
Appendices439

The appendices that follow provide the proofs of the results in the body of the paper. Throughout440

the proofs in the appendix we use the following notation to denote the hitting and movement costs441

of the online learner: Ht := ft(xt) and Mt := c(xt, xt−1), where xt is the point chosen by the442

online algorithm at time t. Similarly, we denote the hitting and movement costs of the offline optimal443

(adversary) as H∗t := ft(x
∗
t ) and M∗t := c(x∗t , x

∗
t−1), where x∗t is the point chosen by the offline444

optimal at time t.445

Before moving to the proofs, we summarize a few standard definitions that are used throughout the446

paper.447

Definition 1. A function f : X → R is α-strongly convex with respect to a norm ‖·‖ if for all x, y in448

the relative interior of the domain of f and λ ∈ (0, 1), we have449

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− α

2
λ(1− λ) ‖x− y‖2 .

Definition 2. A function f : X → R is β-strongly smooth with respect to a norm ‖·‖ if f is450

everywhere differentiable and if for all x, y we have451

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2 .

Definition 3. A function f : Rd → R is quasiconvex if its domain X and all its sublevel sets452

Sα = {x ∈ X | f(x) ≤ α},

for α ∈ R, is convex.453

Definition 4. For a norm ‖·‖ in X , its dual norm (on X ) ‖·‖∗ is defined to be454

‖y‖∗ = sup{〈x, y〉 | ‖x‖ ≤ 1}.

Definition 5. For a convex function f : X → R, its Fenchel Conjugate f∗ is defined to be455

f∗(y) = sup{〈x, y〉 − f(x) | x ∈ X}.

Next, we introduce a few technical lemmas that are important throughout our analysis.456

The first technical lemma is a characterization of strongly convex functions.457

Lemma 1. Suppose f is α−strongly convex for some α > 0 with respect to some norm ‖·‖ and458

both f and f∗ are differentiable, then the first condition implies the second condition and the third459

condition:460

1. ∀x, y, f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β
2 ‖x− y‖

2;461

2. ∀x, y, f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2β ‖∇f(x)−∇f(y)‖2∗;462

3. ∀x, y, ‖∇f(x)−∇f(y)‖∗ ≤ β ‖x− y‖.463

To prove Lemma 1, we use Lemma 2, Lemma 3, and Lemma 4 below.464

The following lemma is Theorem 6 in [25].465

Lemma 2. If f is convex and closed, the following two conditions are equivalent:466

1. ∀x, y, f(y) ≥ f(x) + 〈∇f(x), y − x〉+ β
2 ‖x− y‖

2;467

2. ∀x, y, f∗(y) ≤ f∗(x) + 〈∇f∗(x), y − x〉+ 1
2β ‖x− y‖

2
∗468

i.e. f is β−strongly convex w.r.t some norm ‖·‖ if and only if f∗ is 1
β -strongly smooth w.r.t the dual469

norm ‖·‖∗.470

The next lemma is a special case of Lemma 17 in [34].471
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Lemma 3. Let f be a closed, convex, and differentiable function. Then we have472

f∗(∇f(x)) + f(x) = 〈∇f(x), x〉.

Now we prove a technical result that describes a property of the gradient of the Fenchel Conjugate.473

Lemma 4. Suppose f is α−strongly convex for some α > 0 with respect to some norm ‖·‖ and both474

f and f∗ are differentiable. Then we have475

x = ∇f∗ (∇f(x)) ,∀x.

Proof. For convenience, we define y = ∇f(x) and x′ = ∇f∗(y). It suffices to prove that x′ = x.476

By Lemma 3, we obtain477

f∗(y) + f(x) = 〈y, x〉 = 〈x, y〉. (1)
Again by Lemma 3, we have478

f(x′) + f∗(y) = f∗∗(x′) + f∗(y) = 〈x′, y〉, (2)
where we use the fact that f∗∗ = f .479

Combining inequalities (1) and (2), we obtain480

0 = f(x)− f(x′)− 〈x− x′, y〉 = f(x) + 〈x′ − x,∇f(x)〉 − f(x′) ≤ −α
2
‖x− x′‖2 ,

where in the last inequality we use the definition of α−strongly convex. Therefore we have proved481

that x = x′.482

Using the three lemmas above, we now prove Lemma 1.483

Proof of Lemma 1. By the first condition and Lemma 2, we know f∗ is 1
β−strongly convex with484

respect to ‖·‖∗. Therefore we see485

f∗(∇f(y)) ≥ f∗(∇f(x)) + 〈∇f∗(∇f(x)),∇f(y)−∇f(x)〉+
1

2β
‖∇f(x)−∇f(y)‖2∗ .

Using Lemma 3 and Lemma 4, we obtain486

〈y,∇f(y)〉 − f(y) ≥ (〈x,∇f(x)〉 − f(x)) + 〈x,∇f(y)−∇f(x)〉+
1

2β
‖∇f(x)−∇f(y)‖2∗ .

Rearranging the terms, we get487

f(x) ≥ f(y) + 〈x− y,∇f(y)〉+
1

2β
‖∇f(x)−∇f(y)‖2∗ ,

which is the second condition.488

The third condition follows from subtracting the second condition from the first condition.489

Finally, before moving the the proofs of our main results, we prove two properties of the Bregman490

Divergence that play an important role in the analysis.491

Lemma 5. ∀a, b, c ∈ Rd and potential h, we have492

〈∇h(b)−∇h(c), c− a〉 = Dh(a||b)−Dh(a||c)−Dh(c||b).

Proof. By the definition of Bregman Divergence, we obtain493

Dh(a||b)−Dh(a||c)−Dh(c||b)
= (h(a)− h(b)− 〈∇h(b), a− b〉)− (h(a)− h(c)− 〈∇h(c), a− c〉)
− (h(c)− h(b)− 〈∇h(b), c− b〉)

= − 〈∇h(b), a− b〉+ 〈∇h(c), a− c〉+ 〈∇h(b), c− b〉
= (−〈∇h(b), a− b〉+ 〈∇h(b), c− b〉) + 〈∇h(c), a− c〉
= 〈∇h(b), c− a〉+ 〈∇h(c), a− c〉
= 〈∇h(b)−∇h(c), c− a〉.

494
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Lemma 6. For all a, b, c ∈ Rd, we have

Dh(c||a)−Dh(c||b) = Dh(0||a)−Dh(0||b) + 〈∇h(b)−∇h(a), c〉.

Proof. Using the definition of Bregman divergence, we obtain495

Dh(c||a)−Dh(c||b)
= h(c)− h(a)− 〈∇h(a), c− a〉 − h(c) + h(b) + 〈∇h(b), c− b〉
=
(
h(b)− 〈∇h(b), b〉

)
−
(
h(a)− 〈∇h(a), a〉

)
+ 〈∇h(b)−∇h(a), c〉

= Dh(0||a)−Dh(0||b) + 〈∇h(b)−∇h(a), c〉.

496

A Proof of Theorem 1497

We consider a sequence of hitting cost functions on the real line such that the algorithm stays at the498

starting point through time steps t = 1, 2, · · · , n and is forced to incur a huge movement cost at time499

step t = n+ 1, whereas the offline adversary can pay relatively little cost by dividing the long trek500

between x0 and vn+1 into multiple small steps through time steps t = 1, 2, · · · , n+ 1.501

Specifically, suppose the starting point of the algorithm and the offline adversary is x0 = x∗0 = 0,502

and the hitting cost functions are503

ft(x) =

{
m
2 x

2 t ∈ {1, 2, · · · , n}
m′

2 (x− 1)2 t = n+ 1

for some large parameter m′ that we choose later.504

Suppose the algorithm first moves at time step t0. If t0 < n+ 1, we stop the game at time step t0 and505

compare the algorithm with an offline adversary which always stays at x = 0. The total cost of offline506

adversary is 0, but the total cost of the algorithm is non-zero. So, the competitive ratio is unbounded.507

Next we consider the case where t0 ≥ n + 1. This implies that x1, . . . xn = 0 and xn+1 is some508

non-zero point, say x. We see that the cost incurred by the online algorithm is509

cost(ALG) ≥ min
xn+1

(Mn+1 +Hn+1) = min
x

(
1

2
x2 +

m′

2
(x− 1)2

)
.

