
1 Proofs from Section 3.11

We start with pseudocode for RR1.2

Algorithm 1 RR1
Input: ε, i, j

1: yi ← ⌊xi/2j⌋ mod 4

2: if p ∼U [0,1] ≤ eε

eε+3
then

3: User i publishes ỹi ← yi
4: else
5: User i publishes ỹi ∼u ({0,1,2,3}/{yi})
6: end if

Output: Private user estimate ỹi of µ(j)

Next, we prove the privacy guarantee for KVGAUSSTIMATE.3

Theorem 1.1. KVGAUSSTIMATE satisfies (ε,0)-local differential privacy for x1, . . . , xn.4

Proof. As KVGAUSSTIMATE is sequentially interactive, each user only produces one output. It5

therefore suffices to show that each randomized response routine used in KVGAUSSTIMATE is6

(ε,0)-locally private. In RR1, for any possible inputs x,x′ and output y we have7

P [RR1(x) = y]
P [RR1(x′) = y] ≤

eε/(eε + 3)
1/(eε + 3) ≤ eε

so RR1 is (ε,0)-locally private. KVRR2 is (ε,0)-locally private by similar logic.8

We now prove the accuracy guarantee for KVGAUSSTIMATE. First, recall that Ĥ1 is the aggregation9

(via KVAGG1) of user responses (via RR1). Let H1 be the “true” histogram, Hj
1(a) = ∣{yi ∣ i ∈10

U j1 , yi = a}∣ for all a ∈ {0,1,2,3} and j ∈ L. Since the analyst only has access to Ĥ1, we need to11

show that Ĥ1 and H1 are similar.12

Lemma 1.2. With probability at least 1 − β, for all j ∈ L,13

∣∣Ĥj
1 −H

j
1 ∣∣∞ ≤ ( ε+4

ε
√

2
) ⋅

√
k ln(8L/β).

Proof. Choose a ∈ {0,1,2,3} and j ∈ L. E [Cj(a)] = Hj1(a)e
ε

eε+3
+ k−Hj1(a)

eε+3
= Hj1(a)(e

ε−1)+k
eε+3

, so by a14

pair of Chernoff bounds on the k users in U j1 , with probability at least 1 − β/4L,15

∣Cj(a) − Hj1(a)(e
ε−1)+k

eε+3
∣ ≤

√
k ln(8L/β)/2.

Then since Ĥj
1(a) = eε+3

eε−1
⋅ (Cj(a) − k

eε+3
), this implies16

∣Ĥj
1(a) −H

j
1(a)∣ ≤

eε + 3

eε − 1
⋅
√
k ln(8L/β)/2 < ( ε+4

ε
√

2
) ⋅

√
k ln(8L/β)

where the last step uses eε+3
eε−1

< ε+4
ε

. Union bounding over a ∈ {0,1,2,3} and all L groups U j117

completes the proof.18

Next, we show how the analyst uses Ĥ1 to estimate µ through ESTMEAN. Intuitively, in subgroup U j119

when user responses concentrate in a single bin mod 4, this suggests that µ lies in the corresponding20

bin. In the other direction, when user responses do not concentrate in a single bin, users with points21

near µ must spread out over multiple bins, suggesting that µ lies near the boundary between bins. We22

formalize this intuition in ESTMEAN and Lemma 1.3.23

Lemma 1.3. Conditioned on the success of the preceding lemmas, with probability at least 1 − β,24

∣µ̂1 − µ∣ ≤ 2σ.25
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Proof. Recall the definitions of ψ, M1(j), and M2(j) from the pseudocode for EST-26

MEAN: ψ = ( ε+4

ε
√

2
) ⋅

√
k ln(8L/β), M1(j) = arg maxa∈{0,1,2,3} Ĥ

j
1(a), and M2(j) =27

arg maxa∈{0,1,2,3}−{M1(j)} Ĥ
j
1(a). We start by proving two useful claims.28

Claim 1: With probability at least 1−β/5, for all j ∈ L where 2j > σ, if j′ = Lmax, Lmax−1, . . . , j+129

all have Ĥj′
1 (M1(j)) ≥ 0.52k + ψ, then µ ∈ Ij .30

To see why, suppose 2j > σ and let x ∼ N(µ,σ2). Recall the Gaussian CDF F (x) =31

1
2
[1 + erf ( x−µ

σ
√

2
)]. Then for any a /≡ ⌊µ/2j⌋ mod 432

P [⌊x/2j⌋ ≡ a mod 4] ≤ P [x /∈ [µ,µ + 3 ⋅ 2j)] < P [x /∈ [µ,µ + 3σ)] < 0.51

where the second inequality uses 2j > σ. Thus by a binomial Chernoff bound, the assumption33

k > 5000 ln(5L/β), and Lemma 1.2, with probability ≥ 1 − β/5L, Ĥj
1(a) < 0.52k + ψ. Therefore if34

for some a we have Ĥj
1(a) ≥ 0.52k + ψ, a ≡ ⌊µ/2j⌋ mod 4. Moreover, if µ ∈ Ij then letting c be the35

(unique) integer such that c ≡M1(j) mod 4 and c2j ∈ Ij (since Ij has endpoints c12j and (c1 + 2)2j36

for integer c1) we get µ ∈ [c2j , (c + 1)2j] = Ij . As µ ∈ ILmax by our assumed lower bound on n, the37

claim follows by induction.38

Claim 2: Let j be the maximum j ∈ L with Ĥj
1(M1(j)) < 0.52k + ψ, and let c∗ be the maximum39

integer such that c∗2j ∈ Ij and c∗ ≡M1(j) or M2(j) mod 4. If 2j > σ, then with probability at least40

1 − 4β/5, ∣c∗2j − µ∣ ≤ 2σ.41

To see why, first note that by Claim 1, µ ∈ Ij . Let [c2j , (c + 1)2j) be the subinterval of Ij containing42

µ for integer c. Then as 2j > σ, for x ∼ N(µ,σ2), by another application of the Gaussian CDF,43

P [x ∈ [c2j , (c + 1)2j)] > P [x ∈ [µ,µ + σ)] ≥ 0.34.

Thus by the same method as above, using the assumption k > 5000 ln(5/β), with probability at least44

1 − β/5, Ĥj
1(c mod 4) ≥ 0.33k − ψ. By similar logic, since45

P [⌊x/2j⌋ ≡ c + 2 mod 4] < max
λ∈[0,2j]

P [x /∈ [µ − 2j − λ,µ + 2 ⋅ 2j − λ]] < P [x /∈ [µ − σ,µ + 2σ)] ≤ 0.19

with probability at least 1 − β/5, Ĥj
1(c + 2 mod 4) ≤ 0.2k + ψ. Next, consider Ĥj

1(c − 1 mod 4). If46

µ ≥ (c + 0.75)2j , then47

P [x ∈ [(c − 1)2j , c2j)] ≤ P [x /∈ [µ − 3σ/4, µ + 9σ/4]] ≤ 0.24

so with probability at least 1 − β/548

Ĥj
1(c − 1 mod 4) ≤ 0.25k + ψ < 0.33k − ψ ≤ Ĥj

1(c mod 4)

where the middle inequality uses k > 625 ( ε+4

ε
√

2
)

2
ln(4L/β). Thus c ≡M1(j) or M2(j) mod 4; the49

µ ≤ (c+ 0.25)2j) case is symmetric. If instead µ ∈ ((c+ 0.25)2j , (c+ 0.75)2j) then by similar logic50

with probability at least 1 − β/551

Ĥj
1(c mod 4) ≥ 0.36k − ψ.

so by ψ < 0.08k (implied by k > 40 ( ε+4

ε
√

2
)

