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4 Proof of Proposition 2.1

Let L = maxj Lj and
�z = (�x1 , . . . , �xJ , �y1 , . . . , �yJ ).

First, for any z and �z, and using the symmetry of W = {wij}, we have
rg(z+ �z)�rg(z) =
2

6666666666664

rxf1(x
1 + �x1 ,y1 + �y1)�rxf1(x

1,y1) + 4
JP

i=1
w1i(�x1 � �xi)

...

rxfJ(x
J + �xJ ,yJ + �yJ )�rxfJ(x

J ,yJ) + 4
JP

i=1
wJi(�xJ � �xi)

ryf1(x
1 + �x1 ,y1 + �y1)�ryf1(x

1,y1)
...

ryfJ(x
J + �xJ ,yJ + �yJ )�ryfJ(x

J ,yJ)

3

7777777777775

Then with some rearrangement, denoting rfj = r[ xy ]
fj and using the triangle inequality, we can obtain
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where in the last inequality we use
vuuut

JX

j=1

�����

JX

i=j

wji�xi

�����

2

2

=
��⇥�x1 · · · �x1

⇤
W
��
F

=
���WT ⇥�x1 · · · �x1

⇤T���
F
 kWk

��⇥�x1 · · · �x1

⇤��
F


 
max

j

JX

i=1

wji

!
��⇥�x1 · · · �x1

⇤��
F

since kWk  maxj
P

i 6=j wji = maxj
PJ

i=1 wji in view of that W is symmetric, wii = 0 and wij � 0 by
(6).

Finally, using the definition of wji (6), we have maxj
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5 Proof of Theorem 2.4

The proof involves constructing a function eh such that eh(x) = h(x) for all x 2 B⇢ but where eh has a globally
Lipschitz gradient.

To do this, first define a window function w : Rn ! R,
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where I denote the n-by-n identity matrix. It is easy to verify that w 2 C2 and |w (x)|  1. To bound the
gradient rw, we have
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For the Hessian r2w with ⇢ < kxk < 2⇢, we have
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In fact,
��r2w

��  4+2⇡
⇢2

for all x since r2w = 0 for kxk  ⇢ and kxk � 2⇢. Now, we define eh (x) =

h (x)w (x), which has the following properties:

• Since h = eh in B⇢, eh satisfies the Łojasiewicz inequality in B⇢.

• Since h,w 2 C2, eh 2 C2.

• Since infRn h > �1 and infRn w > �1, infRn eh > �1.

• To globally bound the Lipschitz constant of the gradient of eh, note that
���r2eh

��� =
���w ·r2h+rh · (rw)T +rw · (rh)T + h ·r2w

���

 |w|
��r2h
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��r2w
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 L2 +
4L1

⇢
+

(4 + 2⇡)L0

⇢2
.

Now consider the gradient descent algorithm with stepsize µ satisfying (8). Define

Th = {x(0) 2 B⇢ : all {x(k)} ✓ B⇢ and all limit points of {x(k)}
are in B⇢ when gradient descent is run on h starting at x(0)}
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and

Teh = {x(0) 2 B⇢ : all {x(k)} ✓ B⇢ and all limit points of {x(k)}

are in B⇢ when gradient descent is run on eh starting at x(0)}.

Similarly, define

⌃h = {x(0) 2 B⇢ : {x(k)} converges to a strict saddle
when gradient descent is run on h starting at x(0)}

and

⌃eh = {x(0) 2 B⇢ : {x(k)} converges to a strict saddle

when gradient descent is run on eh starting at x(0)}.

Using the above properties, we see that Theorem 2.2 can be applied to eh, and so we conclude that ⌃eh has
measure zero.