Notice that the right hand side tends to 1
2 as m′ tends to infinity; specifically, we have510

cost(ALG) ≥ min
x

(
1

2
x2 +

m′

2
(x− 1)2

)
=

1

2
(
1 + 1

m′
) . (3)

Now let us consider the offline optimal. Notice that, in the limit as m′ tends to infinity, the offline511

optimal must satisfy x∗0 = 0 and x∗n+1 = 1; otherwise it would incur unbounded cost. Our lower512

bound is derived by considering the case when m′ →∞ and so we constrain the adversary to satisfy513

the above, knowing that the adversary is not optimal for finite m′, i.e., cost(ADV ) ≥ cost(OPT )514

with cost(ADV )→ cost(OPT ) as m′ →∞.515

Let the sequence of points the adversary chooses as x∗ = (x∗0, x
∗
1, · · · , x∗n+1) ∈ Rn+2. We compute516

the cost incurred by the adversary as follows where, to simplify presentation, we define K(n, y) to be517

the set {x ∈ Rn+2 | xi ≤ xi+1, x0 = 0, xn+1 = y}.518

an = 2 min
x∗∈K(n,1)

n+1∑
i=1

(H∗i +M∗i )

= 2 min
x∗∈K(n,1)

(
n∑
i=1

m

2
(x∗i )

2 +

n+1∑
i=1

1

2
(x∗i − x∗i−1)2

)
.

In words, an is twice the minimal offline cost subject to the constraints x∗0 = 0, x∗n+1 = 1. We derive519

the limiting behavior of the offline costs as n→∞ in the following lemma.520
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Lemma 7. For m > 0, define521

an = 2 min
x∗∈K(n,1)

(
n∑
i=1

m

2
(x∗i )

2 +

n+1∑
i=1

1

2
(x∗i − x∗i−1)2

)
.

Then we have limn→∞ an = −m+
√
m2+4m
2 .522

Given the lemma, the total cost of the offline adversary will be an
2 . Finally, applying (3), we know523

∀n and ∀m′ > 0,524

cost(ALG)

cost(ADV )
≥

1
2(1+ 1

m′ )
an
2

=
1

(1 + 1
m′ )an

.

By taking the limit n→∞ and m′ →∞ and using Lemma 7, we obtain525

cost(ALG)

cost(OPT )
= lim
n,m′→∞

cost(ALG)

cost(ADV )
≥

(
−m+

√
m2 + 4m

2

)−1
=

1 +
√

1 + 4
m

2
.

All that remains is to prove Lemma 7, which describes the cost of the offline adversary in the limit as526

n tends to infinity.527

Proof of Lemma 7. Using the fact that the costs are all homogeneous of degree 2, we see that for all528

y ∈ [0, 1], we have529

min
x∗∈K(n,y)

(
n∑
i=1

m

2
(x∗i )

2 +

n+1∑
i=1

1

2
(x∗i − x∗i−1)2

)

= y2 min
x∗∈K(n,1)

(
n∑
i=1

m

2
(x∗i )

2 +

n+1∑
i=1

1

2
(x∗i − x∗i−1)2

)
.

(4)

The sequence {an}, n ≥ 0 has a recursive relationship as follows:530

an+1 = 2 min
x∗∈K(n+1,1)

(
n+1∑
i=1

m

2
(x∗i )

2 +

n+2∑
i=1

1

2
(x∗i − x∗i−1)2

)

= 2 min
0≤x≤1

(
min

x∗∈K(n,x)

( n∑
i=1

m

2
(x∗i )

2 +

n+1∑
i=1

1

2
(x∗i − x∗i−1)2

)
+
m

2
x2 +

1

2
(1− x)2

)

= 2 min
0≤x≤1

(
x2 min

x∗∈K(n,1)

( n∑
i=1

m

2
(x∗i )

2 +

n+1∑
i=1

1

2
(x∗i − x∗i−1)2

)
+
m

2
x2 +

1

2
(1− x)2

)

= 2 min
0≤x≤1

(
an
2
x2 +

m

2
x2 +

1

2
(1− x)2

)
=

an +m

an +m+ 1
.

(5)

Solving the equation x = x+m
x+m+1 , we find the two fixed points of the recursive relationship an+1 =531

an+m
an+m+1 are532

x1 =
−m+

√
m2 + 4m

2
,
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and533

x2 =
−m−

√
m2 + 4m

2
.

Notice that for i = 1, 2, we have534

m− (m+ 1)xi = −(1− xi)xi.

Using this property, we obtain535

an+1 − x1 =
an +m

an +m+ 1
− x1 =

(1− x1)an +m− (m+ 1)x1
an +m+ 1

=
(1− x1)(an − x1)

an +m+ 1
, (6)

and536

an+1 − x2 =
an +m

an +m+ 1
− x2 =

(1− x2)an +m− (m+ 1)x2
an +m+ 1

=
(1− x2)(an − x2)

an +m+ 1
. (7)

Notice that an+1 − x2 > 0. By dividing equations (6) and (7), we obtain(
an+1 − x1
an+1 − x2

)
=

1− x1
1− x2

·
(
an − x1
an − x2

)
,∀n ≥ 0.

Remember that a0 = 1. Therefore we have(
an − x1
an − x2

)
=

(
1− x1
1− x2

)n(
a0 − x1
a0 − x2

)
=

(
1− x1
1− x2

)n+1

.

Rearranging this equation, we get

an =

(
1−

(
1− x1
1− x2

)n+1
)−1(

x1 − x2 ·
(

1− x1
1− x2

)n+1
)
.

Since 0 <
(

1−x1

1−x2

)
< 1, we have537

lim
n→∞

an = x1 =
−m+

√
m2 + 4m

2
. (8)

538

B Proof of Theorem 2539

Our proof of Theorem 2 relies on a set of technical lemmas, which follow. Lemma 8 and Lemma540

10 work together to establish a lower bound on the competitive ratio as m tends to zero when the541

balance parameter γ is set to be o(1/m) , while Lemma 11 lower bound on the competitive ratio as542

m tends to zero when the balance parameter γ is set to be Ω(1/m).543

Lemma 8. If γ = o(1/m), the competitive ratio of OBD is Ω(1/(γm)) when m→ 0+.544

Proof. Our approach is to construct a scenario where OBD is forced to move along the circumference545

of a large circle, but the offline adversary moves along the circumference of a much smaller circle (see546

Figure 1). The adversary is hence able to pay much smaller movements costs, forcing the competitive547

ratio to be large.548

We propose a series of costs which force OBD to move in a circle. The idea is to construct a cost549

function so that, at the end of every round, the relative positions of the OBD algorithm, the offline550

adversary, and the minimizer are fixed. Since OBD is memoryless, we can simply input this function551

arbitrarily many times and the positions of OBD and the offline adversary will trace out a pair of552

concentric circles (see Figure 1).553

Suppose that, at the start of a round, OBD is at the point A. Let ` be the distance between OBD and554

the adversary. Consider a right triangle ABC such that |AB| = h =
√
γm`, the offline adversary is555

at some point D on the hypotenuse AC and |AD| = |BC| = ` (see Figure 2). Let us introduce a556

coordinate system such that the origin lies at C, the x-axis contains BC and the y-axis is parallel557
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x
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Figure 2: In the right triangle4ABC, ∠ABC = 90o, |BC| = `, |AB| = h =
√
γm`. Point D is

on the line segment AC such that |AD| = `. OBD starts at point A and selects point E. The offline
adversary starts at point D and selects point F . G is the projection point of E on line segment AB.

to AB, such that the positive part of the axis lies on the same side of BC as the segment AC. Our558

goal is to construct a cost function which forces OBD towards B. This will preserve the relative559

positions of OBD and the adversary, since we assumed that they were a distance ` away at the start560

of the round. Consider the costs g(u) = m
2 ‖u− C‖

2, h(u) = α · d(u,BC) where d(u,BC) is the561

distance from the point u to the line passing through B and C and α > 0 is a parameter we will pick562

later. Define ft(u) = h(u) + g(u). Notice that ft is m-strongly convex because it is the sum of an563

m-strongly convex function and a convex function. Intuitively, when α is large, the function ft is564

infinity outside of the line BC but is equal to g(u) = m
2 ‖u− C‖

2 when restricted to points u on the565

line. After observing the cost ft, OBD will pick some new point E.566

The following lemma highlights that E can be driven arbitrarily close to B by taking α to be567

sufficiently large.568

Lemma 9. Let ε > 0, and suppose α is picked to that α > hm`2

ε2 . Then the point E picked by OBD569

satisfies |EB| < ε.570

We instruct the adversary to pick the point F on the line BC (the x-axis) such that EF = ` (see571

Figure 2). Notice that |CF | = |BF | − |BC| ≤ |BE|+ |EF | − |BC| = |EB|+ `− ` < ε, where572

we used the triangle inequality. Let z = |DC|. We see that the total cost incurred by the offline573

adversary is574

M∗t +H∗t =
1

2
|DF |2 +

m

2
|CF |2 ≤ 1

2
(|DC|+ |CF |)2 +

m

2
|CF |2 ≤ 1

2
(z + ε)2 +

mε2

2
,

where we applied the triangle inequality.575

Notice that h = |AB| =
√
|AC|2 − |BC|2 by the Pythagorean theorem (recall that ABC is a right576

triangle). Since |AC| = `+ z and |BC| = `, we see that h =
√

2z`+ z2. Hence the movement cost577

incurred by the OBD is578

Mt ≥
1

2
(h− ε)2 =

1

2
(
√

2z`+ z2 − ε)2.