2
ln(8L/β)) c ≡M1(j) or M2(j) mod 4. It follows that52

with probability at least 1 − 3β/5 in all cases c ≡M1(j) or M2(j) mod 4. Moreover, by a similar53

application of the Gaussian CDF, one of c − 1 mod 4 and c + 1 mod 4 lies in {M1(j),M2(j)} as54

well.55

Recalling that c∗ is the maximum integer such that c∗2j ∈ Ij and c∗ ≡ M1(j) or M2(j) mod 4,56

c∗ − 1 mod 4 ∈ {M1(j),M2(j)} as well. Assume ∣c∗2j − µ∣ > 2σ. By above, µ ∈ [c∗2j , (c∗ + 1)2j)57

or [(c∗ − 1)2j , (c∗2j)). In the first case,58

P [⌊x/2j⌋ ≡ c∗ − 1 mod 4] ≤ P [x /∈ [µ − 2σ,µ + 2σ]] ≤ 0.05
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so with probability at least 1 − β/5, Ĥj
1(c∗ − 1) ≤ 0.06k + ψ, a contradiction of c∗ − 1 mod 4 ∈59

{M1(j),M2(j)}. In the second case,60

P [⌊x/2j⌋ ≡ c∗ mod 4] ≤ P [x /∈ [µ − 2σ,µ + 2σ]] ≤ 0.05

and with probability at least 1−β/5, Ĥj
1(c∗) ≤ 0.06k+ψ, contradicting c∗ mod 4 ∈ {M1(j),M2(j)}.61

Thus ∣c∗2j − µ∣ ≤ 2σ.62

We put these facts together in ESTMEAN as follows: let j1 be the maximum element of L such that63

Ĥj
1(M1(j)) < 0.52k − ψ. If 2j1 > σ, then by Fact 2 setting µ̂1 = c∗2j implies ∣µ̂1 − µ∣ ≤ 2σ. If64

instead 2j1 ≤ σ, then any setting of µ̂1 ∈ Ij (including µ̂1 = c∗2j) guarantees ∣µ̂1 − µ∣ ≤ 2j1+1 ≤ 2σ.65

Thus in all cases, with probability at least 1 − β, ∣µ̂1 − µ∣ ≤ 2σ.66

The results above give the analyst an (initial) estimate µ̂1 such that ∣µ̂1 − µ∣ ≤ 2σ. This concludes our67

analysis of round one of KVGAUSSTIMATE. Now, the analyst passes this estimate µ̂1 to users i ∈ U2,68

and each user uses µ̂1 to center their value xi and randomized respond on the resulting (xi − µ̂1)/σ in69

KVRR2. The analyst then aggregates these results using KVAGG2. We now prove that this centering70

process results in a more accurate final estimate µ̂2 of µ.71

Lemma 1.4. Conditioned on the success of the previous lemmas, with probability at least 1 − β72

KVGAUSSTIMATE outputs µ̂2 such that73

∣µ̂2 − µ∣ = O
⎛
⎝
σ

ε

√
log(1/β)

n

⎞
⎠
.

Proof. The proof is broadly similar to that of Theorem B.1 in Braverman et al. [1], with some74

modifications for privacy. First, by Lemma 1.3 µ − µ̂1 ∈ [−2σ,2σ]. Letting µ̄ = (µ − µ̂1)/σ we get75

that x′i ∼ N(µ̄,1). Next, since E [yi] = 2P [x′i ≥ 0] − 1, and in general76

Φµ,σ2(x) = 1

2
(1 + erf(x − µ

σ
√

2
))

where Φµ,σ2 is the CDF of N(µ,σ2), by Φµ̄,1(0) = P [x′i ≥ 0] we get E [yi] = erf(µ̄/
√

2) (note77

that we are analyzing the unprivatized values yi to start; later, we will use this analysis to prove the78

analogous result for the privatized values ỹi).79

A Chernoff bound on [−1,1]-bounded random variables then shows that, with probability at least80

1 − β/2, for y = 2
n ∑i∈U2

yi we have81

∣y − erf(µ̄/
√

2)∣ ≤ 2
√

ln(4/β)/n
and by E [y] = erf(µ̄/

√
2) we get ∣y −E [y] ∣ ≤ 2

√
ln(4/β)/n as well.82

Since µ − µ̂1 ∈ [−2σ,2σ], ∣erf(µ̄/
√

2)∣ ≤ erf(
√

2). Thus ∣E [y] ∣ ≤ erf(
√

2), so by ∣y − E [y] ∣ ≤83

2
√

ln(4/β)/n we get84

∣y∣ ≤ erf(
√

2) + 2
√

ln(4/β)/n.
Using n > 20000 ln(4/β) we get 2

√
ln(4/β)/n < 0.01 and erf(

√
2) < 0.96, so ∣y∣ ≤ 0.97 and thus85

∣y∣ < erf(1.6). Let M be an upper bound on the Lipschitz constant for erf−1 in [−0.97,0.97],86

M = max
x∈[−0.97,0.97]

derf−1(x)
dx

= max
x∈[−0.97,0.97]

√
π

2
exp([erf−1(x)]2)

≤
√
π

2
exp([erf−1(0.97)]2) < 10.

Then for any x, y ∈ [−0.97,0.97] we have ∣erf−1(x) − erf−1(y)∣ ≤ M ∣x − y∣, so setting T =87 √
2erf−1(y),88

∣T − µ̄∣ = ∣
√

2(erf−1(y) − erf−1(E [y])∣ ≤ 10
√

2∣y −E [y] ∣
≤ 20

√
2 ln(4/β)/n

3



using the bound on ∣y −E [y] ∣ from above.89

It remains to analyze the privatized values {ỹi} and bound ∣T − T̂ ∣, recalling that we set90

T̂ =
√

2 ⋅ erf−1 (2(−Ĥ2(−1) + Ĥ2(1))
n

)

in KVAGG1. By a Chernoff bound analogous to that of Lemma 1.2, with probability at least 1 − β/291

∣T − T̂ ∣ ≤
√

2

RRRRRRRRRRRR
erf−1(∣y∣) − erf−1 ⎛

⎝
∣y∣ + [ε + 2

ε
]
√

2 ln(4/β)
n

⎞
⎠

RRRRRRRRRRRR
.

Using n > 20000 ( ε+2
ε

)2
ln(4/β) (which implies [ ε+2

ε
]
√

2 ln(4/β)
n

≤ 0.01) and the same derivative92

trick as above on [−0.98,0.98], we get93

∣T − T̂ ∣ ≤ 14 [ε + 2

ε
]
√

2 ln(4/β)
n

.

Therefore by the triangle inequality94

∣T̂ − µ̄∣ ≤ (20 + 14 [ε + 2

ε
])

√
2 ln(4/β)

n

and by σµ̄ = µ − µ̂1 we get95

∣σT̂ − σµ̄∣ = ∣(σT̂ + µ̂1) − µ∣ ≤ σ (20 + 14 [ε + 2

ε
])

√
2 ln(4/β)

n
.

Thus by taking µ̂2 = σT̂ + µ̂1, we get96

∣µ̂2 − µ∣ = O
⎛
⎝
σ

ε

√
log(1/β)

n

⎞
⎠
.

97

2 Proofs from Section 3.298

We start with full pseudocode for 1ROUNDKVGAUSSTIMATE.99

Algorithm 2 1ROUNDKVGAUSSTIMATE

Input: ε, k1, k2,L, n,R,S, σ,U1, U2

1: for j ∈ L do
2: for user i ∈ U j1 do
3: User i outputs ỹi ← RR1(ε, i, j)
4: end for
5: end for
6: for j ∈ R do
7: for user i ∈ U j2 do
8: User i outputs ỹi ← 1ROUNDKVRR2(ε, i, S(j))
9: end for

10: end for ⊳ End of round 1
11: Analyst computes Ĥ1 ← KVAGG1(ε, k1,L, U1)
12: Analyst computes µ̂1 ← ESTMEAN(β, ε, Ĥ1, k1,L, )
13: Analyst computes j∗ ← arg minj∈Rmins∈S(j) ∣s − µ̂1∣
14: Analyst computes Ĥ2 ← KVAGG2(ε, k2, U

j∗
2 )

15: Analyst computes T̂ ←
√

2 ⋅ erf−1 (−Ĥ2(−1)+Ĥ2(1)
k2

)
16: Analyst outputs µ̂2 ← σT̂ + arg mins∈S(j∗) ∣s − µ̂1∣
Output: Analyst estimate µ̂2 of µ

