inequality from Theorem
F.3, we have

P{|fM(�⇤,�)�M(�⇤,�)| � t}  2


�cnmin

✓
� t2

(�⇤ + �Cf )2
,

t

�⇤ + �Cf

◆�
.

Coupling with the one-step analysis for the population least-squares EM update in Theorem 4.1, we
can bound the finite sample least-squares EM update as follows:

|fM(�,�⇤)� �⇤|  (�⇤,�,�)|� � �⇤|+O

 r
(�⇤ + �Cf )2

n
log

1

�

!

with probability at least 1� �.

Let us recall the following equivalent definition for sub-exponential random variables:
Lemma F.1 (Proposition 2.7.1 of [25]). Let X be a random variable in R. X is sub-exponential iff
E exp(|X|/K3)  2 for some K3 > 0.
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We first show a random variable with a symmetric log-concave density is necessarily sub-exponential.

Lemma F.2. If a random variable X has a log-concave density f that is also an even function, then
X is sub-exponential, with the  1 Orlicz norm (sub-exponential norm) depending on log f .

Proof. For a general symmetric log-concave distribution with density f(x) = 1
Cg

exp(�g(|x|)),
the set of sub-differential of g: {@g(x) : x 2 R} is non decreasing with respect to x. Moreover,
the sub-differentials are non-negative when x � 0. Suppose that {@g(x) : x 2 R} has an upper
bound C, we can pick M with 0 < M < C and M 2 @g(x0) for some x0 > 0. Otherwise, the
{@g(x) : x 2 R} does not have an upper bound and we can pick an arbitrary M > 0 such that
M 2 @g(x0) for some x0 > 0. By definition of the sub-differential, we have

g(x) � g(x0) +M(x� x0).

Now let us compute the moment generating function: EX⇠f exp(
1
K
|X|) for some K > 1

M
.

EX⇠f exp

✓
1

K
|X|

◆
= 2

Z

x�0

1

Cg

exp

✓
1

K
x

◆
exp(�g(x)) dx

 2

Z

x�0

1

Cg

exp

✓
1

K
x

◆
exp(�g(x0)�M(x� x0)) dx

= 2

Z

x�0

1

Cg

exp(�g(x0) +Mx0) exp(�(M � 1

K
)x) dx

= 2
1

Cg

exp(�g(x0) +Mx0)
1

M � 1
K

< 1.

Using the dominated convergence theorem, we know that

lim
K!1

EX⇠f exp

✓
|X|
K

◆
= 1,

thus, there exists some K0 such that EX⇠f exp(
|X|
K

)  2. In particular, X is sub-exponential (by
Lemma F.1) with a finite k · k 1 Orlicz norm.

Having established the sub-exponential property of the log-concave distribution, we use Cf to denote
the  1 Orlicz norm for a log concave distribution f . With translation and scaling, it is not hard to see
the  1 Orlicz norm for f�⇤,� is of the order O(�⇤) + �Cf ).
Theorem F.3 (Bernstein’s inequality Theorem 2.8.1 of [25]). Let X1, . . . , XN be independent sub-
exponential random variables. Then for every t � 0, we have

P{|
NX

i=1

Xi| � t}  2 exp

"
�cmin

 
t2

P
N

i=1 kXik2 1

,
t

maxi kXik 1

!#
,

where c > 0 is an absolute constant.

F.2 Proofs of Proposition 5.2 and Proposition 5.3

For readability, we restate here again:
Proposition 5.2 (First Stage: Escape from 0 and 1). Suppose the initial point �0 is in (0, 0.5�⇤) [
(1.5�⇤,1). After T = O

⇣
log 0.25�⇤

|�0��⇤|/log (�
⇤,min(�0, 0.5�⇤),�)

⌘
iterations, with N/T =

⌦
⇣

(1+Cf/⌘)
2

(1�(�⇤,min(�0,0.5�⇤),�))2 log
1
�

⌘
fresh samples per iteration, LS-EM outputs a solution e�T 2

(0.5�⇤, 1.5�⇤) with probability at least 1� � ·O
⇣
log 0.25�⇤

|�0��⇤|/log (�
⇤,min(�0, 0.5�⇤),�)

⌘
.