Hence the ratio of the costs is579

Mt +Ht

M∗t +H∗t
≥ Mt

M∗t +H∗t
≥

1
2 (
√

2z`+ z2 − ε)2
1
2 (z + ε)2 + mε2

2

.

Since the limit of this expression as ε → 0 is 2z`+z2

z2 , for sufficiently small ε this will be at least580

1
2
2z`+z2

z2 ≥ `
z . Since z =

√
h2 + `2 − ` and h =

√
γm`, the ratio of costs is at least581

`√
γm`2 + `2 − `

=
1√

γm+ 1− 1
=

√
γm+ 1 + 1

γm
≥ 2

γm
.

Now, we describe the whole process. When t = 1, the hitting cost function is f1(x) = m
2 ‖x‖

2
2.582

While OBD stays at x = 0, the adversary moves to the point (`, 0); it incurs a one-time cost of583
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xt−1 xt vt = t

Figure 3: Balance condition at time step t in Lemma 10. Starting from xt−1, OBD picks xt after
observing the hitting cost function ft(x) = m

2 (x− t)2.

M∗1 +H∗1 = 1
2`

2 + m
2 `

2. On all subsequent steps t = 2 . . . T , we repeatedly apply the construction,584

which forces OBD to move in a circle. The one-time cost incurred by the adversary to setup the game585

is negligible in the limit as T is large, and the per-round ratio of costs is Ω( 1
γm ), so the competitive586

ratio is also Ω( 1
γm ) as claimed.587

The key technical lemma used in the proof is Lemma 9, and we now provide a proof of that result.588

Proof of Lemma 9. Suppose α > hm`2

ε2 . We first show that OBD selects the pointE strictly contained589

by the m
2 `

2-level set, which is the one B lies on. First observe that the point B satisfies the balance590

condition: 1
2 |AB|

2 = γm2 |BC|
2, because we constructed ABC so that |AB| = h =

√
γm` and591

|BC| = `. However, the point B is not necessarily a projection of A onto any level set of ft. If OBD592

projected onto the level set which B lies on, it would incur less cost than if it moved to B; however593

then the balance condition would be violated. To restore the balance condition, we must increase the594

movement cost while decreasing the hitting cost – which means we must move to a strictly smaller595

level set, say the m
2 l

2
1-level set, where l1 < l.596

Let Ey denote the y-coordinate of E, using the coordinate system we define in the proof of Lemma597

8. Notice that Ey = g(E)
α , since g(E) was defined to be the vertical distance to the x-axis times α.598

Since g(E) ≤ ft(E), we see that Ey ≤ ft(E)
α =

ml21
2α ≤

ml2

2α , where we used the fact that E lies on599

the m
2 `

2
1 level set and `1 ≤ `. By the balance condition, 1

2 |AE|
2 = γm

2 l21 ≤
γm
2 l2 = 1

2h
2. Let G be600

the point with coordinates (Bx, Ey). Applying the Pythagorean theorem successively to the right601

triangle BEG and the right triangle AEG, we see that602

|EB|2 = |Ex −Bx|2 + E2
y ≤ (|AE|2 − (|AB| − Ey)2) + E2

y

≤ (|AB|2 − (|AB| − Ey)2) + E2
y ≤ 2h · Ey ≤ h

ml2

α
,

(9)

where we used the fact that |AB| ≥ |AE| and |AB| = h. Since we picked α > hm`2

ε2 , we see that603

|EB| < ε.604

605

Now we move on to the next technical lemma in the proof of Theorem 2.606

Lemma 10. When γ = o( 1
m ), the competitive ratio of OBD is Ω(

√
γ
m ).607

Proof. We consider a sequence of cost functions on the real line such that the OBD algorithm moves608

far away from the starting point, incurring significant movement costs, whereas the offline adversary609

could pay relatively little cost by staying at the starting point. More specifically, we consider the610

sequence of hitting cost functions ft(x) = m
2 (x− t)2, t = 1, 2, · · · , n. The value of n will be picked611

later. We assume the starting point is at zero.612

Notice that by the balance condition we always have Mt = γHt, so 1
2‖xt−xt−1‖

2 = γm2 ‖xt− t‖
2.613

We can rearrange this expression to obtain xt−xt−1

t−xt =
√
γm. Define614

λ =
xt − xt−1
t− xt−1

=

√
γm

1 +
√
γm

.

We obtain the recursive equation xt = xt−1 + (t− xt−1)λ with initial condition x0 = 0. Solving615

this equation, we obtain xt = t− 1−λ
λ (1− (1− λ)t).616
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Suppose we picked n to be = d 1λe. By assumption, γ = o( 1
m ); hence in the limit as m tends to zero, λ617

also tends to zero. Notice that xn = n− 1−λ
λ (1− (1− λ)n) ≥ 1

λ
1
2e − (1− 1

e ) ≥ 1
6λ for sufficiently618

small λ. Here we used the fact that (1− λ)
1
λ → e−1.619

Suppose the next cost function is fn+1(x) = m′x2. Notice that if the offline adversary simply stays620

at zero throughout the game, the total cost it incurs would be621

cost(ADV ) =
m

2
(12 + 22 + · · ·+ n2) ≤ mn3

2
= Θ

(m
λ3

)
= Θ

(
1√
γ3m

)
.

In the last step, we used the fact that λ tends to
√
γm when γ = o( 1

m ) and m tends to zero.622

If we pick m′ large enough that OBD is forced to incur movement cost at least 1
2 (xn2 )2, the total cost623

incurred by OBD is624

cost(OBD) ≥ 1

2

(xn
2

)2
= Θ

(
1

λ2

)
= Θ

(
1

γm

)
.

Putting these facts together, we see that the competitive ratio is at least Θ(
√

γ
m ).625

The last technical lemma used to proof Theorem 2 is the following.626

Lemma 11. When γ = Ω( 1
m ), the competitive ratio of OBD is Ω

(
1
m

)
.627

Proof. Since γ = Ω( 1
m ), we can assume there exists C > 0 such that γ ≥ C/m. We again628

consider a situation such that the OBD algorithm moves far away from the starting point, incurring629

significant movement cost, whereas the offline adversary could pay relatively little cost by staying at630

the starting point. More specifically, suppose the starting point is zero and the first cost function is631

f1(x) = m
2 (1− x)2. Suppose the adversary stays at zero. The cost incurred by the adversary will be632

cost(ADV ) =
m

2
.

Notice that by the balance condition (Mt = γHt), the point x1 picked by OBD satisfies x2
1

2 =633

γm2 (1− x1)2. So the cost incurred by OBD is lower bounded by634

cost(OBD) ≥M1 =
1

2

( √
γm

1 +
√
γm

)2

≥ 1

2

( √
C

1 +
√
C

)2

.

SinceC is a positive constant, the competitive ratio of OBD is lower bounded by OBD
ADV = Θ

(
1
m

)
.635

Now we return to the proof of Theorem 2. This proof is a straightforward combination of the above636

lemmas. When γ = o( 1
m ), by combining Lemma 8 and Lemma 10, we know the competitive637

ratio is at least max
(
C1

γm , C2

√
γ
m

)
for some positive constants C1, C2. Notice that function C1

γm is638

monotonically decreasing in γ and C2

√
γ
m is monotonically increasing in γ. Solving the equation639

C1

γm = C2

√
γ
m , we get γ =

(
C1

C2

) 2
3

m−
1
3 . Therefore we see that640

max{ C1

γm
,C2

√
γ

m
} ≥ C

1
3
1 C

2
3
2 m
− 2

3 = Θ(m−
2
3 ).

