
Space and Time Efficient Kernel Density Estimation
in High Dimensions: Supplementary Material

Arturs Backurs∗
TTIC

backurs@ttic.edu

Piotr Indyk
MIT

indyk@mit.edu

Tal Wagner
MIT

talw@mit.edu

∗Authors ordered alphabetically.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

A Proof of Theorem 1

Theorem 1 is a strengthening of the main results of [CS17]. Let us first describe their analysis.

Fix a datasetX = {x1, . . . , xn} ⊂ Rd, a query point y ∈ Rd, and a kernel map k : Rd×Rd → [0, 1].
For every i = 1, . . . , n, let wi = k(xi, y).

Let H be a family of hash functions from Rd to an arbitrary range U . For every xi, denote its
collision probability with y by pi = Prh∼H [h(xi) = h(y)]. Let bh(y) = {i : h(xi) = h(y)} be the
set of points with the same hash as y. Suppose we have M ≥ 1 and β ∈ [12 , 1) such that for every i,
M−1 · wβi ≤ pi ≤M · w

β
i . (It is instructive to think of the case M = 1 and β = 1

2 .)

The KDE estimator of [CS17] is Z = wi·|bh(y)|
n·pi , where i is chosen uniformly at random from bh(y).

If bh(y) is empty, then Z = 0.

Theorem 6 ([CS17]). E[Z] = KDEX(y), and Var[Z] ≤M3 ·KDEX(y)2−β .

Since the dependence of Var[Z] on E[Z] is strictly better than quadratic, one can use this estimator
to estimate KDEX(y) with a smaller number of samples than naïve random sampling. In particular,
if τ > 0 is a lower bound KDEX(y), then in order to get a multiplicative (1± ε)-approximation, the
sufficient number of samples is Var[Z]/(εE[Z])2 = O(M3/(τβε2)). If the kernel admits an LSH
family with good parameters β and M , then this is better than random sampling, which would require
O(1/(τε2) samples. This is the driving force behind the HBE method of [CS17].

To obtain Theorem 1, we hash each point only with probability δ = 1/(nτ1−β), where τ ≤
KDEX(y). Formally, let r1, . . . , rn be i.i.d. Bernoulli random variables with Pr[ri] = δ. Let

b′h(y) = {i : h(xi) = h(y) and ri = 1}

be sparsified counterpart of bh(y). Our modified KDE estimator is Z ′ =
wi·|b′h(y)|
n·δ·pi , where i is chosen

uniformly at random from b′h(y). If b′h(y) is empty, then Z ′ = 0. We prove the following.

Theorem 7. E[Z ′] = KDEX(y), and Var[Z ′] ≤ (M3 +M) ·KDEX(y)2−β .

Proof. Our proof closely follows that of Theorem 6. Starting with the expectation,

E[Z ′] =
1

nδ
E

wi
pi/|b′h(y)|

=
1

nδ
E

r1,...,rn
h∼H

E
i∈b′h(y)

[
|b′h(y)|wi

pi

]
=

1

nδ
E

r1,...,rn
h∼H

∑
i∈b′h(y)

wi
pi

=
1

nδ

n∑
i=1

wi
pi

Pr
r1,...,rn
h∼H

[i ∈ b′h(y)]

=
1

nδ

n∑
i=1

wi
pi

Pr
r1,...,rn
h∼H

[i ∈ bh(y) & ri = 1]

=
1

n

∑
i=1

wi

= KDEX(y).

2

Next we bound the variance:

Var[Z ′] ≤ E[(Z ′)2]

=
1

n2δ2
E
[

w2
i

p2i /|b′h(y)|2

]
=

1

n2δ2
E

r1,...,rn
h∼H

E
i∈b′h(y)

[
|b′h(y)|2w

2
i

p2i

]

=
1

n2δ2
E

r1,...,rn
h∼H

|b′h(y)|
∑

i∈b′h(y)

w2
i

p2i


=

1

n2δ2
E

r1,...,rn
h∼H

∑
j

[j ∈ b′h(y)]
∑
i

[i ∈ b′h(y)]
w2
i

p2i


=

1

n2δ2

∑
i

w2
i

p2i

∑
j

E
r1,...,rn
h∼H

[[j ∈ b′h(y)][i ∈ b′h(y)]]

=
1

n2δ2

∑
i

w2
i

p2i

∑
j

Pr
r1,...,rn
h∼H

[j ∈ b′h(y) & i ∈ b′h(y)].

We split the last term into two expressions:

1

n2δ2

∑
i

w2
i

p2i

∑
j:j 6=i

Pr
r1,...,rn
h∼H

[j ∈ b′h(y) & i ∈ b′h(y)], (1)

and
1

n2δ2

∑
i

w2
i

p2i
E

r1,...,rn
h∼H

[i ∈ b′h(y)]. (2)

To upper bound Eq. (2), we observe that, since j 6= i,

Pr
r1,...,rn
h∼H

[j ∈ b′h(y) & i ∈ b′h(y)] = δ2 Pr
h∼H

[j ∈ bh(y) & i ∈ bh(y)] ≤ δ2pj .