Now, after running gradient descent on h from a random initialization as in the theorem statement, condition
on observing that {x(k)} ✓ B⇢ and all limit points of {x(k)} are in B⇢, i.e., that x(0) 2 Th. Because
{x(k)} ✓ B⇢ and all limit points of {x(k)} are in B⇢, and because {x(k)} matches the sequence that would
be obtained by running gradient descent on eh, we can apply Theorem 2.3 to conclude that {x(k)} converges to
a critical point of eh, and since this critical point belongs to B⇢ and eh = h inside B⇢, we conclude that this is
also a critical point of h.

Finally, using the definition of conditional probability, we have

P (x(0) 2 ⌃h|x(0) 2 Th) =
P (x(0) 2 ⌃h \ Th)

P (x(0) 2 Th)
=

P (x(0) 2 ⌃eh \ Teh)

P (x(0) 2 Th)
,

where the second equality follows from the fact that eh = h inside B⇢: if a sequence of iterations stays bounded
inside B⇢ and converges to a strict saddle when gradient descent is run on h, the same will hold when gradient
descent is run on eh, and vice versa. Since ⌃eh has zero measure and because x(0) is chosen randomly from a
probability distribution supported on a set S ✓ B⇢ with S having positive measure, P (x(0) 2 ⌃eh \ Teh) = 0.
Also, by assumption, P (x(0) 2 Th) > 0. Therefore, P (x(0) 2 ⌃h|x(0) 2 Th) = 0

nonzero = 0.

6 Proof of Theorem 2.5

Recall that running the DGD+LOCAL algorithm (5) to minimize the objective function f(x,y) in (3) is
equivalent to running gradient descent on g(z) in (7). The proof is completed by invoking Theorem 2.1 and
Theorem 2.2 with h replaced by g. From Proposition 2.1, we have that rg is Lipschitz continuous with constant
Lg = L+ 2!

µ , and so choosing µ to satisfy (9) ensures that µ < 1
Lg

as required in Theorem 2.1 and Theorem 2.2.

7 Proof of Theorem 2.6

Recall that running the DGD+LOCAL algorithm (5) to minimize the objective function f(x,y) in (3) is
equivalent to running gradient descent on g(z) in (7). Similar to the approach taken in proving Theorem 2.4, to
deal with the local Lipschitz condition, the proof involves constructing a function eg such that eg(z) = g(z) for
all z 2 B⇢ but where eg has a globally Lipschitz gradient.

To do this, recall the window function w defined in Section 5 of the Supplementary material. Now, recall that

g(z) =
JX

j=1

 
fj(x

j ,yj) +
JX

i=1

wjikxj � xik22

!

and define

eg (z) =
JX

j=1

 
efj(xj ,yj) +

JX

i=1

wjikxj � xik22

!
, (20)

where
efj(xj ,yj) = fj(x

j ,yj)w(
⇥
(xj)T yT

j

⇤T
).

Since efj(xj ,yj) = fj(x
j ,yj) for (xj ,yj) 2 B⇢, we have that eg (z) = g(z) for all z 2 B⇢.

We have the following properties for eg:
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• Since g = eg in B⇢, eg satisfies the Łojasiewicz inequality in B⇢.

• Since fj 2 C2 for all j and w 2 C2, eg 2 C2.

• Since infRn fj > �1 for all j and infRn w > �1, infRn eg > �1.

• To globally bound the Lipschitz constant of the gradient of eg, note that
���r2 efj

��� =
���w ·r2fj +rfj · (rw)T +rw · (rfj)

T + fj ·r2w
���

 |w|
��r2fj

��+ 2 krwk krfjk+ |fj |
��r2w

��

 L2,j +
4L1,j

⇢
+

(4 + 2⇡)L0,j

⇢2
for all (xj ,yj).