On the other hand, when γ = Ω( 1
m ), by Lemma 11, we know the competitive ratio of OBD is lower641

bounded by Θ
(

1
m

)
.642

Together, the above implies that the competitive ratio of OBD is at least Θ(m−
2
3 ) when m→ 0+.643
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C Proof of Theorem 3644

To begin, note that it is sufficient to prove result for all positive m ≤ 9
64 . Similarly, it also suffices645

to show Theorem 3 when the minimum of every hitting cost function is zero, since otherwise the646

competitive ratio can only improve if this is not the case.647

Our argument makes use of the following potential function: φ(xt, x
∗
t ) = η ‖xt − x∗t ‖

2. We define648

∆φ = φ(xt, x
∗
t ) − φ(xt−1, x

∗
t−1) and ∆φ′ = φ(x′t, x

∗
t ) − φ(xt−1, x

∗
t−1). It suffices to show that649

Ht +Mt + ∆φ ≤ C(H∗t +M∗t ), for some positive constant C. From this inequality, we can sum650

over all timesteps t to yield that the competitive ratio is upper bounded by C:651

T∑
t=0

Ht +Mt ≤
T∑
t=0

Ht +Mt + ∆φ ≤ C
T∑
t=0

(H∗t +M∗t ) .

Throughout the proof, we fix η = 4 and use ‖·‖ to denote `2 norm. When we refer to generalized652

mean inequality, we mean653

(a+ b)2 ≤ 2a2 + 2b2,∀a, b ∈ R.

We define H ′t := ft(x
′
t) and M ′t := c(x′t, xt−1) = 1

2 ‖x
′
t − xt−1‖

2
2, where x′t is the point chosen by654

the first OBD phase (line 3) of Algorithm 2.655

Before we move to the main casework in the proof, we begin with a technical lemma that we use to656

bound the change in the potential function.657

Lemma 12. Suppose the potential function φ : Rd × Rd → R≥0 is defined as φ(a, b) = η ‖a− b‖2,658

where η > 0. Then ∀λ > 0, the change in potential satisfies659

φ(a, c)− φ(a, b) ≤ (1 + λ2)φ(b, c) +
1

λ2
φ(a, b),

for all a, b, c ∈ Rd.660

Proof. Using the triangle inequality, we obtain661

‖a− c‖2 ≤ (‖a− b‖+ ‖b− c‖)2 = ‖a− b‖2 + ‖b− c‖2 + 2 ‖a− b‖ ‖b− c‖ .

Rearranging the terms, we obtain662

‖a− c‖2 − ‖a− b‖2 ≤ ‖b− c‖2 + 2 ‖a− b‖ ‖b− c‖

= ‖b− c‖2 + 2(
1

λ
‖a− b‖)(λ ‖b− c‖)

≤ (1 + λ2) ‖b− c‖2 +
1

λ2
‖a− b‖2 ,

where in the last line we use the AM-GM inequality.663

We are now ready to precede with the proof, which is divided up into two cases based on the664

relationship between the hitting cost of the algorithm and that of the adversary.665

Case 1: H ′t ≤ H∗t666

Since the hitting cost function satisfies ft(x) ≥ m
2 ‖x− vt‖

2, by the triangle inequality, we have667

‖x′t − x∗t ‖ ≤ ‖x′t − vt‖+ ‖x∗t − vt‖ ≤

(√
2H ′t
m

+

√
2H∗t
m

)
. (10)
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Thus the change in potential satisfies668

1

η
∆φ′ = ‖x′t − x∗t ‖

2 −
∥∥xt−1 − x∗t−1∥∥2

= (‖x′t − x∗t ‖ −
∥∥xt−1 − x∗t−1∥∥)(‖x′t − x∗t ‖+

∥∥xt−1 − x∗t−1∥∥)

≤ (‖x′t − xt−1‖+
∥∥x∗t − x∗t−1∥∥)

(
‖x′t − xt−1‖+

∥∥x∗t − x∗t−1∥∥+ 2 ‖x′t − x∗t ‖
)

(11a)

= (‖x′t − xt−1‖+
∥∥x∗t − x∗t−1∥∥)2 + 2(‖x′t − xt−1‖+

∥∥x∗t − x∗t−1∥∥) ‖x′t − x∗t ‖

≤ 2 ‖x′t − xt−1‖
2

+ 2
∥∥x∗t − x∗t−1∥∥2 + 2(‖x′t − xt−1‖+

∥∥x∗t − x∗t−1∥∥) ‖x′t − x∗t ‖ (11b)

≤ 4M ′t + 4M∗t + 2(
√

2M ′t +
√

2M∗t )

(√
2H ′t
m

+

√
2H∗t
m

)
(11c)

≤ 4M ′t + 4M∗t +

√
1

m

(
(
√

2M ′t +
√

2M∗t )2 + (
√

2H ′t +
√

2H∗t )2
)

(11d)

≤ 4M ′t + 4M∗t +

√
1

m

(
(4M ′t + 4M∗t ) + (4H ′t + 4H∗t )

)
(11e)

=

(
4 + 4

√
1

m

)
M ′t +

(
4 + 4

√
1

m

)
M∗t + 4

√
1

m
H ′t + 4

√
1

m
H∗t ,

where we use the triangle inequality in line (11a); the generalized mean inequality in lines (11b),669

(11d) and (11e) and inequality (10) in line (11c).670

Using the OBD’s balance condition M ′t = γH ′t and the assumption H ′t ≤ H∗t based on inequality671

(11), we have672

1

η
∆φ′ ≤

(
4 + 4

√
1

m

)
γH ′t +

(
4 + 4

√
1

m

)
M∗t + 4

√
1

m
H ′t + 4

√
1

m
H∗t

≤

(
4 + 4

√
1

m

)
γH∗t +

(
4 + 4

√
1

m

)
M∗t + 8

√
1

m
H∗t .

Notice that by the triangle inequality and the generalized mean inequality, we have that673

Mt =
1

2
‖xt − xt−1‖2 ≤

1

2
(‖x′t − xt−1‖+ ‖xt − x′t‖)2 ≤

1

2
(2 ‖x′t − xt−1‖

2
+ 2 ‖xt − x′t‖

2
).
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Remember that since µ = 1, we have ‖xt − x′t‖
2

= m ‖x′t − vt‖
2. Using this fact, we derive the674

following bound on Ht +Mt + ∆φ:675

Ht +Mt + ∆φ ≤H ′t +
1

2

(
2 ‖x′t − xt−1‖

2
+ 2 ‖xt − x′t‖

2
)

+ η(‖xt − x∗t ‖
2 − ‖x′t − x∗t ‖

2
) + ∆φ′

≤H ′t +
(
2M ′t +m ‖x′t − vt‖

2 )
+

(
η

(
1 +

1√
m

)
‖xt − x′t‖

2
+ η
√
m ‖x′t − x∗t ‖

2
)

+ ∆φ′ (12a)

≤H ′t +
(
2M ′t +m ‖x′t − vt‖

2 )
+

(
η

(
1 +

1√
m

)
m ‖x′t − vt‖

2
+ η
√
m
(

2 ‖x′t − vt‖
2

+ 2 ‖x∗t − vt‖
2
))

+ ∆φ′ (12b)

≤H ′t + (2M ′t + 2H ′t) +

(
η

(
1 +

1√
m

)
2H ′t + η

√
m

(
4H ′t
m

+
4H∗t
m

))
+ ∆φ′

(12c)

= (3 + 2η +
6η√
m

)H ′t + 2M ′t + 4η
H∗t√
m

+ ∆φ′

=
(

3 + 2η +
6η√
m

+ 2γ
)
H ′t + 4η

H∗t√
m

+ ∆φ′

≤
(

3 + 2η +
6η√
m

+ 2γ
)
H∗t + 4η

H∗t√
m

+ ∆φ′ (12d)

=
(

3 + 2η +
10η√
m

+ 2γ
)
H∗t + ∆φ′,

where we use Lemma 12 in line (12a); the triangle inequality in line (12b); m-strongly convexity of676

ft in line (12c); and the assumption H ′t ≤ H∗t in line (12d).677

Combining inequalities (11) and (12), we obtain678

Ht +Mt + ∆φ ≤
(
3 + 2η + 2γ + 4ηγ +

η√
m

(18 + 4γ)
)
H∗t + η(4 + 4

√
1

m
)M∗t . (13)