Therefore, Eq. (2) is upper bounded by 1
n2

∑
i
w2
i

p2i

∑
j pj . This expression is bounded in the proof

of Theorem 6 in [CS17], and we now reproduce the argument for completeness. We observe that

Pr[j ∈ bh(y) & i ∈ bh(y)] ≤ Pr[j ∈ bh(y)] = pj and, using the bounds wβi
M ≤ pi ≤ Mwβi ,

conclude that
1

n2

∑
i

w2
i

p2i

∑
j

pj ≤
M3

n2

∑
i

w2−2β
i

∑
j

wβj .

To prove Var[Z] ≤M3 KDEX(y)2−β , it is sufficient to show

1

n2

∑
i

w2−2β
i

∑
j

wβj ≤

(
1

n

∑
i

wi

)2−β

.

This follows from the inequalities 1
n

∑
i w

2−2β
i ≤

(
1
n

∑
i wi
)2−2β

and 1
n

∑
j w

β
j ≤

(
1
n

∑
i wi
)β

.
The first inequality holds for any β that satisfies 0 ≤ 2− 2β ≤ 1 and the second inequality holds for
any 0 ≤ β ≤ 1. That is, both inequalities hold if 1

2 ≤ β ≤ 1.

To upper bound Eq. (3) we observe that Er1,...,rn
h∼H

[i ∈ b′h(y)] = piδ and therefore Eq. (3) is upper

bounded by 1
n2δ

∑
i
w2
i

pi
≤ M

n2δ

∑
i w

2−β
i . Since

∑
i w

2−β
i ≤

∑
i wi = n · KDEX(y) and δ =

1/(nτ1−β) ≥ 1/(n ·KDEX(y)1−β), this is upper bounded by M ·KDEX(y)2−β , as needed.

To derive Theorem 1, set β = 1/2. By the above theorem, the estimator Z ′ is unbiased and satisfies
Var[Z ′] = 2M3/τ1.5. Therefore, in order to obtain a (1 ± ε)-approximation for KDEX(y), it is
sufficient to return the average over L = O(M3/(

√
τε2) independent samples of the estimator.

3

Preprocessing time: To be able to draw samples from the estimator, we need to hash a subset of
the n pointset x1, . . . , xn. The expected size of the subset is δn = 1/

√
τ . The time needed to hash a

single point is TH . We need to repeat this L times (once for each sample of the estimator we would
draw int he query phase). The total preprocessing time complexity becomes

1/
√
τ · TH · L = O

(
1

τ
· THM

3

ε2

)
.

Space usage: In order to draw a single sample from the estimator, we store the hash of each point
xi for which ri = 1. We also need to fully store xi itself, since if we draw it from b′h(y) during the
query phase, we would need to evaluate k(xi, y) in order to compute Z ′. The expected numbers
of these points is δn = 1/

√
τ , so for a single sample we store in expectation (SX + SH)/

√
τ bits,

where SX is the storage size of a data point, and SH is the storage size of a hash value. Repeating
this L times, the total storage size is

SX + SH√
τ

· L = O

(
1

τ
· (SX + SH)

ε2

)
bits.

Query time: To draw a sample from the estimator, we need to hash the query point y. This
takes time TH . Furthermore, given the hash value, we need to sample a random element from the
corresponding bucket b′h(y) and evaluate the random variable Z ′. This takes time Tk. Thus, we spend
TH + Tk time to draw a single sample from the estimator. Since we do that L times, the total query
time is

L · (TH + Tk) = O

(
1√
τ
· (TH + Tk)M3

ε2

)
as promised.

B KDE Data Structure for the Gaussian Kernel

For the Gaussian kernel k(x, y) = e−‖x−y‖
2/σ2

, the best LSHability result we are aware of is based
on the ball-carving LSH of [AI06].
Theorem 8 ([AI06]; see also Theorem 11 in [CS17]). For any R > 0 there exists a distribution H
of hash functions such that for any x, y ∈ Rd with ‖x− y‖2 ≤ R the following bounds hold.

e−‖x−y‖
2
2 · e−O(R4/3 logR) ≤ Pr

h∼H
[h(x) = h(y)] ≤ e−‖x−y‖

2
2 · eO(R4/3 logR).

The time complexity of computing a hash value h(x) is d · eO(R4/3 logR). Finally, the probability
Prh∼H [h(x) = h(y)] is non-increasing in the distance ‖x− y‖2.