Therefore, given the form of eg in (20), we can conclude from Proposition 2.1 that globally, reg is
Lipschitz continuous with constant

Leg =

✓
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◆
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Now consider the gradient descent algorithm with stepsize µ satisfying (10). Define

Tg = {z(0) 2 B⇢ : all {z(k)} ✓ B⇢ and all limit points of {z(k)}
are in B⇢ when gradient descent is run on g starting at z(0)}

and

Teg = {z(0) 2 B⇢ : all {z(k)} ✓ B⇢ and all limit points of {z(k)}
are in B⇢ when gradient descent is run on eg starting at z(0)}.

Similarly, define

⌃g = {z(0) 2 B⇢ : {z(k)} converges to a strict saddle when
gradient descent is run on g starting at z(0)}

and

⌃eg = {z(0) 2 B⇢ : {z(k)} converges to a strict saddle when
gradient descent is run on eg starting at z(0)}.

Using the above properties, we see that Theorem 2.2 can be applied to eg, and so we conclude that ⌃eg has
measure zero.

Now, after running gradient descent on g from a random initialization as in the theorem statement, condition
on observing that {z(k)} ✓ B⇢ and all limit points of {z(k)} are in B⇢, i.e., that z(0) 2 Tg . Because
{z(k)} ✓ B⇢ and all limit points of {z(k)} are in B⇢, and because {z(k)} matches the sequence that would be
obtained by running gradient descent on eg, we can apply Theorem 2.3 to conclude that {z(k)} converges to a
critical point of eg, and since this critical point belongs to B⇢ and eg = g inside B⇢, we conclude that this is also
a critical point of g.

Finally, using the definition of conditional probability, we have

P (z(0) 2 ⌃g|z(0) 2 Tg) =
P (z(0) 2 ⌃g \ Tg)

P (z(0) 2 Tg)

=
P (z(0) 2 ⌃eg \ Teg)

P (z(0) 2 Tg)
,

where the second equality follows from the fact that eg = g inside B⇢: if a sequence of iterations stays bounded
inside B⇢ and converges to a strict saddle when gradient descent is run on g, the same will hold when gradient
descent is run on eg, and vice versa. Since ⌃eg has zero measure and because z(0) is chosen randomly from a
probability distribution supported on a set S ✓ B⇢ with S having positive measure, P (z(0) 2 ⌃eg \ Teg) = 0.
Also, by assumption, P (z(0) 2 Tg) > 0. Therefore, P (z(0) 2 ⌃g|z(0) 2 Tg) = 0

nonzero = 0.
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8 Proof of Proposition 2.2

First note that

min
z

g(z) =
JX

j=1

 
fj(x

j ,yj) +
JX

i=1

wjikxj � xik22

!
(21)

�
JX

j=1

min
xj ,yj

fj(x
j ,yj) =

JX

j=1

fj(x
?,y?

j ) = min
x,y

f(x,y). (22)

On the other hand, we have

min
z

g(z) = min
z

JX

j=1

 
fj(x

j ,yj) +
JX

i=1

wjikxj � xik22

!

 min
z:x1=···=xJ

JX

j=1

 
fj(x

j ,yj) +
JX

i=1

wjikxj � xik22

!

= min
x,y

JX

j=1

fj(x,yj) = min
x,y

f(x,y).

Thus, we have
min
z

g(z) = min
x,y

f(x,y).

The proof is completed by noting that (22) achieves the equality only at z with x1 = · · · = xJ since the
topology defined by W is connected.

9 Proof of Proposition 2.3

The critical points of the objective function in (7) satisfy

rxjg(z) = rxfj(x
j ,yj) +

JX

i=1

2wji(x
j � xi) = 0, (23)

ryjg(z) = ryjfj(x
j ,yj) = 0, 8 j 2 [J ]. (24)

Now taking the inner product of both sides in (23) with xj and also the inner product of both sides in (24) with
yj and using the property (12), we have

JX

i=1

2wjihxj ,xj � xii = 0

for all j 2 [J ]. Using the symmetric property of W, we then have

JX

j=1

JX

i=1

wjikxj � xik2 = 0.