Proposition 5.3 (Second Stage: Local Convergence). The following holds for any ✏ > 0. Sup-
pose �0 2 (0.5�⇤, 1.5�⇤). After T = O (log ✏/log (�⇤, 0.5�⇤,�)) iterations, with N/T =

⌦( (�⇤+Cf/⌘)
2

✏2(1�(�⇤,0.5�⇤,�))2 log
1
�
) fresh samples per iteration, LS-EM outputs a solution e�T satisfying

|e�T � �⇤|  ✏�⇤ with probability at least 1� � ·O (log ✏/log (�⇤, 0.5�⇤,�)).
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Proof. The premise in Proposition 5.2 ensures that conditions in Lemma F.5 and Corollary F.6 hold,
which guarantee that all the future iterates remain in (�0,1). There are two stages of analysis for
the LS-EM algorithm in the finite sample case:

1. The initial �0 is 2 (0, 0.5�⇤) or the initial �0 is 2 (1.5�⇤,1). In this case, the iterates will
get into the local stable region (0.5�⇤, 1.5�⇤) quickly.

2. The iterates enters the stable region (0.5�⇤, 1.5�⇤), and converge to an ✏-close estimate.

Let e�t denote the t-th iterate. The per iteration bound established in Proposition 5.1 says that with
probability at least 1� �:

|e�t � �⇤| (�⇤, e�t�1,�)|e�t�1 � �⇤|+O

 r
(�⇤ + Cf�)2

n
log

1

�

!
. (39)

Let us first analyze the first stage:

In the case where �0 2 (0, 0.5�⇤), the iterates contracts to �⇤ initially by Lemma F.5. We use
induction from step (39) to obtain:

|e�t � �⇤| (�⇤,�0,�)|e�t�1 � �⇤|+ eO
 r

(�⇤ + Cf�)2

n

!

(�⇤,�0,�)t|�0 � �⇤|+ 1

1� (�⇤,�0,�)
O

 r
(�⇤ + Cf�)2

n
log

1

�

!
.

Under the assumption that the size of fresh samples per iteration satisfies n =

O
⇣

(1+Cf⌘)
2

(1�(�⇤,�0,�))2

⌘
, we can guarantee that the accumulative statistical error is upper bounded:

1
1�(�⇤,�0,�)O

✓q
Cf (�⇤,�)2

n
log 1

�

◆
 0.25�⇤. Therefore, after T = O

✓
log 0.25�⇤

|�0��⇤|
log (�⇤,�0,�)

◆
iterations,

|e�t � �⇤| < 0.5�⇤. The probability is at least 1� � ·O
✓

log 0.25�⇤
|�0��⇤|

log (�⇤,�0,�)

◆
by a union bound.

In the case where �0 > 1.5�⇤, the sample complexity per iteration ensures that all future iterates are
lower bounded by 0.5�⇤ (see the proof of corollary F.6.) We deduce the following:

|e�t � �⇤| (�⇤, 0.5�⇤,�)|e�t�1 � �⇤|+ eO
 r

(�⇤ + Cf�)2

n

!

(�⇤, 0.5�⇤,�)t|�0 � �⇤|+ 1

1� (�⇤, 0.5�⇤,�)
O

 r
(�⇤ + Cf�)2

n
log

1

�

!
(40)

Again, the accumulative statistical error is bounded by 0.25�⇤. After T = O

✓
log 0.25�⇤

|�0��⇤|
log (�⇤,0.5�⇤,�)

◆

iterations, |e�t � �⇤| < 0.5�⇤. The probability is at least 1 � � · O
✓

log 0.25�⇤
|�0��⇤|

log (�⇤,0.5�⇤,�)

◆
by a union

bound.

Now let us analyze the second stage with the goal of achieving a relative error of ✏. Since the initial
distance to �⇤ is upper bounded by 0.5�⇤, it suffices to ensure the following:

0.5(�⇤, 0, 5�⇤,�)t�⇤ +
1

1� (�⇤, 0.5�⇤,�)
O

 r
(�⇤ + Cf�)2

n
log

1

�

!
 ✏�⇤,

so that the iterates get ✏-close to �⇤. Again, the assumption on the sample complexity per iteration in
Proposition 5.3 guarantees that the first part and the second part are both bounded by 0.5✏�⇤. The
proof is similar as before.
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F.2.1 Supporting Lemmas for Proposition 5.2 and Proposition 5.3