4



1ROUNDKVGAUSSTIMATE’s privacy guarantee follows from the same analysis of randomized100

response as in KVGAUSSTIMATE, so we state the guarantee but omit its proof.101

Theorem 2.1. 1ROUNDKVGAUSSTIMATE satisfies (ε,0)-local differentially privacy for x1, . . . , xn.102

We define k (here denoted k1), L, U1, and U2 as in KVGAUSSTIMATE. As 1ROUNDKVGAUSSTI-103

MATE’s treatment of users in U1 is identical to that of KVGAUSSTIMATE, we skip its analysis, instead104

recalling its final guarantee:105

Lemma 2.2. With probability at least 1 − β, ∣µ̂1 − µ∣ ≤ 2σ.106

This brings us to U2, and we define new parameters as follows. For neatness, let ρ = ⌈2
√

ln(4n)⌉ ≥107

⌈
√

2 ln(2√n) + 2.1⌉ for n ≥ 32. We set R = {0.2σ,0.4σ, . . . , ρσ} and split U2 into ∣R∣ = 5ρ groups108

indexed by j ∈ R, each of size k2 ≥ ⌊n/2∣R∣⌋ ≥ ⌊ n

20
√

ln(4n)
⌋ = Ω(n/

√
log(n)), where the last109

inequality uses n ≥ 25. Finally, for each j ∈ R we define S(j) = {j + bρσ ∣ b ∈ Z}.110

With this setup, for each j ∈ R each user i ∈ U j2 uses 1ROUNDKVRR2 to execute a group-specific111

version of KVRR2: rather than centering by µ̂1 as in KVRR2, user i now centers by the nearest112

point in S(j) (breaking ties arbitrarily).113

Algorithm 3 1ROUNDKVRR2
Input: ε, i, S(j)

1: User i computes zi ← arg minzi∈S(j) ∣zi − xi∣
2: User i computes yi ← sgn((xi − zi)/σ)
3: User i computes c ∼U [0,1]
4: if c ≤ eε

eε+1
then

5: User i publishes ỹi ← yi
6: else
7: User i publishes ỹi ← −yi
8: end if

Output: Private centered user estimate ỹi

To analyze 1ROUNDKVRR2, we first prove that users in each group draw points concentrated around114

µ.115

Lemma 2.3. With probability at least 1 − β, for all j ∈ R, group U j2 contains ≤ 2
√
k2 users i such116

that ∣xi − µ∣ > σ
√

ln(4n).117

Proof. First, by a Gaussian tail bound, for each user i, P [∣xi − µ∣ ≥ σ
√

ln(4n)] ≤ 1/√n. Let U jC118

denote the users in group U j2 such that ∣xi − µ∣ > σ
√

ln(4n). Then by a binomial Chernoff bound119

P
⎡⎢⎢⎢⎢⎣
∣U c∣ > k2√

n
+
¿
ÁÁÀ3k2 ln(∣R∣/β)√

n

⎤⎥⎥⎥⎥⎦
≤ β/∣R∣

so using n ≥ 9 ln(∣R∣/β)2 and union bounding over ∣R∣ = Ω(
√

log(n)) groups, the claim follows.120

In particular, this implies that for j∗ = arg minj∗∈R mins∈S(j∗) ∣s − µ̂1∣ (i.e., the group with element121

of S(j∗) closest to µ̂1), most users draw points in [µ − σ
√

ln(4n), µ + σ
√

ln(4n)]. Let s∗ =122

mins∈S(j∗) ∣s − µ̂1∣. Our final accuracy result will rely on two facts. First, most users in U j
∗

2 center123

using s∗. Second, the randomized responses of users who center with s∗ are “almost as good” as if124

they were centered by µ.125

Lemma 2.4. Conditioned on the success of the previous lemmas, with probability at least 1 − β,126

1ROUNDKVGAUSSTIMATE outputs µ̂2 such that127

∣µ̂2 − µ∣ = O
⎛
⎜
⎝
σ

ε

¿
ÁÁÀ log(1/β)

√
log(n)

n

⎞
⎟
⎠
.
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Proof. Because adjacent points in R are 0.2σ apart, ∣s∗ − µ̂1∣ ≤ 0.1σ. Lemma 2.2 and the triangle128

inequality then imply that ∣s∗−µ∣ ≤ 2.1σ. This enables us to mimic the proof of Lemma 1.4, replacing129

µ − µ̂1 ∈ [−2σ,2σ] with µ − s∗ ∈ [−2.1σ,2.1σ].130

We can decompose users in U j
∗

2 into those with points within σρ of s∗ and those with more distant131

points. Denote the first set of users by V and the second set by V c, and recall that the Gaussian CDF132

is133

Φµ,σ2(x) = 1

2
(1 + erf(x − µ

σ
√

2
)) .

Then, letting 1 denote the indicator function,134

E [yi ⋅ 1(i ∈ V )] = P [yi = 1, i ∈ V ] − P [yi = −1, i ∈ V ]
= Φµ,σ2(s∗ + σρ) +Φµ,σ2(s∗ − σρ) − 2Φµ,σ2(s∗)

= 1

2
[erf(s

∗ + σρ − µ
σ
√

2
) + erf(s

∗ − σρ − µ
σ
√

2
)] − erf(s

∗ − µ
σ
√

2
)

= 1

2
[erf(σρ + s

∗ − µ
σ
√

2
) − erf(σρ − (s∗ − µ)

σ
√

2
)] − erf(s

∗ − µ
σ
√

2
) .

where the last step uses the fact that erf is an odd function. Since erf(x) = 2√
π ∫

x
0 e−t

2

dt and135

∣s∗ − µ∣ ≤ 2.1σ,136

1

2
[erf(σρ + s

∗ − µ
σ
√

2
) − erf(σρ − (s∗ − µ)

σ
√

2
)] ≤ 1√

π
∫

(σρ+2.1σ)/σ
√

2

(σρ−2.1σ)/σ
√

2
e−t

2

dt

< 3e−[(ρ−2.1)/
√

2]2

≤ 3e− ln(4n)/2

where the second inequality relies on e−x being monotone decreasing and the last step uses n > 20,137

which implies ρ − 2.1 ≥
√

ln(4n). Then using n ≥ 3k2 we get 3e− ln(4n)/2 ≤ 1√
k2

, so138

∣E [yi ⋅ 1(i ∈ V )] − erf(µ − s
∗

σ
√

2
)∣ ≤ 1√

k2

. (1)

Next, as ∣s∗ − µ∣ ≤ 2.1σ, users having points within σ
√

2 ln(2√n) of µ have points within σρ139

of s∗. The Gaussian tail bound from Lemma 2.3 then implies P [x ∈ V c] ≤ 1/√n. E [yi] =140

E [yi ⋅ 1(i ∈ V )] + E [yi ⋅ 1(i ∈ V c)], and by the above bound on P [x ∈ V c] and ∣yi∣ ≤ 1 we get141

∣E [yi ⋅ 1(i ∈ V c)] ∣ ≤ 1/√n. Thus142

∣E [yi ⋅ 1(i ∈ V )] −E [yi]∣ ≤
1√
n
< 1√

k2

. (2)

A Chernoff bound on {−1,1}-valued random variables then tells us that, for y = 1
k2
∑i∈Uj∗2 yi, with143

probability at least 1 − β/2 we have144

∣y −E [yi]∣ ≤
√

2 ln(4/β)
k2

. (3)

Combining the three numbered equations above with the triangle inequality yields145

∣y − erf(µ − s
∗

σ
√

2
)∣ <

2 +
√

2 ln(4/β)
√
k2

.

Setting µ̄ = (µ − s∗)/σ and using k2 ≥ (100[2 +
√

2 ln(4/β))])2, this rearranges into ∣y∣ ≤146

erf(µ̄/
√

2) + 0.01. Since µ̄ ∈ [−2.1,2.1], we get147

∣y∣ < erf(2.1/
√

2) + 0.01 < 0.98 < erf(1.7).
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Let M be an upper bound on the Lipschitz constant for erf−1 in [−0.98,0.98],148

M = max
x∈[−0.98,0.98]

derf−1(x)
dx

= max
x∈[−0.98,0.98]

√
π

2
exp([erf−1(x)]2)

≤
√
π

2
exp([erf−1(0.98)]2) < 14.