Case 2: H ′t ≥ H∗t679

In this case, we prove that for any x∗t , x
∗
t−1 ∈ Rd, we have680

Ht +Mt + ∆φ ≤ C√
m

(H∗t +M∗t ), (14)

for some positive constant C.681

In the proof, we use D1, D2, · · · , Dd to represent the d axes in the coordinate system.682

As shown in Figure 4, without loss of generality, let vt = (0, 0, · · · , 0), x′t = (h1, h2, 0, · · · , 0) and683

D2 = h2 be the projection hyper plane, where h1 ≥ 0, h2 ≥ 0. And let l = ‖xt−1 − x′t‖ > 0. Note684

that our analysis still holds in one-dimension because we can restrict ourselves to the D2 axis.685

Then we know xt−1 = (h1, h2 + l, 0, · · · , 0), xt = (h1(1 −
√
m), h2(1 −

√
m), 0, · · · , 0). Since686

we know x∗t must lie below the projection hyper plane, we can let x∗t = (x, h2 − y, a3, a4, · · · , ad),687

where y > 0.688

Now we show that it suffices to prove the statement when x∗t−1 is on the line segment x∗txt−1.689

Suppose x∗t−1 is not on the line segment x∗txt−1. If
∥∥x∗t−1 − xt−1∥∥ > ‖x∗t − xt−1‖, by moving690

x∗t−1 to x∗t , ∆φ increases and M∗t decreases. Otherwise, we can choose a point K on line segment691

x∗txt−1 such that ‖K − xt−1‖ =
∥∥x∗t−1 − xt−1∥∥. By moving x∗t−1 to K, ∆φ remains unchanged692

and M∗t decreases. Therefore if inequality (14) holds for x∗t−1 on the segment x∗txt1 , then it must693

also hold for any other x∗t−1 ∈ Rd.694
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xt−1

x′t

vt

x∗t
xt

(h1, h2 + l, 0, · · · , 0)

(h1, h2, 0, · · · , 0)

(h1(1−
√
m), h2(1−

√
m), 0, · · · , 0)(x, h2 − y, a3, · · · , ad)

D1

D2

Figure 4: Starting at xt−1, G-OBD first does projection on to the H ′t level set (red dashed line) in
the first phase. The projection point is x′t. Then G-OBD moves toward the minimizer to obtain point
xt in the second phase. Let the minimizer vt be the origin. Notice that the three points xt−1, x′t, vt
defines a plane S. Without loss of generality, we can let axis D2 be parallel to line x′txt−1; and let
axis D1 be parallel to the projection hyperplane.

Now we suppose x∗t−1 is on the line segment x∗txt−1, and
∥∥x∗t − x∗t−1∥∥ = λ ‖x∗t − xt−1‖.695

Recall that we set γ = 1, so M ′t = γH ′t = H ′t. It follows that696

Mt ≤ l2 + ‖xt − x′t‖
2

= l2 +m(h21 + h22) ≤ l2 + 2H ′t = l2 + 2M ′t ≤ 2l2,

and697

Ht ≤ H ′t = M ′t =
l2

2
.

We can separate ∆φ into two parts:698

∆φ

η
=
(
‖x∗t − xt‖

2 − ‖x∗t − xt−1‖
2
)

+
(
‖x∗t − xt−1‖

2 −
∥∥x∗t−1 − xt−1∥∥2) .

For convenience, we define699

∆φ1 :=
(
‖x∗t − xt‖

2 − ‖x∗t − xt−1‖
2
)
,

and700

∆φ2 :=
(
‖x∗t − xt−1‖

2 −
∥∥x∗t−1 − xt−1∥∥2) .

We further notice that from the triangle inequality,701

∆φ2 ≤ (1− (1− λ)2) ‖x∗t − xt−1‖
2

= λ(2− λ)

(
(x− h1)2 + (y + l)2 +

d∑
i=3

a2i

)
. (15)

Now we express M∗t and H∗t in terms of the variables we define, which are702

M∗t =
1

2
(λ ‖x∗t − xt−1‖)2 =

λ2

2

(
(x− h1)2 + (y + l)2 +

d∑
i=3

a2i

)
, (16)

and703

H∗t ≥
m

2
‖x∗t − vt‖

2
=
m

2

(
x2 + (h2 − y)2 +

d∑
i=3

a2i

)
. (17)

We also expand ∆φ1:704

∆φ1 = ‖x∗t − xt‖
2 − ‖x∗t − xt−1‖

2

= (x− h1 + h1
√
m)2 + (y − h2

√
m)2 +

d∑
i=3

a2i − (x− h1)2 − (y + l)2 −
d∑
i=3

a2i

=
(
(x− h1 + h1

√
m)2 − (x− h1)2

)
+
(
(y − h2

√
m)2 − (y + l)2

)
= h1

√
m(2x− 2h1 + h1

√
m)− (h2

√
m+ l)(2y + l − h2

√
m)

= 2xh1
√
m− 2h21

√
m+ h21m− 2y(h2

√
m+ l)− l2 + h22m.

(18)
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Using the condition that m ≤ 9
64 < 1, we derive the following bound:705

∆φ1 ≤ 2xh1
√
m− 2h21

√
m+ h21m− 2y(h2

√
m+ l)− l2 + h22

√
m

= 2xh1
√
m− 2h21

√
m+ h21m+

√
m(h2 − y)2 −

√
my2 − 2yl − l2.

(19)

Substituting equations (16) and (17) into inequality (14), we know that it suffices to show that for706

some constant C,707

Mt+Ht+η∆φ1+η∆φ2 ≤
C√
m

(
m

2

(
x2+(h2−y)2+

d∑
i=3

a2i

)
+
λ2

2

(
(x−h1)2+(y+l)2+

d∑
i=3

a2i

))
.

(20)

Subcase 2.1: λ ≤
√
m
2708

We can bound equation (15) as follows:709

∆φ2 = λ(2− λ)

(
(x− h1)2 + (y + l)2 +

d∑
i=3

a2i

)

≤
√
m(x− h1)2 +

√
m(y + l)2 +

√
m

d∑
i=3

a2i

=
√
mx2 − 2

√
mxh1 +

√
mh21 +

√
my2 + 2

√
myl +

√
ml2 +

√
m

d∑
i=3

a2i .

(21)

Summing inequalities (19) and (21), we get710

∆φ1 + ∆φ2 ≤
√
mx2 + (−h21

√
m+ h21m) +

√
m(h2 − y)2

+ (2
√
myl − 2yl) + (

√
ml2 − l2) +

√
m

d∑
i=3

a2i

≤
√
mx2 + 0 +

√
m(h2 − y)2 + 0− 5

8
l2 +
√
m

d∑
i=3

a2i (22a)

≤
√
mx2 +

√
m(h2 − y)2 − 5

8
l2 +
√
m

d∑
i=3

a2i ,

where we use the condition that m ≤ 9
64 in line (22a). We further obtain711

Mt +Ht + η(∆φ1 + ∆φ2) ≤ 2l2 +
l2

2
+ η

(
√
mx2 +

√
m(h2 − y)2 − 5

8
l2 +
√
m

d∑
i=3

a2i

)

=
5l2

2
+ 4

(
√
mx2 +

√
m(h2 − y)2 − 5

8
l2 +
√
m

d∑
i=3

a2i

)

= 4

(
√
mx2 +

√
m(h2 − y)2 +

√
m

d∑
i=3

a2i

)
.

Therefore, for C ≥ 8, we have712

Mt+Ht+η∆φ1+η∆φ2 ≤
C√
m

(
m

2

(
x2+(h2−y)2+

d∑
i=3

a2i

)
+
λ2

2

(
(x−h1)2+(y+l)2+

d∑
i=3

a2i

))
,

which establishes inequality (20).713
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Subcase 2.2: λ ≥
√
m
2714

Notice that when C ≥ 32, we have715

C

2
√
m
λ2 ≥ 16√

m
λ2 ≥ 16√

m
·
√
m

2
λ = 8λ ≥ 4λ(2− λ) = ηλ(2− λ).

Substituting this inequality into equation (15), we know that for C ≥ 32,716

η∆φ2 ≤
C√
m
· λ

2

2

(
(x− h1)2 + (y + l)2 +

d∑
i=3

a2i

)
. (23)

We can further bound inequality (19):717

∆φ1 ≤ 2xh1
√
m− 2h21

√
m+ h21m+

√
m(h2 − y)2 −

√
my2 − 2yl − l2

≤
√
mx2 +

√
mh21 − 2h21

√
m+ h21m+

√
m(h2 − y)2 − l2

≤
√
mx2 +

√
m(h2 − y)2 − l2,

where we apply the AM-GM inequality in step 2 and use the condition m < 1 in step 3.718

Therefore we have719

Ht +Mt + η∆φ1 ≤
5l2

2
+ 4(
√
mx2 +

√
m(h2 − y)2 − l2)

≤ 4(
√
mx2 +

√
m(h2 − y)2).