Therefore,
xi = xj , if wij 6= 0

for any i, j 2 [J ]. Since the topology defined by W is connected, we finally have

x1 = · · · = xJ .

10 Proof of Theorem 2.7

We rewrite Cf as:

Cf =

(
x,y :

JX

j=1

rxfj(x,yj) = 0,ryjfj(x,yj) = 0, 8j 2 [J ]

)
.
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The critical points of the objective function in (7) satisfy

rxjg(z) = rxfj(x
j ,yj) +

JX

i=1

2(wij + wji)(x
j � xi) = 0,

ryjg(z) = ryjfj(x
j ,yj) = 0, 8 j 2 [J ].

With this, we rewrite Cg as

Cg =

⇢
z :rxfj(x

j ,yj) +
JX

i=1

2(wij + wji)(x
j � xi) = 0,

ryjfj(x
j ,yj) = 0, 8 j 2 [J ]

�
.

Thus, for any z = (x1, . . . ,xJ ,y) 2 Cg with x1 = · · · = xJ = x, we have that (x,y) is a critical point of (3),
i.e., (x,y) 2 Cf . In what follows, we check how the Hessian information (especially the smallest eigenvalue of
the Hessian) of (x,y) is transformed to z.

At any point (x,y), the Hessian quadratic form of f for any qx and qy =
⇥
qT
y1

· · · qT
yJ

⇤T is given by

[r2f(x,y)](


qx

qy

�
,


qx

qy

�
) =

JX

j=1

r2fj(


qx

qyj

�
,


qx

qyj

�
).

At any point z, the Hessian quadratic form of g for any

q =
⇥
qT
x1 · · · qT

xJ qT
y1

· · · qT
yJ

⇤

is given by

[r2g(z)](q,q) =
JX

j=1

r2fj(


qxj

qyj

�
,


qxj

qyj

�
) +

JX

j=1

2wjikqxj � qxik22.

Now suppose �min(r2f(x,y)) < 0 (where �min denotes the smallest eigenvalue), i.e., there exist qx,qy such
that

[r2f(x,y)](


qx

qy

�
,


qx

qy

�
) < 0.

Choosing qx1 = · · · = qxJ = qx, we have [r2g(z)](q,q) < 0, i.e., �min(r2g(z)) < 0.

11 Proof of Theorem 3.1

Denote by h(U,V) = 1
2kUVT �Yk2F . Let C denote the set of critical points of h:

C =
n
(U,V) : (UVT �Y)V = 0, (UVT �Y)TU = 0

o
.

Our goal is to characterize the behavior of all the critical points that are not global minima. In particular, we
want to show that every critical point of h is either a global minimum or a strict saddle. Towards that end, we
first recall the following result concerning the degenerate critical points.

Lemma 11.1. [32, Theorem 8 with X = I] Any pair (U,V) 2 C that is degenerate (i.e., rank(UVT) < r) is
either a global minimum of h (i.e., UVT = Yr where Yr is a rank-r approximation of Y) or a strict saddle
(i.e., �min(r2h(U,V)) < 0).

Note that the above result holds for any matrix Y. When rank(Y)  r, then Yr = Y. It follows from
Lemma 11.1 that the behavior of all degenerate critical points is quite clear. For the remaining non-degenerate
critical points, using the same argument in [42, Theorems 2–4], we first establish the following results concerning
the critical points that are also balanced (i.e., UTU = VTV).

Lemma 11.2. [42, Theorems 2–4] Any pair (U,V) 2 C satisfying UTU = VTV is either a global minimum
of h or a strict saddle.

The above result also holds for any matrix Y. With this result, we now show that non-degenerate critical points
behave similarly to degenerate ones.