Then for any x, y ∈ [−0.98,0.98] we have ∣erf−1(x) − erf−1(y)∣ ≤M ∣x − y∣, so for T =
√

2erf−1(y),149

∣T − µ̄∣ = ∣
√

2(erf−1(y) − erf−1(erf(µ̄/
√

2))∣ ≤ 14
√

2∣y − erf(µ̄/
√

2)∣

< 28
⎛
⎝

√
2 +

√
ln(4/β)
k2

⎞
⎠
.

It remains to bound ∣T − T̂ ∣, where T is the (unknown) aggregation of unprivatized {yi} while T̂ is150

the (known) aggregation of privatized {ỹi}. By a Chernoff bound analogous to that of Lemma 1.2,151

with probability at least 1 − β/2152

∣T − T̂ ∣ ≤
√

2
RRRRRRRRRRR
erf−1(∣y∣) − erf−1 ⎛

⎝
∣y∣ + [ε + 2

ε
]
√

2 ln(4/β)
k2

⎞
⎠

RRRRRRRRRRR
.

Using k2 > 20000 ( ε+2
ε

)2
ln(4/β) (which implies [ ε+2

ε
]
√

2 ln(4/β)
k2

≤ 0.01) and the same derivative153

trick as above on [−0.99,0.99], we get154

∣T − T̂ ∣ ≤ 25 [ε + 2

ε
]
√

2 ln(4/β)
k2

.

Therefore by the triangle inequality155

∣T̂ − µ̄∣ ≤ 28
⎛
⎝

√
2 +

√
ln(4/β)
k2

⎞
⎠
+ 25 [ε + 2

ε
]
√

2 ln(4/β)
k2

= O
⎛
⎝

1

ε

√
log(1/β)

k2

⎞
⎠

and by σµ̄ = µ − s∗ we get156

∣σT̂ − σµ̄∣ = ∣(σT̂ + s∗) − µ∣ = O
⎛
⎝
σ

ε

√
log(1/β)

k2

⎞
⎠
.

Thus by taking µ̂2 = σT̂ + s∗ and substituting in k2 = Ω(n/
√

log(n)) we get157

∣µ̂2 − µ∣ = O
⎛
⎜
⎝
σ

ε

¿
ÁÁÀ log(1/β)

√
log(n)

n

⎞
⎟
⎠
.

158

3 Proofs from Section 4.1159

We begin our analysis with a privacy guarantee.160

Theorem 3.1. UVGAUSSTIMATE satisfies (ε,0)-local differentially privacy for x1, . . . , xn.161

Proof. As we already proved that RR1 is private in Section 1, we are left with UVRR2. To prove that162

UVRR2 is (ε,0)-locally differentially private as well, we can use a standard Laplace noise privacy163

guarantee (see e.g. Theorem 3.6 from Dwork and Roth [6]): given function f with 1-sensitivity ∆f ,164

computing f(x) + Lap (∆f/ε) satisfies (ε,0)-differential privacy.165
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First, for each j ∈ L1 and i ∈ U j1 , user i employs RR1 (see Section 1) to publish a privatized version166

of ⌊x/2j⌋ mod 4. The analyst then constructs two slightly different aggregations of this data. To167

estimate σ, the analyst aggregates responses into Ĥ1 via AGG1, which is similar to KVAGG1 up to168

the choice of bins in the constructed histogram Ĥ1. Specifically, bins in Ĥ1 are grouped: points with169

value 0 count toward both bin (0,1) and bin (3,0), points with value 1 count toward both bin (0,1)170

and (1,2), and so on.171

Algorithm 4 AGG1
Input: ε, k,L, U

1: for j ∈ L do
2: for a = 0,1,2,3 do
3: Analyst computes Cj(a)← ∣{i ∣ i ∈ U j , ỹi = a}∣
4: Analyst computes Ĥj(a)← eε+3

eε−1
⋅ (Cj(a) − k

eε+3
)

5: end for
6: for a = 0,1,2,3 do
7: Analyst computes Ĥj

1(a)← Ĥj(a) + Ĥj(a + 1 mod 4)
8: end for
9: end for

10: Analyst outputs Ĥ1

Output: Analyst aggregation Ĥ1 of private user estimates

At a high level, when 2j ≫ σ, user responses in group U j1 appear concentrated in one element of172

{(0,1), (1,2), (2,3), (3,0)}. This is because user data comes from N(µ,σ2), so if 2j ≫ σ then173

most user data falls within 3σ of µ. Consequently, there exists a ∈ {0,1,2,3} such that most users174

draw points x where ⌊x/2j⌋ ≡ a or a + 1 mod 4, and Ĥj
1 is concentrated around bin (a, a + 1 mod 4).175

Similarly, if 2j ≪ σ then user responses in group U j1 appear unconcentrated (for a more precise176

definition of “concentrated”, see below).177

Examining this transition from concentrated to unconcentrated responses in ĤLmax

1 , ĤLmax−1
1 , . . .178

yields a rough estimate of when 2j ≫ σ versus when 2j ≪ σ. By approximating when this change179

occurs, the analyst recovers an approximation of σ. This process is outlined in ESTVAR.180

Algorithm 5 ESTVAR

Input: β, ε, Ĥ1, k1,L1

1: Analyst computes j ← minimum j such that, for all j′ ≥ j, Ĥj′
1 is concentrated

2: if j = ∅ then
3: Analyst outputs σ̂ ← 2Lmax

4: else
5: Analyst outputs σ̂ ← 2j

6: end if
Output: Analyst estimate σ̂ of σ

Ĥ1 is an estimate of the “true” histogram collection, Hj(a) = ∣{yi ∣ i ∈ U j1 , yi ∈ {a, a + 1 mod 4}}∣181

for all j ∈ L1. As in Lemma 1.2, we can show that Ĥ1 and H1 are similar. As the proof is nearly182

identical, we omit it.183

Lemma 3.2. With probability at least 1 − β, for all j ∈ L1,184

∣∣Ĥj
1 −H

j
1 ∣∣∞ ≤ (1 + 4

ε
)
√

2k1 ln(8L1/β).

Next, we show how the analyst uses Ĥ1 to estimate σ in subroutine ESTVAR. Here, for neatness we185

shorthand186

τ =
√

2k1 ln(2L1/β) + (1 + 4
ε
)
√

2k1 ln(8L1/β)
and use the term concentrated to denote any histogram Ĥj

1 such that mina∈{0,1,2,3} Ĥ
j
1(a) ≤ 0.03k +187

τ and the term unconcentrated to denote Ĥj
1 where mina∈{0,1,2,3} Ĥ

j
1(a) ≥ 0.04k − τ . As we188
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show below in Lemma 3.3, when 2j ≫ σ, Ĥj
1 is concentrated. Similarly, when 2j ≪ σ, Ĥj

1 is189

unconcentrated. This transition enables the analyst to estimate σ.190

Lemma 3.3. Conditioned on the success of the preceding lemmas, with probability at least 1 − β,191

ESTVAR outputs σ̂ ∈ [σ,8σ].192

Proof. Choose j ∈ L1. Below, we reason about two (non-exhaustive) possibilities for j.193

Case 1: 2j ≥ 4σ. Then there exists a ∈ {0,1,2,3} and interval I of length 2j+1 ≥ 8σ containing194

[µ − 2σ,µ + 2σ] such that for all x ∈ I , ⌊x/2j⌋ mod 4 ≡ a or a + 1 mod 4. By similar application of195

the Gaussian CDF as in Lemma 1.3, with probability at least 1 − β/2L1,196

∣{xi ∣ xi ∈ I, i ∈ U j1}∣ ≥ 0.97k1 −
√

2k1 ln(2L1/β).
Thus by Lemma 3.2, Ĥj

1(a) ≥ 0.97k1 − τ . It follows that Ĥj
1(a + 2) ≤ 0.03k1 + τ . 2j ≥ 4σ thus197

implies that histogram Ĥj
1 is concentrated.198

Case 2: 2j ∈ [σ/2, σ]. Choose a ∈ {0,1,2,3}. Since 2j ∈ [σ/2, σ] there exist at most three199

subintervals I1, I2, I3 ⊂ [µ − 2σ,µ + 2σ] such that for all x ∈ I = I1 ∪ I2 ∪ I3, ⌊x/2j⌋ ≡ a mod 4, and200

∣I ∣ ≥ σ. Let x ∼ N(µ,σ2). Then by a similar application of the Gaussian CDF as in Lemma 1.3,201

since202

P [x ∈ I] ≥ P [x ∈ [µ − 2σ,µ − σ)] ≥ 0.13

with probability 1 − β/8L1 at least 0.13k −
√

2k1 ln(8L1/β) users from U j1 have points in I . Since203

this held for arbitrary a, a union bound over all four possibilities of a combined with Lemma 3.2204

implies that, with probability at least 1 − β/2L1,205

min
a∈{0,1,2,3}

Ĥj
1(a) ≥ 0.13k1 − τ.