(24)

Summing inequalities (24) and (23), we yield that for C ≥ 32,720

Mt+Ht+η∆φ1+η∆φ2 ≤
C√
m

(
m

2

(
x2+(h2−y)2+

d∑
i=3

a2i

)
+
λ2

2

(
(x−h1)2+(y+l)2+

d∑
i=3

a2i

))
,

which establishes inequality (20).721

Combining all cases above, we conclude that G-OBD is an O( 1√
m

)-competitive algorithm.722

D Proof of Theorem 4723

To prove Theorem 4 we make use of Lemma 1 and 5.724

Our approach is to make use of strong convexity and properties of Bregman Divergences to derive an725

inequality in the form of Ht +Mt + ∆φ ≤ C(H∗t +M∗t ) for some positive constant C, where ∆φ726

is the change in potential, which we will define later. The constant C is then an upper bound for the727

competitive ratio.728

To begin, recall that h is assumed to be α−strongly convex and β−strongly smooth with respect to729

norm ‖·‖. Thus we can give a trivial bound on Bregman Divergence, namely730

∀x, y, α
2
‖x− y‖2 ≤ Dh(x||y) ≤ β

2
‖x− y‖2 . (25)

Recall that the update rule in Algorithm 3 can be stated as:731

xt = arg min
x

ft(x) + λ1Dh(x||xt−1) + λ2Dh(x||vt).

Since the function ft(x)+λ1Dh(x||xt−1)+λ2Dh(x||vt) is strongly convex, the minimizer xt exists732

and is unique. Furthermore, it must satisfy the first-order condition733

∇ft(xt) + λ1(∇h(xt)−∇h(xt−1)) + λ2(∇h(xt)−∇h(vt)) = 0.

Further, since ft(x) is m-strongly convex, we have734

ft(x
∗
t ) ≥ ft(xt) + 〈∇ft(xt), x∗t − xt〉+

m

2
‖x∗t − xt‖

2

= ft(xt)− λ1〈∇h(xt−1)−∇h(xt), xt − x∗t 〉

− λ2〈∇h(vt)−∇h(xt), xt − x∗t 〉+
m

2
‖x∗t − xt‖

2
.

(26)
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Using Lemma 5, we obtain735

〈∇h(xt−1)−∇h(xt), xt − x∗t 〉 = Dh(x∗t ||xt−1)−Dh(x∗t ||xt)−Dh(xt||xt−1),

and736

〈∇h(vt)−∇h(xt), xt − x∗t 〉 = Dh(x∗t ||vt)−Dh(x∗t ||xt)−Dh(xt||vt).
Substituting the two above identities into inequality (26), we get737

ft(xt) + λ1Dh(xt||xt−1) + λ2Dh(xt||vt) + (λ1 + λ2)Dh(x∗t ||xt) +
m

2
‖x∗t − xt‖

2

≤ ft(x∗t ) + λ1Dh(x∗t ||xt−1) + λ2Dh(x∗t ||vt).

It follows that738

ft(xt) + λ1Dh(xt||xt−1) + (λ1 + λ2)Dh(x∗t ||xt) +
m

2
‖x∗t − xt‖

2

≤ ft(x∗t ) + λ1Dh(x∗t ||xt−1) + λ2Dh(x∗t ||vt).
(27)

We define the potential function as φ(xt, x
∗
t ) = (λ1 + λ2)Dh(x∗t ||xt) + m

2 ‖x
∗
t − xt‖

2, and let739

∆φ = φ(xt, x
∗
t )− φ(xt−1, x

∗
t−1). Applying this notation to inequality (27) and rearranging terms,740

we obtain741

Ht + λ1Mt + ∆φ

≤ (H∗t + λ2Dh(x∗t ||vt)) + λ1Dh(x∗t ||xt−1)− (λ1 + λ2)Dh(x∗t−1||xt−1)− m

2

∥∥x∗t−1 − xt−1∥∥2 .
(28)

Using Lemma 1, we get742

1

2β

∥∥∇h(xt−1)−∇h(x∗t−1)
∥∥2
∗ ≤ Dh(x∗t−1||xt−1), (29)

and743 ∥∥∇h(xt−1)−∇h(x∗t−1)
∥∥
∗ ≤ β

∥∥xt−1 − x∗t−1∥∥ . (30)
Using Lemma 5 and the two above inequalities, we get744

λ1Dh(x∗t ||xt−1)− (λ1 + λ2)Dh(x∗t−1||xt−1)− m

2

∥∥x∗t−1 − xt−1∥∥2
= λ1

(
Dh(x∗t ||xt−1)−Dh(x∗t−1||xt−1)

)
− λ2Dh(x∗t−1||xt−1)− m

2

∥∥x∗t−1 − xt−1∥∥2 (31a)

= λ1Dh(x∗t ||x∗t−1) + λ1〈∇h(xt−1)−∇h(x∗t−1), x∗t−1 − x∗t 〉

− λ2Dh(x∗t−1||xt−1)− m

2

∥∥x∗t−1 − xt−1∥∥2 (31b)

≤ λ1Dh(x∗t ||x∗t−1) + λ1
∥∥∇h(xt−1)−∇h(x∗t−1)

∥∥
∗

∥∥x∗t−1 − x∗t∥∥
− λ2Dh(x∗t−1||xt−1)− m

2

∥∥x∗t−1 − xt−1∥∥2 (31c)

≤ λ1Dh(x∗t ||x∗t−1) +
λ2β +m

2β2

∥∥∇h(xt−1)−∇h(x∗t−1)
∥∥2
∗ +

λ21β
2

2(λ2β +m)

∥∥x∗t−1 − x∗t∥∥2
− λ2Dh(x∗t−1||xt−1)− m

2

∥∥x∗t−1 − xt−1∥∥2
= λ1Dh(x∗t ||x∗t−1) +

λ21β
2

2(λ2β +m)

∥∥x∗t−1 − x∗t∥∥2
+

(
λ2
2β

∥∥∇h(xt−1)−∇h(x∗t−1)
∥∥2
∗ − λ2Dh(x∗t−1||xt−1)

)
+

(
m

2β2

∥∥∇h(xt−1)−∇h(x∗t−1)
∥∥2
∗ −

m

2

∥∥x∗t−1 − xt−1∥∥2) (31d)

≤ λ1Dh(x∗t ||x∗t−1) +
λ21β

2

2(λ2β +m)

∥∥x∗t−1 − x∗t∥∥2
≤ λ1

(
1 +

λ1β
2

α(λ2β +m)

)
Dh(x∗t ||x∗t−1), (31e)
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where we use Lemma 5 in line (31a); Cauchy-Schwartz inequality in line (31b); the AM-GM745

inequality in the line (31c); inequalities (29) and (30) in line (31d); and inequality (25) in line (31e).746

Substituting inequality (31) into inequality (28), we obtain747

Ht + λ1Mt + ∆φ ≤
(
H∗t + λ2Dh(x∗t ||vt)

)
+ λ1

(
1 +

λ1β
2

α(λ2β +m)

)
M∗t .

Using inequality (25) and the fact that ft is m-strongly convex, we obtain748

λ2Dh(x∗t ||vt) ≤
λ2β

2
‖x∗t − vt‖

2 ≤ λ2β

m
H∗t .

Therefore we have749

Ht + λ1Mt + ∆φ ≤ (1 +
λ2β

m
)H∗t + λ1

(
1 +

λ1β
2

α(λ2β +m)

)
M∗t .

Since 0 < λ1 ≤ 1, we have750

Ht +Mt +
1

λ1
∆φ ≤ Ht + λ1Mt + ∆φ

λ1
≤ m+ λ2β

mλ1
H∗t +

(
1 +

β2

α
· λ1
λ2β +m

)
M∗t .