From the one-step analysis in the finite sample case as established in Proposition 5.1, we would like
to determine the region of contraction to �⇤ (i.e, |e�+ � �⇤| < |� � �⇤|) with probability at least
1� �:

C(f,�⇤,�) :=

(
� : (1� (�⇤,�,�))|� � �⇤| > O

 r
(�⇤ + Cf�)2

n
log

1

�

!)
. (41)

This region allows us to control the convergence rate for the iterates. Using the fact that (�⇤,�,�)
depends on min(�,�⇤), a more explicit condition for the contraction region is the following:

(1� (�⇤,�,�)) |� � �⇤| � O

 r
(�⇤ + Cf�)2

n
log

1

�

!
when � < �⇤; (42)

(1� (�⇤,�⇤,�)) |� � �⇤| � O

 r
(�⇤ + Cf�)2

n
log

1

�

!
when � > �⇤. (43)

Note that in (42), � being close to 0 or close to �⇤ will make the left hand side vanish, thus we
infer that the contraction region for �  �⇤ is an open interval (L1, L2). In (43), we infer that the
contraction region for � > �⇤ is an open interval (R1,1). We provide an illustration in Figure 3:

Figure 3: Contraction region: (L1, L2) and (R1,1)

Lemma F.4 (Contraction implies Stability). Suppose that b� 2 C(f,�⇤,�) and b� < �⇤. For all
� 2 (b�, 2�⇤ � b�), we have e�+ 2 (b�, 2�⇤ � b�).

Proof. Using Proposition 5.1, we have

|e�+ � �⇤| (�⇤,�,�)|� � �⇤|+O

 r
(�⇤ + Cf�)2

n
log

1

�

!

(�⇤, b�,�)|b� � �⇤|+O

 r
(�⇤ + Cf�)2

n
log

1

�

!
(44)

|b� � �⇤|, (45)

where (44) follows from (�⇤,�,�)  (�⇤, b�,�) and |� � �⇤|  |b� � �⇤|. Step (45) follows by
the assumption that b� 2 C(f,�⇤,�) and (42).

Lemma F.5. For every ` 2 (0, 0.5�⇤), suppose that n = e⌦
⇣

(1+Cf/⌘)
2

(1�(�⇤,`,�))2

⌘
, we have that both `

and 0.5�⇤ are in C(f,�⇤,�), where ⌘ = �⇤/�.

Proof. For ` < 0.5�⇤ to be in the contraction region, a sufficient condition is the following:

0.5�⇤ (1� (�⇤, `,�)) � O

 r
(�⇤ + Cf�)2

n
log

1

�

!
.

A little algebra shows that n = e⌦
⇣

(1+Cf/⌘)
2

(1�(�⇤,`,�))2

⌘
. Indeed, the above condition also implies that

0.5�⇤ 2 C(f,�⇤,�) since (�⇤, `,�) > (�⇤, 0.5�⇤,�).
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Corollary F.6. Let ` 2 (0, 0.5�⇤). Suppose that n = e⌦
⇣

(1+Cf/⌘)
2

(1�(�⇤,`,�))2

⌘
, we have that for all

� 2 (`,1), e�+ 2 (`,1).

Proof. By Lemma F.5, ` 2 C(f,�⇤,�). By Lemma F.4, we have e�+ > ` when � 2 (`, 2�⇤ � `).
Therefore, it suffices to consider the case when � > 2�⇤ � `. From (1) the property of population
least-squares EM update for �+: �+ > �⇤ and (2) the intermediate result from Proposition 5.1 that
with probability at least 1� �:

|e�+ � �+|  O

 r
(�⇤ + Cf�)2

n
log

1

�

!
,

it follows that

e�+ ��+ �O

 r
(�⇤ + Cf�)2

n
log

1

�

!

>�⇤ �O

 r
(�⇤ + Cf�)2

n
log

1

�

!
> 0.5�⇤ > `.

F.3 Finite-sample convergence guarantees for special cases

We have shown in Section C.2 that for Gaussian, Laplace and logistic distribution, the contraction
factor takes the form (�⇤,�,�) = exp

⇣
�cmin(�,�⇤)�f

�
�f

⌘
, for some �f � 1 determined by the

asymptotic growth of the log density.