2j ≤ σ ≤ 2j+1 thus implies that histogram Ĥj
1 is uniform.206

Union bounding both results over j ∈ L1, with k1 > 800 (2 + 4
ε
)2

ln(8L1/β), with probability 1 − β207

we have 0.13k − τ > 0.03k + τ for each j ∈ L1. Therefore for all j ∈ L1 if 2j ≥ 4σ then Ĥj
1 will be208

concentrated while if 2j+1 ≥ σ ≥ 2j then Ĥj
1 will be unconcentrated.209

Let j be the smallest j ∈ L1 such that Ĥj
1 is concentrated and for all j′ > j, Ĥj′

1 is concentrated as210

well. If no such j exists, then we know 2Lmax ≥ σ ≥ 2Lmax−2, take σ̂ = 2Lmax , and we get σ̂ ∈ [σ,4σ].211

If not, then by Case 1 above we know 2j ≤ 8σ, and by Case 2 we know 2j ≥ σ. Thus taking σ̂ = 2j ,212

we get σ̂ ∈ [σ,8σ].213

Next, the analyst uses randomized responses from U1 to compute an initial estimate µ̂1 of µ. As the214

process ESTMEAN is identical to that used in KVGAUSSTIMATE up to a different subgroup range215

L1, we skip its description and only recall its guarantee:216

Lemma 3.4. Conditioned on the success of the preceding lemmas, with probability at least 1 − β,217

∣µ̂1 − µ∣ ≤ 2σ.218

From the results above, the analyst obtains an estimate σ̂ such that σ̂ ∈ [σ,8σ] and an estimate µ̂1 such219

that ∣µ̂1 − µ∣ ≤ 2σ. The analyst now uses these to compute interval I = [µ̂1 − σ̂(2 +
√

ln(4n)), µ̂1 +220

σ̂(2 +
√

ln(4n))], where I is intentionally constructed to (with high probability) contain the points221

of Ω(n) users. The analyst then passes I to users in U2. Users in U2 respond with noisy responses222

via independent calls to UVRR2. In UVRR2, each user clips their sample xi to the interval I and223

reports a private version ỹi using Laplace noise scaled to ∣I ∣.224

Algorithm 6 UVRR2
Input: ε, i, I

1: User i computes x′i ← arg minx∈I ∣x − xi∣
2: User i outputs ỹi ← x′i + Lap (∣I ∣/ε)

Output: Private version of user’s point clipped to I

The average of these ỹi then approximates µ. We formalize this in the following lemma, which proves225

our main result.226
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Lemma 3.5. Conditioned on the success of the previous lemmas, with probability at least 1 − β,227

∣µ̂2 − µ∣ = O (σ
ε

√
log(1/β) log(n)

n
).228

Proof. There are two sources of error in the analyst’s estimate µ̂2 = 2
n ∑i ỹi: error from the unnoised229

x′is and error from noise in ỹis. Specifically, recalling that ∣U2∣ = n/2, we can decompose µ̂2 as230

µ̂2 =
2

n
∑
i

ỹi =
2

n
∑
i

(x′i + ηi)

where each ηi ∼i.i.d. Lap (∣I ∣/ε) and ∣I ∣ = 2σ̂(2 +
√

ln(4n)).231

First, using n > 4 ln(3/β) by concentration of independent Laplace random variables (see e.g. Lemma232

2.8 in Chan et al. [3]) with probability at least 1 − β/3,233

∣ 2

n
∑
i

ηi∣ ≤
4∣I ∣
ε

√
2 ln(3/β)

n
≤

8σ̂(2 +
√

ln(4n))
ε

√
2 ln(3/β)

n
= O

⎛
⎝
σ̂

ε

√
log(1/β) log(n)

n

⎞
⎠
.

This bounds the contribution of Laplace noise to overall error.234

It remains to bound ∣ 2
n ∑i x

′
i − µ∣. Let V denote the set of users with xi ∈ I and V c denote the set of235

users with xi /∈ I . First, by a Gaussian tail bound, for each user i, P [∣xi − µ∣ ≥ σ
√

ln(4n)] ≤ 1/√n.236

Then by a Chernoff bound237

P
⎡⎢⎢⎢⎢⎣
∣V c∣ >

⎛
⎝

1 +
√

6 ln(3/β)
n3/2

⎞
⎠
√
n

⎤⎥⎥⎥⎥⎦
≤ β/3

and using n ≥ (6 ln(2/β))2/3 we get
√

6 ln(3/β)
n3/2 ≤ 1, so with probability at least 1−β/3, ∣V c∣ ≤ 2

√
n.238

Thus239

2

n
∑
i∈V c

∣x′i − µ∣ ≤
2

n
(∣V c∣ ⋅ ∣I ∣) ≤

6σ̂(2 +
√

ln(4n))
√
n

= O
⎛
⎝
σ̂
√

log(n)
√
n

⎞
⎠
.

This bounds the contribution of error from the (unprivatized) data of users in V c. Let V denote the240

set of users in U2 with points in I . We bound the error contributed by users in V in a similar way.241

Users in V have x′i = xi, so by a Chernoff bound on (shifted) [0, ∣I ∣]-bounded random variables, with242

probability at least 1 − β/3243

2

n
∑
i∈V c

∣x′i−µ∣ =
2

n
∑
i∈V c

∣xi−µ∣ ≤ ∣I ∣
√

2 ln(6/β)
n

≤ σ̂(2+
√

ln(4n))
√

2 ln(6/β)
n

= O
⎛
⎝
σ̂
√

log(1/β) log(n)
√
n

⎞
⎠
.

Putting these three bounds together, we get244

∣ 2

n
∑
i

ỹi − µ∣ ≤
2

n
∑
i

∣x′i + ηi − µ∣

≤ 2

n
∑
i

∣x′i − µ∣ +
2

n
∑
i

∣ηi∣

= 2

n
∑
i∈V

∣x′i − µ∣ +
2

n
∑
i∈V c

∣x′i − µ∣ +
2

n
∑
i

∣ηi∣

= O
⎛
⎝
σ

ε

√
log(n) log(1/β)

n

⎞
⎠

where the last step uses σ̂ ∈ [σ,8σ] from Lemma 3.3.245

4 Proofs from Section 4.2246

We start with pseudocode for 1ROUNDUVGAUSSTIMATE.247

10



Algorithm 7 1ROUNDUVGAUSSTIMATE

Input: ε, k1, k2,L1, n,R,σ,U1, U2,

1: Analyst computes ρ← ⌈
√

2 ln(2√n) + 6⌉
2: for j ∈ L1 do
3: for user i ∈ U j1 do
4: User i outputs ỹi ← RR1(ε, i, j)
5: end for
6: end for
7: for j1 ∈ L1 do
8: for j2 ∈ Rj1 do
9: for user i ∈ U j1,j22 do

