
Supplementary Materials for Generative
Well-intentioned Networks

Justin Cosentino, Jun Zhu∗
Dept. of Comp. Sci. & Tech., Institute for AI, THBI Lab, BNRist Center,

State Key Lab for Intell. Tech. & Sys., Tsinghua University, Beijing, China
justin@cosentino.io, dcszj@mail.tsinghua.edu.cn

S1 Network Architectures

The LeNet-5 Bayesian neural network model closely follows the standard LeNet-5 architecture,
replacing convolutional and dense layers with probabilistic layers from TensorFlow Probability
[2]. The model uses the Flipout estimator [8] to minimize the Kullback-Leibler divergence up to a
constant. Table 1 contains a detailed description of the network’s architecture.

The architectures of the WGWIN-GP critic and generator closely follow those described in the
WGAN-GP paper [1]. We add conditional inputs to both networks. The critic is conditioned on
the one-hot representation of the class label, which is depth-wise concatenated to both the input
and hidden layers of the model [7, 9]. Table 2 details the critic’s architecture. The generator is
conditioned on the rejected input image, which is flattened and concatenated to the random noise
vector [6]. Table 3 details the generator’s architecture.

S2 Improved Bayesian Neural Network Baseline

We use the simple LeNet-5 BNN as a proof of concept for the Generative Well-intentioned Network
framework. In order to assess the impact of a GWIN when paired with a stronger classifier, we also
repeat experiments using an improved BNN architecture. We see that the GWIN still has a positive,
though less pronounced, impact on the rejected subset.

S2.1 Network Architecture

Table 4 details the Improved BNN (IBNN) baseline’s architecture.

S2.2 Results

Figure 1 and Figure 2 illustrate the mean accuracy for varying certainty rejection thresholds on
each dataset while Table 5 and Table 6 present exact accuracy values on the rejected subset. At
most certainty thresholds, the GWIN+Improved BNN outperforms the Improved BNN on uncertain
observations. As the certainty threshold increases, we see the size of the rejected subset increase
and the relative gains from the GWIN transformation decrease. However, this is expected as we
begin to reject observations that the Improved BNN already labels correctly with higher certainty.
Figure 3 shows the change in certainty of the ground truth label at varying certainty rejection
thresholds. Though the GWIN typically increases certainty in the ground truth label in the majority
of observations, it is possible for the GWIN to map an observation to a lower-certainty representation.
This suggests that one must carefully tune the rejection function and certainty metrics to minimize
the number of correct instances that are mistranslated.

∗Corresponding author.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Table 1: Bayesian LeNet-5 model architecture [5] used as a baseline classifier. “Flipout” denotes
TensorFlow Probability [2] layers using a Flipout estimator [8].

C(x)

Operation Kernel Strides Padding Filters Output Shape Nonlinearity

Conv2D (Flipout) 5×5 1×1 same 6 28×28×6 ReLU
MaxPooling2D 2×2 2×2 same - 14×14×6 -
Conv2D (Flipout) 5×5 1×1 same 16 14×14×16 ReLU
MaxPooling2D 2×2 2×2 same - 7×7×16 -
Conv2D (Flipout) 5×5 1×1 same 120 7×7×120 ReLU
Flatten - - - - 5880 -
Dense (Flipout) - - - - 84 ReLU
Dense (Flipout) - - - - 10 -

Table 2: Conditional WGAN-GP-based critic architecture [1]. “Concatenation” denotes depth-wise
concatenation of the given one-hot label to the input image as conditional input [7, 9].

D(x, y)

Operation Kernel Strides Padding Filters Output Shape Nonlinearity

Concatenation - - - - 28×28×11 -
Conv2D 5×5 2×2 same 64 14×14×64 Leaky ReLU
Concatenation - - - - 14×14×74 -
Conv2D 5×5 2×2 same 128 7×7×128 Leaky ReLU
Concatenation - - - - 7×7×138 -
Conv2D 5×5 2×2 same 256 4×4×256 Leaky ReLU
Concatenation - - - - 4×4×266 -
Flatten - - - - 4256 -
Dense - - - - 1 -

Table 3: Conditional WGAN-GP-based generator architecture [1]. “Concatenation” denotes concate-
nation of the given flattened image to the input noise as conditional input [6].