In view of Propositions 5.2 and 5.3, we deduce the following overall convergence result:
Corollary F.7 (Explicit Convergence Rate). Suppose that log concave density f satisfies the regu-
larity condition, and the contraction ratio (�⇤,�,�) = exp

⇣
�min(�,�⇤)�f

�
�f

⌘
. We run the LS-EM

algorithm with a an initial point �0. If �0 falls in the local region of �⇤:(0.5�⇤, 1.5�⇤), the LS-EM
algorithm outputs a solution e�T such that |e�T � �⇤|  ✏�⇤ after T = O (log ✏/⌘�f ) iterations.
The number of fresh samples required per iteration is: N/T = e⌦

⇣
(�⇤+Cf/⌘)

2

✏2⌘
2�f

⌘
. Otherwise, if

the initial point �0 2 (0, 0.5�⇤) or (0.5�⇤,1), the LS-EM algorithm will take an additional

T 0 = O

✓
log 0.25�⇤

|�0��⇤|
⌘
�f

◆
iterations before the iterates enter the local region (0.5�⇤, 1.5�⇤). The

number of fresh samples required per iteration is e⌦
⇣

(1+Cf/⌘)
2

⌘
2�f

⌘
.

G Model Mis-specification

In this section, we establish the robustness results for the LS-EM algorithm with a mis-specified
distribution in 1-D. Proposition 6.1 is proved in Section G.1. In Section G.2, we present some
numerical observations for the robustness of the LS-EM algorithm.

G.1 Proof of Proposition 6.1

Lemma G.1 (3 fixed points when misspecified). Suppose that f 2 F satisfy the regularity condition.
We further assume in the region � � 0, the function bF�,�(x) := bg

�
1
�
|x+ �|

�
� bg

�
1
�
|x� �|

�
is a

concave function in � for each x � 0, and

EX⇠f�⇤Xbg0(X) > 1.

The iterates of the LS-EM algorithm with mis-specified log-concave density bg converge to a non-zero
� ( or ��) from a non-zero random initialization.
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Proof. With mis-specified log density bg, the next iterate is:

b�+ =EX⇠f�⇤,�
X tanh(0.5 bF�,�(X))

=

Z

x�0

⇣ 1

�
f

✓
x� �⇤

�

◆
+

1

�
f

✓
x+ �⇤

�

◆⌘
x tanh(0.5 bF�,�(x)) dx

=:cM(�⇤,�).

We state the key properties for the function cM(�⇤, ·):

• cM(�⇤, ·) is an increasing function in �: we utilize the convexity of bg, similar to the proof of
Lemma D.10;

• cM(�⇤, ·) is a concave function in �: since bF�,� is a concave function in � for every x � 0,
so is tanh(0.5 bF�,�) which is a composition with a concave function tanh that is increasing
on the non-negative part. cM(�⇤, ·) is concave in � since it is an intergal of concave functions
of �;

• cM(�⇤, 0) = 0;

• @

@�

cM(�⇤,�) |�=0> 1: the assumption that EX⇠f�⇤Xbg0(X) � 1 is equivalent to
@cM(�⇤

,�)
@�

|�=0> 1;

• cM(�⇤,�)� � ! �1 as � ! 1: since cM(�⇤,�) is bounded.

The above three properties guarantees that on (0,1), cM(�⇤, ·) has a unique fixed point � > 0

satisfying the following properties: (1)cM(�⇤,�) = �; (2) If � 2 (0,�), cM(�⇤,�) 2 (�,�); (3)
If � 2 (�,1), cM(�⇤,�) 2 (�,�). Since cM(�⇤, ·) is an odd function in �, we conclude that on
(�1, 0), cM(�⇤, ·) has a unique fixed point ��. In view of the above properties, we deduce that if
an initial point is positive, it converges to �; and if it is negative, it converges to ��.

Lemma G.2 (Error bound when misspecified). Suppose that the assumption in Lemma G.1 holds
and the function x tanh(0.5 bF�,�(x)) is L-Lipschitz. For any �0 6= 0, the LS-EM with misspecified
log concave distribution bf will converge to a solution � ,and

|� � sign(�0,�⇤)�⇤|  6�

1� (�,�⇤,�)
,

where (�,�⇤,�) 2 (0, 1) is defined in Theorem 4.1.