Lemma 11.3. Any pair (U,V) 2 C that is non-degenerate (i.e., rank(UVT) = r) is either a global minimum
of h or a strict saddle.
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Proof of Lemma 11.3. Suppose (U,V) is not a global minimum of h. Let UVT = P⌃QT be a reduced SVD
of UVT. Since rank(UVT) = r and both U and V have only r columns, we know rank(U) = rank(V) = r.
Denote by D = (UTU)�1UTP⌃1/2 and G = (VTV)�1VTQ⌃1/2. With this, we have

DGT = (UTU)�1UTP⌃QTV(VTV)�1 = I,

and
eU = UD = P⌃1/2, eV = VG = Q⌃1/2.

The above constructed pair (eU, eV) satisfies

eUeVT = UVT, eUT eU = eVT eV.

Since (U,V) 2 C, we have

rhU(eU, eV) = rhU(U,V)D = 0, rhV(eU, eV) = rhV(U,V)G = 0,

which implies that (eU, eV) is also a critical point (but not a global minimum since by assumption (U,V) is not
a global minimum) of h. Since (eU, eV) is also balanced, it follows from Lemma 11.2 that there exists e� eU and
e� eV such that

[r2h(eU, eV)]( e�, e�) < 0.

Now construct �U = e� eUD�1 and �V = e� eVG�1. Then, we have

[r2h(U,V)](�,�) = k�UVT +U�T
Vk2F + 2hUVT �Y,�U�T

Vi

= k e� eU
eVT + eU e�

T
eVk2F + 2heUeVT �Y, e� eU

e�
T
eVi

= [r2h(eU, eV)]( e�, e�) < 0,

which implies that (U,V) is a strict saddle.

Lemma 11.2 together with Lemma 11.3 implies that any pair (U,V) 2 C is either a global minimum of h or a
strict saddle.

12 Proof of Theorem 3.2

We begin by arguing that DGD+LOCAL converges almost surely (when z(0) is chosen randomly inside B⇢) to
a second-order critical point of (18). To do this, our goal is to invoke Theorem 2.6. We note that each fj defined
in (16) satisfies infU,Vj fj > �1 and is twice-continuously differentiable. Also, since the functions fj are
semi-algebraic, g satisfies the Łojasiewicz inequality globally. The functions fj do not have globally Lipschitz
gradient. However, we can find quantities L0,j , L1,j , L2,j such that |fj (x,yj)|  L0,j , krfj (x,yj)k  L1,j ,
and

��r2fj(x,y)
��
2
 L2,j for all (x,yj) 2 B2⇢. For L0,j :

|fj (x,yj)| = kUVT
j �Yjk2F

 (kUVT
j kF + kYjkF )2

 (kUkF kVjkF + kYjkF )2

 (4⇢2 + kYjkF )2

 32⇢4 + 2kYjk2F .

For L1,j :

krfj (x,yj)k =

����


rUkUVT

j �Yjk2F
rVjkUVT

j �Yjk2F

�����
F

=

����


2(UVT

j �Yj)Vj

2(UVT
j �Yj)

TU

�����
F

 2
⇣
kUVT

j VjkF + kYjVjkF + kVjU
TUkF + kYT

j UkF
⌘

 2
�
8⇢3 + 2⇢kYjkF + 8⇢3 + 2⇢kYjkF

�

= 32⇢3 + 8⇢kYjkF .
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For L2,j , we can bound the Lipschitz constant of rfj in B2⇢ as follows. Denote D =


DU

DVj

�
. Then

1
2
kr2fj(U,Vj)k =

1
2

max
kDkF=1

[r2fj(U,Vj)](D,D)

= max
kDkF=1

kDUVT
j +UDT

Vj
k2F + 2hUVT

j ,DUDT
Vj

i � 2hYj ,DUDT
Vj

i

 max
kDkF=1

✓
5
2
(kVjk2F + kUk2F )(kDUk2F

+kDVjk
2
F ) + kYjkF (kDUk2F + kDVjk

2
F )
�

 max
kDkF=1

(10⇢2 + kYjkF )(kDUk2F + kDVjk
2
F ) = 10⇢2 + kYjkF ,

where the last inequality holds because kUk2F + kVjk2F  4⇢2. Therefore we can bound the Lipschitz constant
of rfj as Lj  20⇢2 + 2kYjkF for all (U,Vj) such that kUk2F + kVjk2F  4⇢2. Now,