10: User i outputs ỹi ← 1ROUNDUVRR2(ε, i, j1, j2, ρ, S)
11: end for
12: end for
13: end for ⊳ End of round 1
14: Analyst computes Ĥ1 ← AGG1(ε, k1,L1, U1)
15: Analyst computes σ̂ ← ESTVAR(β, ε, Ĥ1, k1,L)
16: Analyst computes j1 ← log(σ̂)
17: Analyst computes Ĥ2 ← KVAGG1(ε, k1,L1, U1)
18: Analyst computes µ̂1 ← ESTMEAN(β, ε, Ĥ2, k1,L1)
19: Analyst computes j2 ← arg minj∈Rj1 (mins∈S(j1,j) ∣s − µ̂1∣)
20: Analyst computes s∗ ←mins∈S(j1,j2) ∣s − µ̂1∣
21: Analyst outputs µ̂2 ← s∗ + 1

k2
∑i∈Uj1,j22

ỹi

Output: Analyst estimate µ̂2 of µ

1ROUNDUVGAUSSTIMATE’s privacy guarantee follows from the same analysis of randomized248

response and Laplace noise as for UVGAUSSTIMATE, so we omit its proof.249

Theorem 4.1. 1ROUNDUVGAUSSTIMATE satisfies (ε,0)-local differentially privacy for x1, . . . , xn.250

We define k1,L1, and U1, as in UVGAUSSTIMATE and skip the analysis of 1ROUNDUVGAUSSTI-251

MATE’s treatment of users in U1 as it is identical to that of UVGAUSSTIMATE. We recall its collected252

guarantee:253

Lemma 4.2. With probability at least 1 − β, σ̂ ∈ [σ,8σ] and ∣µ̂1 − µ∣ ≤ 2σ.254

We again define R and S for U2, albeit with a few modifications. First, we let ρ = ⌈
√

ln(4n) + 6⌉255

for neatness. Then, recalling from Section 3 that L1 ranges over possible values of log(σ), for256

each ja ∈ L1 we define Rja = {2ja ,2 ⋅ 2ja , . . . , ρ ⋅ 2ja}. Next, for each ja ∈ L1 and jb ∈ Rja , we257

define S(ja, jb) = {jb + bρ2ja ∣ b ∈ Z}. Finally, we split U2 into L1 ⋅ ρ subgroups U ja,jb2 of size258

k2 = Ω
⎛
⎝

n

log(σmax

σmin
+1)

√
log(n)

⎞
⎠

for each ja ∈ L1 and jb ∈ Rja . As in 1ROUNDKVGAUSSTIMATE, we259

parallelize over these subgroups to simulate the second round of UVGAUSSTIMATE for different260

values of (ja, jb).261

In each subgroup U ja,jb2 , each user i computes the nearest element si ∈ S(ja, jb) to xi, si =262

arg mins∈S(ja,jb) ∣xi−s∣ and outputs xi−si plus Laplace noise in 1ROUNDUVRR2. The analyst then263

uses estimates j1 = ⌈log(σ̂)⌉ and µ̂1 from U1 to compute j2 = arg minj∈Rj1 (minz∈S(j1,j) ∣z − µ̂1∣).264

Finally, the analyst aggregates randomized responses from group U j1,µ̂2

2 into an estimate µ̂2.265

Algorithm 8 1ROUNDUVRR2
Input: ε, i, j1, j2, ρ, S

1: User i computes si ←mins∈S(j1,j2) ∣s − xi∣
2: User i computes yi ← xi − si
3: User i outputs ỹi ← yi + Lap (2ρ2j1/ε)

Output: Private version of user’s point xi
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As in 1ROUNDKVGAUSSTIMATE, we start with a concentration result for each U j1,j22 . Since its266

proof is similar to that of Lemma 2.3, we omit it.267

Lemma 4.3. With probability at least 1 − β, for all j1 ∈ L1 and j2 ∈ Rj1 , group U j1,j22 contains268

≤ 2
√
k2 users i such that ∣xi − µ∣ > σ

√
ln(4n).269

In combination with the previous lemmas, this enables us to prove our final accuracy result.270

Lemma 4.4. Conditioned on the success of the previous lemmas, with probability at least 1 − β,271

1ROUNDUVGAUSSTIMATE outputs µ̂2 such that272

∣µ̂2 − µ∣ = O
⎛
⎜⎜
⎝

σ

ε

¿
ÁÁÀ log (σmax

σmin
+ 1) log(1/β) log3/2(n)

n

⎞
⎟⎟
⎠
.

Proof. By Lemma 4.2, σ̂ ∈ [σ,8σ] and ∣µ̂1 − µ∣ ≤ 2σ. Since j1 = log(σ̂) ∈ L1 and273

j2 = arg minj∈Rj1 (mins∈S(j1,j) ∣s − µ̂1∣), by the definition of s∗ ∈ S(j1, j2), ∣s∗ − µ̂1∣ ≤ 0.5σ̂ < 4σ.274

Thus ∣s∗ − µ∣ < 6σ.275

Consider group U j1,j22 . By Lemma 4.3 at most 2
√
k2 users i ∈ U j1,j22 have ∣xi − µ∣ > σ

√
ln(4n).276

Thus by ∣s∗ − µ∣ < 6σ and the fact that any two points in S(j1, j2) are at least σ̂ρ ≥ σ(6 +
√

ln(4n))277

far apart, we get that at least k2 − 2
√
k2 users i ∈ U j1,j22 set si = s∗ in their run of 1ROUNDUVRR2.278

Denote this subset of users by V , and denote by V c the set of users i ∈ U j1,j22 such that si ≠ s∗, and279

for each user i ∈ U2 let yi = xi − si.280

Let f(x) = 1

σ
√

2π
exp(−(x − µ)2/2σ2), the density for N(µ,σ2). Then281

∫
∞

∞
(x−µ)f(x)dx = ∫

s∗−ρσ̂

−∞
(x−µ)f(x)dx+∫

s∗+ρσ̂

s∗−ρσ̂
(x−µ)f(x)dx+∫

∞

s∗+ρσ̂
(x−µ)f(x)dx. (4)

Let g(x) = − σ√
2π

exp(−(x − µ)2/2σ2), the antiderivative of (x − µ)f(x). Then282

∣∫
s∗−ρσ̂

−∞
(x − µ)f(x)dx∣ = ∣g(s∗ − ρσ̂) − lim

b→−∞
g(b)∣

= ∣ σ√
2π

⋅ exp(−(s∗ − ρσ̂ − µ)2

2σ2
)∣

≤ ∣ σ√
2π

⋅ exp(−([6 − ρ]σ)2

2σ2
)∣

≤ ∣ σ√
2π

⋅ exp(− [6 − ρ]2
2

)∣

< σ√
2π

⋅ exp(− ln(2
√
n))

< σ√
n

where the first inequality uses σ̂ ≥ σ and ∣s∗ − µ∣ < 6σ. Similar logic implies283

∣∫
∞
s∗+ρσ̂(x − µ)f(x)dx∣ ≤ σ/

√
n as well. Therefore by Equation 4 and ∫

∞
−∞(x − µ)f(x)dx = 0,284

∣∫
s∗+ρσ̂

s∗−ρσ̂
(x − µ)f(x)dx∣ ≤ 2σ/

√
n

so by E [xi ⋅ 1(i ∈ V )] = ∫
s∗+ρσ̂
s∗−ρσ̂ xf(x)dx, we get285

∣E [xi ⋅ 1(i ∈ V )] − µ∫
s∗+ρσ̂

s∗−ρσ̂
f(x)dx∣ ≤ 2σ/

√
n.

Since E [xi ⋅ 1(i ∈ V )] /P [i ∈ V ] = E [xi ∣ i ∈ V ] and P [i ∈ V ] = ∫
s∗+ρσ̂
s∗−ρσ̂ f(x)dx, this means286

∣E [xi ∣ i ∈ V ] − µ∣ ≤ 2σ/
√
n.
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By yi = xi − s∗ for i ∈ V ,287

∣E [yi ∣ i ∈ V ] − (µ − s∗)∣ ≤ 2σ/
√
n.