Proof. The fixed point structure established in Lemma G.1 ensures that the iterates converge to either
� or ��, depending on the sign of �0. � satisfies EX⇠f�⇤,�

X tanh(0.5 bF
�,�

(X)) = �. We can
decompose the difference between � and �⇤ in the following way (utilizing the consistency property
of the LS-EM update):

� � �⇤ =EX⇠f�⇤,�
X tanh(0.5 bF

�,�
(X))� E

X⇠ bf�⇤,�
X tanh(0.5 bF�⇤,�(X))

=EX⇠f�⇤,�
X tanh(0.5 bF

�,�
(X))� E

X⇠ bf�⇤,�
X tanh(0.5 bF

�,�
(X))

| {z }
A

+ E
X⇠ bf�⇤,�

X tanh(0.5 bF
�,�

(X))� E
X⇠ bf�⇤,�

X tanh(0.5 bF�⇤,�(X))
| {z }

B

.

Let us control A and B separately. The term B is exactly the difference between a least-squares EM
update and the true location parameter with the log-concave distribution bf . Therefore, Theorem 4.1
tells us that

|B|   bf (�,�
⇤,�)|� � �⇤|.

32



for some  bf (�,�
⇤,�) 2 (0, 1). For term A, we note that the integrand is L-Lipschitz (by the

assumption), it can be bounded by the Wasserstein distance between two distributions as follows:

A  L ·DW

✓
1

�
f

✓
1

�
(·� �⇤)

◆
,
1

�
bf
✓
1

�
(·� �⇤)

◆◆
.

Here we use DW to denote the Wasserstein distance. By scaling and translation, we have:

DW

 
1

�
f

✓
1

�
(·� �⇤)

◆
,
1

�
bf
✓
1

�
(·� �⇤)

◆!
= �DW (f, bf),

where f and bf are two log-concave distribution with unit variance. Using the triangle inequality, it
can be further bounded by:

DW (f, bf)  DW (f,N (0, 1)) +DW ( bf,N (0, 1))

 2 sup
f2F

DW (f,N (0, 1)).

Now we can apply the classical Stein’s method to bound the Wasserstein distance; in particular, we
apply Proposition G.3 and obtain that:

DW (f,N (0, 1)) |EW⇠fWh(W )� h0(W )|

2EW⇠f |W |+
r

⇡

2

2
q
EW⇠fW 2 +

r
⇡

2
 3.

The last line follows since we assume W ⇠ f has unit variance. Combining the bound on A and B
together, we have proved the following:

|� � �⇤|   bf (�,�
⇤,�)|� � �⇤|+ 6L�,

and rearranging the inequality yields:

|� � �⇤|  6L�

1�  bf (�,�
⇤,�)

. (46)

This completes the proof.

Fitting with Gaussian Now let us consider a special case where bf is the Gaussian distribution.
The misspecified variant EM update is the following:

cM(�⇤,�) = EX⇠f�⇤,�
X tanh

✓
�X

�2

◆
(47)

The conditions in Lemma G.2 satisfies. Furthermore, we can prove a lower bound for � in (46) when
the SNR is high. This allows us to obtain a better error bound for controlling the distance between �
and �⇤. This is the content of Proposition 6.1, restated below.

Proposition 6.1 (Fit with 2GMM). Under the above one dimensional setting with Gaussian bf , the
following holds for some absolute constant C0 > 0: If ⌘ � C0, then the LS-EM algorithm with a
non-zero initialization point �0 converges to a solution � satisfying sign(�) = sign(�0) and

��� � sign(�0�⇤)�⇤��  10�.