L2,j +
4L1,j

⇢
+

(4 + 2⇡)L0,j

⇢2

= 20⇢2 + 2kYjkF +
4
⇢
(32⇢3 + 8⇢kYjkF ) +

(4 + 2⇡)
⇢2

(32⇢4 + 2kYjk2F )

= 20⇢2 + 2kYjkF + 128⇢2 + 32kYjkF + (128 + 64⇡)⇢2 +
(8 + 4⇡)

⇢2
kYjk2F

= (276 + 64⇡)⇢2 + 34kYjkF +
(8 + 4⇡)

⇢2
kYjk2F .

Thus, choosing µ to satisfy (19) ensures that (10) is met.

From Theorem 2.6, we then conclude that conditioned on observing that {z(k)} ✓ B⇢ and all limit points
of {z(k)} are in B⇢, DGD+LOCAL converges to a critical point of the objective function in (18), and the
probability that this critical point is a strict saddle point is zero. We refer to this point as z?.

Next, note that the assumption of Proposition 2.2 is satisfied if Y has rank at most r. In particular, there exist
eU, eV such that eUeVT = Y and so we may take x? = vec(eU) and y?

j = vec(eVj) to achieve fj(x
?,y?

j ) = 0,
which is the smallest possible value for each fj . Proposition 2.2 thus guarantees that (18) has at least one critical
point that is not a strict saddle (and in fact that it is a global minimizer that falls on the consensus subspace).

Next, note that the symmetric property required for Proposition 2.3 is satisfied. To see this, observe that

rUkUVT
j �Yjk2F = 2(UVT

j �Yj)Vj

and
rVjkUVT

j �Yjk2F = 2(UVT
j �Yj)

TU.

Thus,

hrUkUVT
j �Yjk2F ,Ui = 2 · tr(UT(UVT

j �Yj)Vj)

= 2 · tr(VT
j (UVT

j �Yj)
TU) = hrVjkUVT

j �Yjk2F ,Vji.

Proposition 2.3 thus guarantees that (18) has no critical points outside of the consensus subspace. Since we have
argued that DGD+LOCAL converges to a second-order critical point z? of (18), it follows that z? must be on
the consensus subspace; that is, z? = (U1?, . . . ,UJ?,V?

1 , . . . ,V
?
J) with U1? = · · · = UJ? = U?.

Next, Theorem 2.7 guarantees that z? (in which U1? = · · · = UJ? = U?) corresponds to a critical point
(U?,V?) of the centralized problem (15), which is exactly equivalent to problem (13). Here, V? is the
concatenation of V?

1 , . . . ,V
?
J as in (14). Theorem 3.1 tells us that problem (13) has two types of critical points:

global minimizers and strict saddles. If (U?,V?) were a strict saddle point of (13), Theorem 2.7 tells us that z?
must then be a strict saddle of (18). However, z? is almost surely a second-order critical point of (18), where
the Hessian has no negative eigenvalues. It follows that (U?,V?) must almost surely be a global minimizer of
problem (13).

13 Experiments

In our first experiment, we generate a rank-r ground truth matrix Y =
⇥
Y1 Y2 · · · YJ

⇤
2

Rn⇥Jmj

⇣P
j mj = m

⌘
, where r = 10, n = 50, J = 10, and mj = 20 for all j, by multiplying two standard
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(a) Distributed matrix completion
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(b) Stochastic distributed matrix completion
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(c) Distributed matrix sensing

Figure 2: (a) Convergence of DGD+LOCAL for distributed matrix completion. (b) Convergence of
stochastic DGD+LOCAL—in each iteration, one node is randomly chosen to perform the update—for
distributed matrix completion. (c) Convergence of DGD+LOCAL for distributed matrix sensing.