We can therefore decompose288

RRRRRRRRRRRRRR

1

k2
∑

i∈Uj1,j22

yi − (µ − s∗)
RRRRRRRRRRRRRR
≤ ∣ 1

k2
∑
i∈V

(yi − (µ − s∗))∣ + ∣ 1

k2
∑
i∈V c

(yi − (µ − s∗))∣

≤
⎡⎢⎢⎢⎢⎣

2σ√
n
+ ρσ̂

√
2 log(4/β)

k2

⎤⎥⎥⎥⎥⎦
+ 2ρσ̂√

k2

= O
⎛
⎝
σ

√
log(1/β) log(n)

k2

⎞
⎠

where the the first inequality uses a (with probability at least 1 − β/2) Chernoff bound on {yi ∣ i ∈ V }289

concentrating around E [yi ∣ i ∈ V ] as well as ∣V c∣ ≤ 2
√
k2, and the last step uses σ̂ ∈ [σ,8σ].290

Next, since we can decompose291

1

k2
∑

i∈Uj1,j22

ỹi =
1

k2
∑

i∈Uj1,j22

yi +
1

k2
∑

i∈Uj1,j22

ηi

where each ηi ∼ Lap (ρσ̂/ε), the same concentration of Laplace noise from Lemma 3.5 says that with292

probability 1 − β/2,293

∣ 1

k2

k2

∑
i=1

ηi∣ = O
⎛
⎝
ρσ̂

ε

√
log(1/β)

k2

⎞
⎠
= O

⎛
⎝
σ

ε

√
log(1/β) log(n)

k2

⎞
⎠
.

Combining with the bound above and substituting in k2 = Ω( n

log(σmax
σmin

+1)
√

log(n)
),294

RRRRRRRRRRRRRR

1

k2
∑

i∈Uj1,j22

ỹi − (µ − s∗)
RRRRRRRRRRRRRR
= O

⎛
⎜⎜
⎝

σ

ε

¿
ÁÁÀ log (σmax

σmin
+ 1) log(1/β) log3/2(n)

n

⎞
⎟⎟
⎠
.

The claim then follows from µ̂2 = s∗ + 1
k2
∑i∈Uj1,j22

ỹi.295

5 Proofs from Section 5296

For completeness, we start with the formal notion of sequential interactivity used by Duchi et al. [5],297

which requires that the set of messages {Yi} sent by the users satisfies the following conditional298

independence structure: {Xi, Y1, . . . , Yi−1} → Yi and Yi ⊥ Xj ∣ {Xi, Y1, . . . , Yi−1} for j ≠ i. Our299

notion of sequential interactivity — where each user only sends one message — is a specific case of300

this general definition. Our upper bounds all meet this specific requirement, while our lower bound301

meets the general one.302

We start by defining an instance Estimate (n,M,σ). Here, a protocol receives n samples from a303

N(µ,σ2) distribution where σ is known, µ ∈ [0,M], and the goal is to estimate µ. Next, define304

uniform random variable V ∼U {0,1}. Consider the following testing problem: for V = v, if v = 0,305

then each user i draws a sample xi ∼iid N(0, σ2), while if v = 1 then each user i draws a sample306

xi ∼iid N(M,σ2). The problem Test (n,M,σ) is to recover v from x1, . . . , xn. We say protocol307

A (α,β)-solves Estimate (n,M,σ) if, with probability at least 1 − β, A(Estimate (n,M,σ)) = µ̂308

such that ∣µ̂ − µ∣ < α. We will say that an algorithm A β-solves Test (n,M,σ) if, with probability at309

least 1 − β, A(Test (n,M,σ)) = v. Formally, Test (n,M,σ) is no harder than Estimate (n,M,σ).310

Lemma 5.1. If there exists a sequentially interactive and (ε, δ)-locally private protocol A that311

(M/2, β)-solves Estimate (n,M,σ), then there exists a sequentially interactive and (ε, δ)-locally312

private protocol A′ that β-solves Test (n,M,σ).313
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Proof. Let x1, . . . , xn be the samples from an instance of Test (n,M,σ). We define A′ to run314

A(x1, . . . , xn) and then output arg minµ̂∈{0,M} ∣A(x1, . . . , xn) − µ̂∣. Since A (M/2, β)-solves315

Estimate (n,M,σ), with probability at least 1−β, ∣A(x1, . . . , xn)−µ∣ <M/2. Thus with probability316

at least 1−β,A′(x1, . . . , xn) = v. ThusA′ β-solves Test (n,M,σ). AsA′ interacted with x1, . . . , xn317

only through (ε, δ)-locally private A, by preservation of differential privacy under postprocessing,318

A′ is (ε, δ)-locally private as well. Similar logic implies that A′ is also sequentially interactive.319

We now extend this result to (ε, δ)-locally private protocols using results from both Bun et al. [2]320

and Cheu et al. [4]1.321

Lemma 5.2. Let δ < min ( εβ
48n ln(2n/β) ,

β
16n ln(n/β)e7ε ), ε > 0, and suppose that A is a sequentially322

interactive and (ε, δ)-locally private protocol. If A β-solves Test (n,M,σ), then there exists a323

sequentially interactive (10ε,0)-locally private A′ that 4β-solves Test (n,M,σ).324

Proof. Our analysis splits into two cases depending on ε.325

Case 1: ε ≤ 1/4. In this case, we use a result from Bun et al. [2], included here for completeness.326

Fact 5.3 (Theorem 6.1 in Bun et al. [2] (restated)). Given ε ≤ 1/4 and δ < εβ/48n ln(2n/β),327

there exists a (10ε,0)-locally private algorithm A′ such that for every database U = {x1, . . . , xn},328

dTV (A(U),A′(U)) ≤ β, where dTV denotes total variation distance.329

Thus, denoting by EA the event where A recovers the correct v on Test (n,M,σ) and EA′ the event330

where A′ recovers the correct v on Test (n,M,σ), ∣P [EA] − P [EA′] ∣ ≤ β, where the probabilities331

are respectively over A and A′. Thus since A β-solves Test (n,M,σ), it follows that A′ 2β-solves332

(and thus also 4β-solves) Test (n,M,σ).333

Case 2: ε > 1/4. In this case we use a result from Cheu et al. [4]2
334

Fact 5.4 (Theorem A.1 in Cheu et al. [4] (restated)). Given ε > 1/4 and δ < β
16n ln(n/β)e7ε , there335

exists an (8ε,0)-locally private protocol A′ such that A′ 4β-solves Test (n,M,σ).336

337

Finally, we prove that Test is hard for (ε,0)-locally private protocols. At a high level, we prove338

this result by viewing Test as a Markov chain V → data X → outputs Y → answer Z. We bound339

the mutual information I(V ;Z) by a function of M,σ, and I(X;Y ) using a strong data processing340

inequality for Gaussian distributions (see Section 4.1 in Braverman et al. [1] or Raginsky [8] for341

details; a primer on information theory appears in the last section). We further bound I(X;Y ) using342

existing tools from the privacy literature [5]. The resulting upper bound on I(V ;Z) enables us to343

lower bound the probability of an incorrect answer Z.344

Lemma 5.5. SupposeM ≤ σ/[4(eε−1)
√

2nc],where c is an absolute constant. For any sequentially345

interactive and (ε,0)-locally private protocol A that β-solves Test (n,M,σ), β ≥ 1/4.346

Proof. We may express any sequentially interactive (ε,0)-locally private protocol A that β-solves347

Test (n,M,σ) as a Markov chain V → X → Y → Z, where V is the random variable selecting v,348

X = (x1, . . . , xn) is the random variable for users’ i.i.d. samples, Y = (y1, . . . , yn) is the random349

variable for users’ (ε,0)-privatized responses, and Z = A(Test (n,M,σ)). As V → X → Y → Z350

is a Markov chain (i.e., any two random variables in the chain are conditionally independent given351

a random variable between them). Thus by a strong data processing inequality for two Gaussians352

(see e.g. Section 4.1 in Braverman et al. [1] or, for a broader treatment of strong data processing353

inequalities, Raginsky [8]), there exists absolute constant c such that for each user i, I(V ;Yi) ≤354

1Both of these results are stated for noninteractive protocols, it is straightforward to see that their techniques
carry over to sequentially interactive protocols. This is because both results rely on transforming a single user call
to an (ε, δ)-local randomizer into calls to an (O(ε),0)-local randomizer. Since users in sequentially interactive
protocols still only make a single call to a local randomizer, we can apply the same transformations to each
single user call and obtain an (O(ε),0)-locally private sequentially interactive protocol.