Proof. The gradient with respect to � = 0 for cM(�⇤,�) is 1 + (�⇤)2

�2 > 1. Meanwhile, it is easy
to see that cM(�⇤,�) is a concave function of � on the region where � � 0. Moreover, x tanh(�x

�2 )
is 1.5-Lipschitz as a function of x for all � � 0. Lemma G.1 is applicable and it tells us that the
mis-specified variant EM updates converge to a point � from a random non-zero initialization.
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In the following: let Mg(�⇤,�) denote the least-squares EM update with the ground truth log-concave
distribution: 0.5N (�⇤,�2)+ 0.5N (��⇤,�2). In Lemma G.2, we have proved an intermediate result
(bound for term A) that:

|cM(�⇤,�)�Mg(�
⇤,�)|  9�, (48)

Meanwhile, the convergence result from [10] (i.e., Corollary C.6) says that at � = �
⇤

2 ,

�⇤ �Mg(�
⇤, 0.5�⇤)  0.5 exp

✓
� (�⇤)2

8�2

◆
�⇤. (49)

Combining (48) and (49), We deduce that:

cM(�⇤, 0.5�⇤) �Mg(�
⇤, 0.5�⇤)� 9�

��⇤
⇣
1� 0.5 exp

✓
� (�⇤)2

8�2

◆⌘
� 9�

=�⇤
✓
1� 0.5 exp(�0.125⌘2)� 1

⌘

◆
.

When ⌘ > C0 for some absolute constant C0 > 0, we can show that
�⇤

⇣
1� 0.5 exp(�0.125⌘2)� 1

⌘

⌘
> 0.5�⇤. In particular, this implies that � > 0.5�⇤ by

Lemma G.1. Therefore, the error bound in (46) can be further bounded by

|� � �⇤|  9�

1� exp (�0.125⌘2)
.

The right hand side bound is smaller than 10� when ⌘ is large. This completes the proof of
Proposition 6.1.

Proposition G.3 (Wasserstein Distance Bound by Stein’s Method [20]). We have

DW (f,N (0, 1))  sup
h2F

|EW⇠f [Wh(W )� h0(W )] |,

where F ={h : khk  2, kh0k 
p

⇡

2 , kh
00k  2}.

G.2 General Observations

In Section G.1, the robustness results rely on the assumptions in Lemma G.1. In particular, we need
the concavity of bF�,�. This is a very restrictive condition. Consider the family of the log-concave
distribution whose log density is of the form g(x) / |x|r, r � 1. The concavity condition holds only
when r  2. However, the 3-fixed point structure still holds as along as the five properties in the
proof for Lemma G.1 hold. Indeed we observe that the function � ! cM(�⇤,�) is a concave function
in � even when r > 2 (see Section H.5).

Recall that the least-squares EM iterate with the misspecified distribution bf is the following:

cM(�⇤,�) =EX⇠f�⇤,�
x tanh(0.5 bF�,�(X)), (50)

where

bg = log bf

bF�,�(X) =bg
✓
1

�
|X � �|

◆
� bg

✓
1

�
|X + �|

◆
.

We can decompose the iterate cM(�⇤,�) as follows:

cM(�⇤,�) =EX⇠f�⇤,�
x tanh(0.5 bF�,�(x))� E

X⇠ bf�⇤,�
x tanh(0.5 bF�,�(X))

+ E
X⇠ bf�⇤,�

x tanh(0.5 bF�,�(X)), (51)
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where the first difference term is a drift term specifying the error due to the distribution misspecifi-
cation and the second term is the ideal LS-EM update with bf , which contracts to �⇤ at a linear rate.
We empirically observe that if we fit a lighter tail log-concave distribution bf compared to f , the drift
term is positive (see Section H.5) and thus the least-squares EM iterate converges to some � > �⇤.
By the triangle inequality,

cM(�⇤,�)  EX⇠f�⇤,�
|X tanh(0.5 bF

�,�
(X))|  �⇤ + Ex⇠f�⇤,�

|X|  �⇤ + �.

Thus the relative error is bounded by �

�⇤ = 1
⌘

. When the SNR is large, the error is small. On the other
hand, if we fit a heavier tail distribuiton bf compared to f , the drift is negative and the corresponding
fixed point can be 0. This suggests a practical recipe: when one does not know the ground truth
log-concave density, fit with a density that has a lighter tail. For instance, we can fit a Gaussian
density when the ground truth is Laplace or logistic.

H Discussion and Numerical Experiments

In this section, we first examine the two key assumptions on the distribution class, namely rotation
invariance and log-concavity, respectively in Sections H.1 and H.2. In particular, we discuss the
obstacles of relaxing these two assumptions and provide numerical evidences. In Section H.3, we
discuss the least-squares M-step being an approximate M-step in the classical EM algorithm. In
Section H.4, we numerically verify the non `2 convergence behavior for a general log-concave
distributions. In Section H.5, we study the convergence behavior as well as the quality of the solution
for the LS-EM with a mis-specified distribution.