Gaussian matrices (i.e., each entry is i.i.d. from N (0, 1)) of size n⇥ r and r ⇥m. We solve (15) via (17) with
stepsize µ = 10�3. In the left panel of Figure 1, we plot the optimality distance

PJ
j=1

��UjVT
j �Yj

��2
F

and

consensus error
PJ

j=1

���Uj � 1
J

PJ
i=1 U

i
���
2

F
as a function of the number of iterations and verify our theoretical

result that for the low-rank matrix factorization problem DGD+LOCAL achieves both global optimality and
exact consensus.

In our second experiment, we set J = 10 and consider the quadratic least squares optimization problem

minimize
x1,x2,...,xJ

1
2

JX

j=1

⇣
xj � bj

⌘T
Aj

⇣
xj � bj

⌘
(25)

where Aj is a 5⇥ 5 randomly generated symmetric matrix with eigenvalues uniformly distributed in (0, 1) and
bj is a 5⇥ 1 standard Gaussian vector. We use standard DGD (because this problem has no local variables yj)
with a stepsize 10�2 to solve (25) and plot the value of objective function 1

2

PJ
j=1

�
xj � bj

�T
Aj

�
xj � bj

�

and consensus error
PJ

j=1

���xj � 1
J

PJ
i=1 x

i
���
2

F
in the right panel of Figure 1. We observe convergence only to

a neighborhood of the optimal solution with a consensus error proportional to the stepsize.

We also conduct experiments on matrix completion and matrix sensing problems in the distributed setup. For
matrix completion, given a rank-r random matrix Y 2 Rn⇥m partitioned into J submatrices, i.e., Y =⇥
Y1 Y2 · · · YJ

⇤
with Yj of size n⇥mj and

P
j mj = m, we solve the optimization problem

minimize
U1,··· ,UJ ,V1,··· ,VJ

JX

j=1

fj
⇣
Uj ,Vj

⌘
(26)

where

fj
⇣
Uj ,Vj

⌘
=

1
2

X

(l,k)2⌦j

⇣
UjVT

j

⌘

l,k
� (Yj)l,k

�2

and ⌦j =
n
(l, k) : (Yj)l,k is observed

o
, using DGD+LOCAL with random initialization. In our experiment,

we select n = 50, mj = 5 for all j, J = 5, m = 25, r = 2, and the total number of entries observed in Y to be
3r(n+m).

As shown in Fig 2a, the objective value, recovery error, and consensus error all converge quickly to 0. Similar
results are shown in Fig 2b, where we applied a “stochastic” version of DGD+LOCAL (in each iteration one
node is randomly chosen to perform the update) to the same matrix completion problem. For matrix sensing, we
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use the formulation

minimize
U1,··· ,UJ ,V1,··· ,Vj

JX

j=1

���Aj

⇣
UjVT

j

⌘
� yj

���
2

2
, (27)

where Uj 2 Rn⇥r , Vj 2 Rmj⇥r , yj 2 Rp and Aj : Rn⇥mj ! Rp. For this problem, the sensing mechanism
is local to each matrix block:

⇣
Aj

⇣
UjVT

j

⌘⌘

i
=
D
Ai

j ,U
jVT

j

E
, Ai

j 2 Rn⇥mj , 8j = 1, · · · , J, i = 1, · · · p.

We choose n = 50, mj = 5, J = 5, r = 2, p = 1
2r(n + mj) and use DGD+LOCAL with a random

initialization to solve the matrix sensing problem and show the objective value, recovery error, and consensus
error in Fig 2c. Again, the objective value, recovery error, and consensus error all converge to 0. Both the matrix
completion and matrix sensing problems satisfy the symmetric gradient condition of Proposition 2.3, which
explains the convergence to the consensus subspace.
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