2 Cheu et al. [4] originally state their result for ε > 2/3, but mildly strengthening their assumed upper bound
on δ from δ < β

8n ln(n/β)e6ε to δ < β
16n ln(n/β)e7ε yields the result here.
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cM2

σ2 I(Xi;Yi), where I(A;B) denotes the mutual information between random variables A and B.355

Next, since our protocol is (ε,0)-locally private, by Corollary 1 from Duchi et al. [5], for each user i,356

I(Xi;Yi) ≤ 4(eε − 1)2. With the equation above, we get357

I(V ;Yi) ≤ 4cM2(eε−1)2
σ2 . (5)

Without loss of generality, suppose Z is a deterministic function of Y (if Z is a random function of Y358

then it decomposes into a convex combination of deterministic functions of Y ). From Markov chain359

V →X → Y → Z and the (generic) data processing inequality we get360

I(V ;Z) ≤ I(V ;Y1, . . . , Yn)

=
n

∑
i=1

I(V ;Yi ∣ Yi−1, . . . Y1)

≤
n

∑
i=1

I(V,Yi−1, . . . , Y1;Yi)

=
n

∑
i=1

[I(V ;Yi) + I(Yi−1, . . . , Y1;Yi∣V )]

=
n

∑
i=1

I(V ;Yi)

where the last step follows from the independence of Yi and Y1, . . . , Yi−1 given V . Substituting in361

Equation 5, I(V ;Z) ≤ 4ncM2(eε−1)2
σ2 . Therefore by M ≤ σ/4(eε − 1)

√
2nc we get I(V ;Z) ≤ 1/8.362

Define P to be the distribution of Z (over the randomness of V , X , and Y ), and let P0 and P1 be the363

distributions for Z ∣V = 0 and Z ∣V = 1 respectively. Then as V is uniform, P = (P0 + P1)/2, so364

∣∣P − P0∣∣1 = ∣∣P − P1∣∣1 = 1
2
∣∣P0 − P1∣∣1.

Moreover, by365

P [Z = V ] = P [Z = 0, V = 0] + P [Z = 1, V = 1]

= 1

2
(P0(0) + [1 − P1(0)])

≤ 1

2
(1 + ∣P0(0) − P1(0)∣)

= 1

2
+ 1

4
∣∣P0 − P1∣∣1

we get P [Z = V ] ≤ 1
2
+ 1

4
∣∣P0 − P1∣∣1. Thus366

∣∣P0 − P1∣∣21
8

= 1

4
(∣∣P0 − P ∣∣21 + ∣∣P1 − P ∣∣21)

≤ 1

2
(DKL(P0∣∣P ) +DKL(P1∣∣P ))

= I(Z;V ) ≤ 1/8

where the second-to-last inequality uses Pinsker’s inequality. It follows that ∣∣P0 − P1∣∣1 ≤ 1. Substi-367

tuting this into P [Z = V ] ≤ 1
2
+ 1

4
∣∣P0 − P1∣∣1, we get P [Z = V ] ≤ 3

4
.368

We combine the preceding results to prove a general lower bound for Estimate as follows: for369

appropriate ε and δ, by Lemma 5.1 any sequentially interactive and ( ε
10
, δ)-locally private protocol370

A that (M/2, β
4
)-solves Estimate (n,M,σ) implies the existence of a sequentially interactive and371

( ε
10
, δ)-locally private protocol A′ that β

4
-solves Test (n,M,σ). Then, Lemma 5.2 implies the exis-372

tence of a sequentially interactive and (ε,0)-locally private protocolA′′ that β-solves Test (n,M,σ).373

By Lemma 5.5 any such A′ that β-solves Test (n,M,σ) has β ≥ 1/4. Hardness for Test therefore374

implies hardness for Estimate. We condense this reasoning into the following theorem.375
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Theorem 5.6. Let δ < min ( εβ
60n ln(5n/2β) ,

β
16n ln(n/β)e7ε ), ε > 0, and let A be a sequentially interac-376

tive (ε, δ)-locally private (α,β)-estimator for Estimate (n,M,σ) where M = σ/[4(eε − 1)
√

2nc],377

c is as in Lemma 5.5, and β < 1/16. Then α ≥M/2 = Ω(σ
ε

√
1
n
).378

In particular, Theorem 5.6 implies that our upper bounds are tight up to logarithmic factors for any379

sequentially interactive and (ε, δ)-locally private protocol with sufficiently small δ. Using recent380

subsequent work [7], we can also extend this result to the fully interactive setting, as shown in the381

next section.382

5.1 Extension to Fully Interactive Lower Bound383

The following result, proven in subsequent work by Joseph et al. [7] also relying on the work384

of Braverman et al. [1], gives a general lower bound for locally private simple hypothesis testing385

problems like Test.386

Lemma 5.7 (Theorem 5.3 in Joseph et al. [7]). For ε > 0 and δ < min ( ε3α2

48n ln(2n/β) ,
ε2α2

64n ln(n/β)e7ε ),387

any (ε, δ)-locally private simple hypothesis testing protocol distinguishing between distributions P0388

and P1 with probability at least 2/3 requires n = Ω ( 1
ε2∥P0−P1∥2TV

) samples.389

Since in general DKL(N(µ1, σ
2)∣∣N(µ2, σ

2)) ≤ [µ1−µ2

σ
]2

, in the setting of Test (n,M,σ) we are390

distinguishing between P0 = N(0, σ2) and P1 = N(M,σ2) and get DKL(P0∣∣P1) = O (M2

σ2 ).391

Pinsker’s inequality then implies ∥P0 − P1∥2
TV = O (M2

σ2 ). Substituting this into Lemma 5.7, we get392

that distinguishing P0 and P1 with constant probability and n samples requires M = Ω ( σ
ε
√
n
). Thus,393

for appropriately small δ, any (ε, δ)-locally private protocol that (α,β)-solves Estimate (n,M,σ)394

has α = Ω(M) = Ω ( σ
ε
√
n
).395

6 Information Theory Overview396

We briefly review some standard facts and definitions from information theory, starting with entropy.397

Definition 6.1. The entropy H(X) of a random variable X is398

H(X) =∑
x

P [X = x] ln ( 1
P[X=x]) ,

and the conditional entropy H(X ∣Y ) of random variable X conditioned on random variable Y is399

H(X ∣Y ) = Ey[H(X ∣Y = y)].

Next, we can use entropy to define the mutual information between two random variables. Mutual400

information between random variables X and Y is roughly the amount by which conditioning on Y401

reduces the entropy of X (and vice-versa).402

Definition 6.2. The mutual information I(X;Y ) between two random variables X and Y is403

I(X;Y ) =H(X) −H(X ∣Y ) =H(Y ) −H(Y ∣X),
and the conditional mutual information I(X;Y ∣Z) between X and Y given Z is404

I(X;Y ∣Z) =H(X ∣Z) −H(X ∣Y,Z) =H(Y ∣Z) −H(Y ∣X,Z).

We also define the related notion of KL-divergence.405

Definition 6.3. The Kullback-Leibler divergence DKL(X ∣∣Y ) between two random variables X406

and Y is407

DKL(X ∣∣Y ) =∑
x

P [X = x] ln(P [X = x]
P [Y = x] ) ,

where we often abuse notation and let X and Y denote the distributions associated with X and Y .408
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KL divergence connects to mutual information as follows.409

Fact 6.4. For random variables X , Y , and Z,410

I(X;Y ∣Z) = Ex,z [DKL ((Y ∣X = x,Z = z)∥(Y ∣Z = z))] .

Finally, we will also use the following connection between KL divergence and ∣∣ ⋅ ∣∣1 distance.411

Lemma 6.5 (Pinsker’s inequality). For random variables X and Y ,412

∣∣X − Y ∣∣1 ≤
√

2DKL(X ∣∣Y ).
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