H.1 Assumption of Rotation Invariance

For the distribution class considered in (1), we assume the density function f is of the form
1
Cg

exp(�g(k · k)). This automatically encodes the rotation invariance property of the distribu-
tion. Examining the analysis in detail, we find that the rotation invariance allows for the following
property: for any orthonormal matrix Q, g(kQ(x)k) is symmetric in xj for all j � 3. Consequently,
the LS-EM updates for j-th coordinate (j � 3):
EX⇠f�⇤ ·Qxj tanh(0.5(g(kQ((x1 + k�k, x2, . . . , xd))k)� g(kQ((x1 � k�k, x2, . . . , xd))k)))

vanishes. In general, if we want to relax the rotation invariance property by assuming g as a function
of x, the property can be generalized as follows: for any u,v 2 Rd, u ? v, the relation holds:

g(u+ v) = g(u� v). (52)
A direct consequence is that for any orthonormal matrix Q,

g(Q(x1 + k�k, x2, . . . , xj , . . . , xd))

=g(Q�j(x1 + k�k, x2, . . . , xj , . . . , xd) +Qjxj)

=g(Q�j(x1 + k�k, x2, . . . , xj , . . . , xd)�Qjxj)

=g(Q(x1 + k�k, x2, . . . ,�xj , . . . , xd)),

where Qj is the submatrix of Q without j-th column,and Qj is the j-th column of Q. Note that
Q�j(x1 + k�k, x2, . . . , xj , . . . , xd) is a vector in the space of column span of Q�j and Qjxj is in
the linear span of Qj , and they are orthogonal to each other. It is then easy to see that the integrand
of the j-th coordinate of the LS-EM iterate

EX⇠f�⇤ ·Qxj tanh(0.5(g(Q(x1 + k�k, x2, . . . , xd))� g(Q(x1 � k�k, x2, . . . , xd))))

is an odd function in xj , thus vanishes as well. On the other hand, from Lemma H.1, we know that
the above generalized condition (52) implies that g function has the same value for x with the same
norm, and thus is equivalent to our original assumption.
Lemma H.1 (Equivalence to Rotation Invariance). Suppose the condition (52) holds. For any u1,u2

satisfying ku1k = ku2k, g(u1) = g(u2).

Proof. ku1k = ku2k implies that u1+u2
2 is orthogonal to u1�u2

2 . The condition says that

g(
u1 + u2

2
+

u1 � u2

2
) = g(

u1 + u2

2
� u1 � u2

2
),

and the conclusion follows.
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H.2 Assumption of Log-concavity

In 1-D case, we utilize the consistency property to rewrite the difference between the LS-EM update
and the ground truth:

|M(�⇤,�)� �⇤| =

1� @M(z,�)

@z
|z=t�⇤+(1�t)�

�
|� � �⇤|,

for some t 2 (0, 1). In particular, it has been shown that
@M(z,�)

@z
=EX⇠fz tanh (0.5F�(X))
| {z }

T1

+ EX⇠fz

⇥
0.5XF 0

�
(X) tanh0 (0.5F�(X))

⇤
| {z }

T2

,

with T1, T2 > 0. The main property we utilize about the log-concavity is that F 0
�
(x) � 0 when

g = � log f is convex with non-decreasing derivative. However, when we do not have the convexity,
the term T2 can be negative and the factor

h
1� @M(z,�)

@z
|z=t�⇤+(1�t)�

i
can be possibly greater

than 1, leading to non-convergence. We demonstrate this behavior in the following simple example:
f / exp(�|x|0.25). Its non-convergence behavior when the initial iterate �0 is in a neighborhood of
0 has been plotted in Figure 1. In Figure 4, we plot the value of T1 and T2 as a function of z to show
that the problem occurs due to the negativity of T2.

Figure 4: f is chosen to be proportional to exp(�|x|0.25), �⇤ = 1, � = 0.1, z 2 (�,�⇤). We
compute T1 and T2 using a finite sample sum with size 1000000. It is seen that T2 is negative and the
resulting T1 � T2 can become ngative.