Theorem 4 follows from summing the above inequality over all timesteps t.751

E R-OBD with Squared `2 Norm752

When h(x) = 1
2 ‖x‖

2
2, the Bregman DivergenceDh(x||y) is equal to the squared `2 norm 1

2 ‖x− y‖
2
2.753

Hence, setting h(x) = 1
2 ‖x‖

2
2 in Algorithm 3 gives us R-OBD in the squared `2 setting. In this754

section, we present a separate proof of Regularized OBD with squared `2 norm, in order to remove755

the assumption that the hitting costs {ft} are differentiable.756

Theorem 7. Consider hitting cost functions that are m-strongly convex with respect to `2 norm and757

movement costs given by 1
2 ‖xt − xt−1‖

2
2. There exists a choice λ1, λ2 such that the competitive ratio758

of Regularized OBD matches the lower bound proved in Theorem 1, i.e. the competitive ratio is at759

most 1
2

(
1 +

√
1 + 4

m

)
.760

This result follows from the more general bound in Theorem 8 below, which describes the competitive761

ratio of Algorithm 3 as a function of λ1, λ2.762

Theorem 8. Consider hitting cost functions that are m-strongly convex with respect to `2 norm and763

movement costs given by 1
2 ‖xt − xt−1‖

2
2. Regularized-OBD (Algorithm 3 with h(x) = 1

2 ‖x‖
2
2) with764

parameters 1 ≥ λ1 > 0, λ2 ≥ 0 has competitive ratio at most765

max

(
m+ λ2
λ1

· 1

m
, 1 +

λ1
λ2 +m

)
.

Notice that Theorem 7 follows immediately by setting m+λ2

λ1
= m

2

(
1 +

√
1 + 4

m

)
in Theorem 8.766

Before proving Theorem 8, we first prove a teechnical lemma which gives a lower bound of the value767

of hitting cost as a function of the distance to the minimizer.768

Lemma 13. If f : X → R is a m-strongly convex function with respect to some norm ‖·‖, and v is769

the minimizer of f (i.e. v = arg minx∈X f(x)), then we have ∀x ∈ X ,770

f(x) ≥ f(v) +
m

2
‖x− v‖2 .

Proof. By the definition of m-strongly convex, we obtain that ∀α ∈ (0, 1),771

f(αx+ (1− α)v) ≤ αf(x) + (1− α)f(v)− m

2
α(1− α) ‖x− v‖2 . (32)
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Notice that f(v) ≤ f(αx+(1−α)v). Combining this with inequality (32), we obtain that ∀α ∈ (0, 1),772

f(v) ≤ αf(x) + (1− α)f(v)− m

2
α(1− α) ‖x− v‖2 .

Rearranging the terms, we observe that ∀α ∈ (0, 1),773

f(x) ≥ f(v) +
m

2
(1− α) ‖x− v‖2 .

Therefore774

f(x) ≥ lim
α→0+

(
f(v) +

m

2
(1− α) ‖x− v‖2

)
= f(v) +

m

2
‖x− v‖2 .

775

Now we return to the proof of Theorem 8.776

Proof of Theorem 8. In the proof, we use the property of strongly convex to derive an inequality in777

the form of Ht +Mt + ∆φ ≤ C(H∗t +M∗t ), where ∆φ is the change in potential and C is an upper778

bound for the competitive ratio.779

Throughout the proof, we use ‖·‖ to denote `2 norm.780

Notice that when h(x) = 1
2 ‖x‖

2, the update rule in Algorithm 3 is:781

xt = arg min
x

ft(x) +
λ1
2
‖x− xt−1‖2 +

λ2
2
‖x− vt‖2 .

For convenience, we define782

Ft(x) = ft(x) +
λ1
2
‖x− xt−1‖2 +

λ2
2
‖x− vt‖2 .

Since ft(x) is m-strongly convex,λ1

2 ‖x− xt−1‖
2 is λ1-strongly convex, and λ2

2 ‖x− vt‖
2 is λ2-783

strongly convex, Ft(x) is (m+ λ1 + λ2)−strongly convex. Since xt = arg minx Ft(x), by Lemma784

13, we obtain785

Ft(x
∗
t ) ≥ Ft(xt) +

m+ λ1 + λ2
2

‖x∗t − xt‖
2
,

which implies786

Ht + λ1Mt +
m+ λ1 + λ2

2
‖x∗t − xt‖

2

≤ Ht + λ1Mt +
λ2
2
‖x− vt‖2 +

m+ λ1 + λ2
2

‖x∗t − xt‖
2

≤ H∗t +
λ1
2
‖x∗t − xt−1‖

2
+
λ2
2
‖x∗t − vt‖

2
.

(33)

We define the potential function as φ(xt, x
∗
t ) = m+λ1+λ2

2 ‖x∗t − xt‖
2 and ∆φ = φ(xt, x

∗
t ) −787

φ(xt−1, x
∗
t−1). We then can rewrite inequality (33) as788

Ht+λ1Mt+∆φ ≤
(
H∗t +

λ2
2
‖x∗t − vt‖

2

)
+
λ1
2
‖x∗t − xt−1‖

2−m+ λ1 + λ2
2

∥∥x∗t−1 − xt−1∥∥2 .
(34)
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Additionally789

λ1
2
‖x∗t − xt−1‖

2 − m+ λ1 + λ2
2

∥∥x∗t−1 − xt−1∥∥2
≤ λ1

2

(∥∥x∗t − x∗t−1∥∥+
∥∥x∗t−1 − xt−1∥∥)2 − m+ λ1 + λ2

2

∥∥x∗t−1 − xt−1∥∥2 (35a)

=
λ1
2

∥∥x∗t − x∗t−1∥∥2 + λ1
∥∥x∗t − x∗t−1∥∥ · ∥∥x∗t−1 − xt−1∥∥− m+ λ2

2

∥∥x∗t−1 − xt−1∥∥2
≤ λ1

2

∥∥x∗t − x∗t−1∥∥2 +
λ21

2(m+ λ2)

∥∥x∗t − x∗t−1∥∥2 +
m+ λ2

2

∥∥x∗t−1 − xt−1∥∥2
− m+ λ2

2

∥∥x∗t−1 − xt−1∥∥2 (35b)

=
λ1(λ1 + λ2 +m)

2(λ2 +m)

∥∥x∗t−1 − x∗t−1∥∥2
= λ1

(
1 +

λ1
λ2 +m

)
M∗t ,

where we apply the triangle inequality in line (35a) and AM-GM in line (35b).790

Combining inequalities (34) and (35), we obtain791

Ht + λ1Mt + ∆φ ≤
(
H∗t +

λ2
2
‖x∗t − vt‖

2

)
+ λ1

(
1 +

λ1
λ2 +m

)
M∗t . (36)

And since ft(x) is m-strongly convex, we have792

λ2
2
‖x∗t − vt‖

2 ≤ λ2
m
H∗t .

Substituting the above identity into inequality (36) yields793

Ht + λ1Mt + ∆φ ≤ m+ λ2
m

H∗t + λ1

(
1 +

λ1
m+ λ2

)
M∗t . (37)

Using inequality (37), we obtain794

Ht +Mt +
1

λ1
∆φ ≤ Ht + λ1Mt + ∆φ

λ1
≤ m+ λ2

λ1m
H∗t +

(
1 +

λ1
m+ λ2

)
M∗t .

Theorem 8 follows from summing the above inequality over all timesteps t.795

F Proof of Theorem 5796

In this proof, we construct counterexamples for two separate cases, based on whether λ1 is larger or797

smaller than m. Recall that λ2 = 0 throughout the proof.798

Case 1: λ1 > m799

In this case, we show the competitive ratio can be unbounded by proposing a series of identical800

hitting cost functions on the real number line. We construct a hitting cost function f with minimizer801

v so that there exists a fixed point K 6= v (i.e. when xt−1 = K and ft = f , the algorithm selects802

xt = xt−1). Since R-OBD is independent of timestep t, we can propose ft = f for t = 1, 2, · · · , T803

and let x0 = K. In this scenario, the total cost of R-OBD grows linearly in T . However, by choosing804

x1 = x2 = · · · = xT = v, the total cost incurred by the offline adversary is a constant. Therefore the805

competitive ratio of R-OBD will be unbounded.806

Specifically, consider the hitting cost function807

f(x) =

{
m
2

(
1− (x+ 1)2

)
−1 ≤ x ≤ 0

m
2 x

2 otherwise
.
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Suppose xt−1 = −1, then R-OBD will choose xt such that808

xt = arg min
x

f(x) +
λ1
2

(x+ 1)2.

Notice that809

f(x) +
λ1
2

(x+ 1)2 =

{
m
2 + λ1−m

2 (x+ 1)2 −1 ≤ x ≤ 0
m
2 x

2 + λ1

2 (x+ 1)2 otherwise
.