It can be used to give the following time and space efficient data structure for Gaussian KDE.
Theorem 9. Given n points y1, . . . , yn ∈ Rd and parameters 1 ≥ τ ≥ 1

n2 and 1 ≥ ε ≥ 1
n2 , we can

build a data structure in space 1
τ ·

no(1)

ε4 that efficiently answers KDE(x) queries for the Gaussian
kernel k(x, y) = e−‖x−y‖

2
2 . In particular, given a query point x ∈ Rd with KDE(x) ≥ τ , we can

approximate KDE(x) within the multiplicative factor of 1 + ε in time O(d) · log
3 n
ε2 + 1√

τ
· n

o(1)

ε4 .

Proof. The proof proceeds in two steps. First apply Theorem 1 to the above LSHability result. We
use Theorem 8 and set R = (log n)2/3. We get that the hashing scheme H satisfies

e−‖x−y‖
2
2 · n−o(1) ≤ Pr

h∼H
[h(x) = h(y)] ≤ e−‖x−y‖

2
2 · no(1)

for all x, y ∈ Rd with ‖x − y‖2 ≤ R = (log n)2/3. Furhermore, the hashing can be performed in
d · no(1) time.

We can get rid of the assumption that ‖x− yi‖2 ≤ R for all i = 1, . . . , n as follows. Observe that, if
‖x − yi‖2 > R, then Prh∼H [h(x) = h(yi)] ≤ e−R

2

no(1) ≤ e−(logn)
4/3

no(1) ≤ n−ω(1). We used
the fact that the probability Prh∼H [h(x) = h(yi)] is non-increasing in the distance ‖x− yi‖2. This

4

implies that with probability 1− nω(1) we have that all i with h(x) = h(yi) satisfy ‖x− yi‖2 ≤ R.
Since all our samples yi satisfy h(x) = h(yi), we lose at most a neglibile factor in the probability of
success.

We can get a KDE algorithm by setting M = no(1), TH = dno(1), SX = SH = O(d log n) and
Tk = O(d).

In the second step, we improve the dependence on d by dimension reduction. In particular, we reduce
the space by projecting the points from the d dimensional space to O(log3 n)

ε2 dimensional space. The

extra term O(d) · log
3 n
ε2 in the time complexity comes from the time needed to perform the projection.

We randomly project the points yi and the point x to O(log n)/δ2 dimensional space for δ =
ε

2 ln(1/(ετ)) . This preserved all distances ‖x− yi‖ within the multiplicative factor of 1± δ. After the
projection, the contribution from a point yi to the KDE value becomes exp(−(1 ± δ)‖x − yi‖22).
Consider the case ‖x− yi‖22 ≥ 2 ln(1/(ετ)). The contribution of such a point yi after the projection
is ≤ exp(−‖x− yi‖22/2) ≤ ετ . Thus, the average contribution from such point to the KDE value
after the projection is ετ , which can be subsumed by the 1+εmultiplicative approximation. Consider
the case ‖x− yi‖22 < 2 ln(1/(ετ)). In this case we observe that after the projection the contribution
exp(−(1±δ)‖x−yi‖22) = exp(−‖q−pi‖22) exp(±δ‖x−yi‖22) differs from the original contribution
by a multiplicative factor of at most exp(δ‖x−yi‖22) ≤ 1+O(ε) since δ‖x−yi‖22 ≤ ε ≤ 1. Therefore,
in this case too we introduce a multiplicative error of at most 1 + ε.

This allows us to reduce the dimensionality of the pointset from d to
O(log n)

δ2
=
O(log n) log(1/(ετ))2

ε2
≤ O(log3 n)

ε2

for the purpose of estimating KDEX(y).

C Laplacian Kernel LSH

In this section we fully describe the LSHability of the Laplacian kernel, as per Lemma 4. Recall that
we assume w.l.o.g. that all point coordinates are in [0, 1]. For the sake of clarity, we will describe
LSH families H such that Prh∼H [h(x) = h(y)] = e−‖x−y‖1/σ. The (1

2 , 1)-LSHable property then
follows simply by doubling the bandwidth σ.

For σ < 1 we use the Random Binning Features of Rahimi and Recht [RR07], which we now recall.
Start with the one-dimensional case d = 1. Sample c from the Gamma distribution with shape 2 and
scale σ. The probability density function of this distribution is p(x) = σ−2 · x · e−x/σ . Then, impose
on the real line a one-dimensional uniform grid of side length c, shifted by a uniformly random
s ∼ [0, c). The random choices of c and s determine the hash function h. Given a point x ∈ [0, 1], h
maps it to the grid cell containing it.