H.3 Approximate M-step

We consider the family of polynomial distributions with log density g / |x|r for some r � 1. In the
E-step of the classical EM algorithm, we obtain a lower bound Q(· | �) for the log-likelihood based
on the current estimate �:

Q(b | �) = Ex⇠f�⇤,�


�p1

�,�
g

✓
|x� b|

�

◆
� p2

�,�
g

✓
|x+ b|

�

◆�
. (53)

The M-step is to compute argmax
b
Q(b | �). Q(· | �) is a concave function, thus the optimization

problem has a well-defined solution, however, it does not admit a closed form solution in gen-
eral. Consider the above example where the ground truth distribution is polynomial, the M-step is
equivalent to solving for a polynomial equation with degree r � 1.

In the following, we plot the negative Q function (convex) for two polynomial distributions in Figure
5 and Figure 6. Meanwhile we trace two points (�, Q(� | �)) and (�+, Q(�+ | �)), where �+ is the
least-squares EM update:

�+ = Ex⇠f�⇤,�
[x tanh(0.5F�,�(x))] .

Numerically we find that b = �+ strictly increases the value of Q function compared to b = � when
� is not equal to the true parameter.
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Figure 5: Plot of �Q(· | �) for g / |x| for � = 0.1, 0.5, 0.8, 1.2, 1.5. The true parameter �⇤ = 1.
The blue dots correspond to b = � and the red dots correspond to b = �+. It is seen that �+ is not the
exact the M-step, as they do not minimize the �Q function. However, �Q(�+ | �) < �Q(� | �),
suggesting that the least-squares EM update is a type of approximate M-step.

Figure 6: Plot of �Q(· | �) for g / |x|2.5 for � = 0.1, 0.5, 0.8, 1.2, 1.5. The true parameter is
�⇤ = 1.

H.4 Non-convergence in `2

We provide numerical evidence for Lemma 4.3, which claims the non `2 decreasing property for
general log-concave distributions. We consider the polynomial family f / exp(�kxkr), for some
r 2 [1,1). We have proved that when r <= 2, there is no spurious fixed point in the orthogonal
direction. When r > 2, there is a spurious orthogonal fixed point in the orthogonal direction.

Figure 7: We plot the LS-EM iterates initialized at (0, 0.1), in the orthogonal direction to the ground
truth �⇤ = (1, 0). It is known that the future iterates stay in the orthogonal space. When r = 1.8, it
is seen that the iterates converge to (0, 0), and when t = 2.2, the iterates converge to some non-zero
point in the orthogonal direction.
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Figure 8: We plot the LS-EM iterates initialized at (0.0001, 0.1), close to the orthogonal direction to
the ground truth �⇤ = (1, 0). When r = 1.8, the iterates has decreasing `2 distance with �⇤. When
r = 2.2, the `2 distance first increases before it decreases.

Figure 9: The ground truth distribution is g / |x|, with �⇤ = 1. The mis-specified distributions are
picked with degree 1.5, 2, 3. We plot �+ as a function of �. The intersection point between �+ and �
is the fixed point for the variant EM update. It is seen that when we fit with a polynomial distribution
with higher degree, the fixed points are all greater than 1.

H.5 Misspecified LS-EM

We consider the family of polynomial distributions with g / |x|r for some r � 1. For the ground
truth distribution, we pick some r0 in the family and fit with another distribution with r1. We observe
that when r1 > r0, the variant EM updates tend to converge to a point greater than �⇤. On the
other hand, when r1 < r0, the variant EM updates tend to converge to a point smaller than �⇤.
Numerical evidence can be seen in Figure 9 and Figure 10. In Figure 10, we observe that when fitting
a distribution with heavier tail than the ground the truth, the convergence point can be 0, which might
lead to a big error in estimation. Therefore, it suggests that one should fit a distribution with a lighter
tail in practice. In both sets of experiments, we observe that fitting a 2GMM yields a fixed point close
to the ground truth parameter.
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Figure 10: The ground truth distribution is g / |x|2, with �⇤ = 1. The misspecified distributions
are picked with degree 1.5, 2, 3. We plot �+ as a function of �. It is seen that when we fit with a
polynomial distribution with higher degree, the fixed points are all greater than 1. When we fit with a
polynomial distribution with lower degree, the fixed points are all smaller than 1. In particular, when
we fit with a Laplace distribution, the only fixed point is 0.
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