Since λ1 > m, we see that the quantity above is ≥ m
2 for all real x, where equality only holds when810

x = −1. It follows that xt = xt−1 = −1 6= 0 = v. Thus K = −1 is a fixed point satisfying the811

requirements described as above.812

Case 2: λ1 ≤ m813

We consider a situation such that the R-OBD algorithm moves far away from the starting point,814

incurring significant movement cost, whereas the offline adversary could pay relatively little cost by815

staying at the starting point. More specifically, suppose the starting point x0 = 0 and the first hitting816

cost function is f1(x) = m
2 (1 − x)2. Consider an adversary which chooses x0 = x1 = · · · = xT .817

The cost incurred by the adversary is818

cost(ADV ) =
m

2
.

Using the update rule, the R-OBD algorithm chooses819

x1 = arg min
x

m

2
(1− x)2 +

λ1
2
x2 =

m

m+ λ1
≥ 1

2
.

The movement cost incurred by R-OBD is at least820

cost(ALG) ≥M1 =
1

2
x21 ≥

1

8
.

Thus the competitive ratio is at least821

cost(ALG)

cost(ADV )
≥ 1

4m
.

Theorem 5 follows from combining these two cases.822

G Proof of Theorem 6823

Let {xLt } be the sequence of points achieving the L-constrained offline optimal . We first prove an824

upper bound on the difference of hitting costs ft(xt)− ft(xLt ), and then use this bound to prove a825

O
(
G
√
TL
)

upper bound on the regret
∑T
t=1

(
ft(xt)− ft(xLt ) + c(xt, xt−1)

)
−
∑T
t=1 c(x

L
t , x

L
t−1).826

Since the function ft(x) + λ1Dh(x||xt−1) + λ2Dh(x||vt) is strongly convex, it has a unique mini-827

mizer, at which point the gradient vanishes. This is the point xt which Algorithm 3 picks in round t.828

We can rearrange the vanishing gradient condition to obtain829

∇ft(xt) = λ1 (∇h(xt−1)−∇h(xt)) + λ2 (∇h(vt)−∇h(xt)) .

Therefore by Lemma 5, we have830

〈∇ft(xt), xt − xLt 〉 = λ1〈∇h(xt−1)−∇h(xt), xt − xLt 〉+ λ2〈∇h(vt)−∇h(xt), xt − xLt 〉
= λ1

(
Dh(xLt ||xt−1)−Dh(xLt ||xt)−Dh(xt||xt−1)

)
+ λ2

(
Dh(xLt ||vt)−Dh(xLt ||xt)−Dh(xt||vt)

)
.

(38)

Recall that h is α−strongly convex and β−strongly smooth with respect to the norm ‖·‖, hence831

∀x, y, α
2
‖x− y‖2 ≤ Dh(x||y) ≤ β

2
‖x− y‖2 . (39)
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Therefore832

Dh(xLt ||vt)−Dh(xLt ||xt)−Dh(xt||vt) ≤ Dh(xLt ||vt) ≤
β

2

∥∥xLt − vt∥∥2 ≤ βD2

2
.

In light of equation (38), we obtain833

〈∇ft(xt), xt − xLt 〉 ≤ λ1
(
Dh(xLt ||xt−1)−Dh(xLt ||xt)−Dh(xt||xt−1)

)
+
βD2

2
· λ2. (40)

Let q > 0 be a parameter which we will pick later. For all q > 0, it holds that834

ft(xt)− ft(xLt )

≤ 〈∇ft(xt), xt − xLt 〉 −
m

2

∥∥xt − xLt ∥∥2 (41a)

≤ λ1
(
Dh(xLt ||xt−1)−Dh(xLt ||xt)−Dh(xt||xt−1)

)
− m

2

∥∥xt − xLt ∥∥2 +
βD2

2
· λ2 (41b)

= (λ1 + q)
(
Dh(xLt ||xt−1)−Dh(xLt ||xt)

)
− λ1Dh(xt||xt−1)

−
(
qDh(xLt ||xt−1)− qDh(xLt ||xt) +

m

2

∥∥xt − xLt ∥∥2)
+
βD2

2
· λ2.

where we apply strong convexity in line (41a), and equation (40) in line (41b). Using Lemma 5, we835

obtain836

qDh(xLt ||xt−1)− qDh(xLt ||xt) +
m

2

∥∥xt − xLt ∥∥2
= qDh(xt||xt−1) + q〈∇h(xt−1)−∇h(xt), xt − xLt 〉+

m

2

∥∥xt − xLt ∥∥2
≥ qDh(xt||xt−1)− q ‖∇h(xt−1)−∇h(xt)‖∗

∥∥xt − xLt ∥∥+
m

2

∥∥xt − xLt ∥∥2 (42a)

≥ qDh(xt||xt−1)−
(
q2

2m
‖∇h(xt−1)−∇h(xt)‖2∗ +

m

2

∥∥xt − xLt ∥∥2)+
m

2

∥∥xt − xLt ∥∥2 (42b)

= qDh(xt||xt−1)− q2

2m
‖∇h(xt−1)−∇h(xt)‖2∗

≥ qDh(xt||xt−1)− βq2

m
Dh(xt||xt−1) (42c)

=

(
q − βq2

m

)
Dh(xt||xt−1),

where we apply the Cauchy-Schwartz inequality in line (42a), the AM-GM inequality in line (42b),837

and Lemma 1 in line (42c).838

In order to maximize the coefficient
(
q − βq2

m

)
, we set q = m

2β . By substituting inequality (42) into839

inequality (41), we obtain840

ft(xt)− ft(xLt )

≤
(
λ1 +

m

2β

)(
Dh(xLt ||xt−1)−Dh(xLt ||xt)

)
−
(
λ1 +

m

4β

)
Dh(xt||xt−1) +

βD2

2
· λ2.

(43)

Using the condition λ1 + m
4β ≥ 1, we observe that841

ft(xt)− ft(xLt ) +Dh(xt||xt−1)

(
λ1 +

m

2β

)(
Dh(xLt ||xt−1)−Dh(xLt ||xt)

)
+
βD2

2
· λ2. (44)

Notice that842

T∑
t=1

∥∥xLt − xLt+1

∥∥ ≤
√√√√T

(
T∑
t=1

∥∥xLt − xLt+1

∥∥2) ≤
√√√√T

(
T∑
t=1

2Dh(xLt+1||xLt )

α

)
≤
√

2TL

α
.

(45)
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where we use the generalized mean inequality in the first step and α-strong convexity of h in the843

second step (cf. equation (39)). By Lemma 6, we can give the following upper bound:844

T∑
t=1

Dh(xLt ||xt−1)−Dh(xLt ||xt)

=

T∑
t=1

(
Dh(0||xt−1)−Dh(0||xt) + 〈∇h(xt)−∇h(xt−1), xLt 〉

)
= Dh(0||x0)−Dh(0||xT ) +

T−1∑
t=1

〈∇h(xt), x
L
t − xLt+1〉 − 〈∇h(x0), xL1 〉+ 〈∇h(xT ), xLT 〉

≤
T∑
t=1

〈∇h(xt), x
L
t − xLt+1〉 (46a)

≤
T∑
t=1

‖∇h(xt)‖∗
∥∥xLt − xLt+1

∥∥ (46b)

≤ G
T∑
t=1

∥∥xLt − xLt+1

∥∥
≤ G

√
2TL

α
, (46c)

where we use the facts x0 = xL0 = xLT+1 = 0,∇h(0) = 0 in line (46a), the Cauchy-Schwartz845

inequality in line (46b), and inequality (45) in line (46c).846

Therefore we obtain847

cost(OBD)− cost(OPT (L))

=

T∑
t=1

(ft(xt) +Dh(xt||xt−1))−
(
ft(x

L
t ) +Dh(xLt ||xLt−1)

)
(47a)

≤

(
T∑
t=1

ft(xt)− ft(xLt ) +Dh(xt||xt−1)

)
− L

≤
(
λ1 +

m

2β

)
G

√
2TL

α
+ T · βD

2

2
· λ2 − L, (47b)

where we use the definition of OPT (L) in line (47a); inequalities (44) and (46) in line (47b).848

Since by assumption we have G <∞, λ2 = η(T, L,D,G) ≤ KG
D2 ·

√
L
T for some constant K, by849

inequality (47), we obtain850

cost(OBD)− cost(OPT (L)) = O(G
√
TL),

which completes the proof.851
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