One can verify that Prh[h(x) = h(y)] = e−|x−y|/σ for every x, y ∈ [0, 1] [RR07], and that the time
to evaluate h(x) is O(1). Furthermore, the number of grid cells intersecting the interval [0, 1] is
Θ(1/c). Since 1/c has an inverse-Gamma distribution, its expected value is 1/σ, hence there are
Θ(1/σ) grid cells in expectation, and thus the expected space to store a hash value is log(1/σ)+O(1)
bits. Finally, for an arbitrary dimension d, we simply perform the above for each dimension
independently, and concatenate the resulting hashes. We then have Prh[h(x) = h(y)] = e−‖x−y‖1/σ

with hash evaluation time O(d) and expected hash size O(d log(1/σ)).

For σ ≥ 1, we use the LSH family described in Section 3.1. Start with the one-dimensional case
d = 1. For a uniformly random ζ ∈ [0, 1], let b(x) = 1 if x > ζ and b(x) = 0 otherwise, and
similarly b(y) = 1 if y > ζ and b(y) = 0 otherwise. Then we have Pr[b(x) = b(y)] = 1− |x− y|.
In the arbitrary dimensional case x, y ∈ [0, 1]d, applying this to a uniformly random dimension
ξ ∈ {1, . . . , d} yields Pr[b(x) = b(y)] = 1

d

∑d
ξ=1(1 − |xξ − yξ|) = 1 − 1

d‖x − y‖1. If we repeat
this ρ independent times, where ρ is a fixed non-negative integer, and let h(x) be the concatenation of
the b(x)’s of the ρ repetitions (and similarly define b(y)), then Pr[h(x) = h(y)] = (1− 1

d‖x− y‖1)ρ.
Finally, choosing ρ ∼ Poisson(d/σ) yields

Pr[h(x) = h(y)] =

∞∑
ρ=0

e−d/σ · (d/σ)ρ

ρ!
· (1− 1

d‖x− y‖1)ρ = e−‖x−y‖1/σ.

5

Table 1: Bandwidth settings used in our experiments.

Dataset Estimate of median Bandwidth for Bandwidth for
NN distance (φ) KDE values ∼ 10−2 KDE values ∼ 10−3

Covertype 0.005 20 · φ 10 · φ
Census 0.01 5 · φ 3 · φ
GloVe 4.48 0.5 · φ 0.25 · φ
MNIST 38.1 1 · φ 0.5 · φ

D Additional Exprimental Details

Bandwidth selection. The rule of thumb suggested in [JDH99] for bandwidth selection is to take
the median distance of a query point to its nearest neighbor in the dataset. We estimate this parameter
for each dataset and denote it by φ. Since its effect of the KDE values is inconsistent between the
various datasets, we scale it by a constant so as to make the typical KDE values be within a certain
order of magnitude. Specifically, we experiment with two orders of magnitude, 10−2 and 10−3. (Note
that larger typical values are essentially trivial to estimate by standard concentration inequalities,
while for smaller values an approximation is largely uninformative). The specific numbers used are
listed in Table 3. Note that the listed values of φ are estimated after shifting and scaling each dataset
such that all point coordinates in are in [0, 1].

Accuracy with varying bandwidth. Figure 9 displays the accuracy on the Covertype and Census
datasets for varying bandwidth values. The results are with L = 250 (i.e., each KDE value is
estimated using 250 kernel evaluations). It shows that the accuracy of our method is similar to
HBE, and significantly better then RS (whose accuracy improves and converges to the hashing-based
methods as the the bandwidth grows and the KDE values become bounded away from 0). At the
same time, the space usage of our method is smaller than HBE by a factor of L = 250.

Figure 1: Accuracy with L = 250 and varying bandwidth, for the Covertype (left) and Census (right)
datasets. The space usage (not displayed in the plot) of HBE is larger by a factor of 250 than ours.

Exponential kernel. Section 4 presented empirical results for the Laplacian kernel, and mentioned
that similar results are achieved for the Exponential kernel. Some of these results are depicted in the
figures below. The results for both hashing-based methods (HBE and ours) are obtained by a random
rotation of the dataset2 followed by the algorithm presented in the main text. Ground-truth KDE and
RS are computed directly on the original `2-distances.

2It is known that the `2-distances after a random rotation are approximately equal, with high probability, to
the `1-distances before the projection.

6

Figure 2: Covertype dataset, Exponential kernel, typical KDE values of order 10−2.

Figure 3: Covertype dataset, Exponential kernel, typical KDE values of order 10−3.

Figure 4: Census dataset, Exponential kernel, typical KDE values of order 10−3.

Figure 5: Census dataset, Exponential kernel, typical KDE values of order 10−4.

7

	Introduction
	Related work

	Preliminaries
	The Data Structure
	LSH for the Laplacian Kernel

	Empirical Evaluation
	Proof of theorem:main
	KDE Data Structure for the Gaussian Kernel
	Laplacian Kernel LSH
	Additional Exprimental Details