G(x, z)

Operation Kernel Strides Padding Output Shape Nonlinearity

Concatenation - - - 884 -
Dense - - - 4096 ReLU
Reshape - - - 4×4×256 ReLU
Conv2D Transpose 5×5 2×2 same 8×8×128 ReLU
Cropping2D - - - 7×7×128 -
Conv2D Transpose 5×5 2×2 same 14×14×64 ReLU
Conv2D Transpose 5×5 2×2 same 28×28×1 Sigmoid

2



Table 4: Improved Bayesian Neural Network model architecture used as a baseline classifier. “Flipout”
denotes TensorFlow Probability [2] layers using a Flipout estimator [8]. “BN?” and “Dropout” denote
whether or not batch norm or dropout were applied after the given layer, respectively.

C(x)

Operation Kernel Strides Padding Filters Output Shape Nonlinearity BN? Dropout

Conv2D (Flipout) 3×3 1×1 valid 32 26×26×32 ReLU × -
Conv2D (Flipout) 3×3 1×1 valid 32 24×24×32 ReLU × -
Conv2D (Flipout) 5×5 2×2 same 32 12×12×32 ReLU × 0.4
Conv2D (Flipout) 3×3 1×1 valid 64 10×10×64 ReLU × -
Conv2D (Flipout) 3×3 1×1 valid 64 8×8×64 ReLU × -
Conv2D (Flipout) 5×5 2×2 same 64 4×4×64 ReLU × 0.4
Flatten - - - - 1024 - - -
Dense (Flipout) - - - - 128 ReLU × 0.4
Dense (Flipout) - - - - 10 - - -

Table 5: Test set accuracy for MNIST Digits on rejected observations using GWIN transformation
for the given certainty threshold τ . BNN and BNN+GWIN denote accuracy for the rejected subset
using only the Improved BNN and the Improved BNN with GWIN reformulation, respectively. With
no rejections (τ = 0), the Improved BNN had an accuracy of 99.1%. Overall Acc. ∆ is the change in
accuracy while % Error ∆ denotes the percent change in error rate for the entire subset when the
GWIN is applied to rejected queries. All results are presented as the mean over 10 runs.

τ % Reject IBNN Acc. IBNN+GWIN Acc. Rejected Acc. ∆ Overall Acc. ∆ % Error ∆

0.70 0.25 43.88± 7.83 56.38± 10.87 12.50± 14.17 0.03± 0.03 −3.34± 3.52
0.80 0.39 49.32± 5.74 58.33± 6.14 9.01± 7.81 0.04± 0.03 −3.74± 3.11
0.90 0.59 52.05± 7.99 60.41± 6.10 8.36± 8.58 0.05± 0.05 −5.21± 5.42
0.95 0.79 53.92± 5.42 61.50± 5.04 7.58± 6.97 0.06± 0.06 −5.98± 5.17
0.99 1.24 60.16± 2.69 62.78± 2.78 2.62± 3.80 0.03± 0.05 −3.22± 4.77

(a) Rejected subset accuracy (b) Overall test set accuracy

Figure 1: Test set accuracy for MNIST Digits using GWIN transformation for the given certainty
threshold τ . Figure 1a shows BNN and BNN+GWIN accuracy on the rejected subset for the Improved
BNN. % Reject represents the percent of the 10,000 observations rejected by the classifier for the
current certainty threshold. Figure 1b shows the accuracy of the BNN and BNN+GWIN on the entire
test set for the Improved BNN. All results are presented as the mean over 10 runs and error bars show
standard deviation.

3



Table 6: Test set accuracy for MNIST fashion on rejected observations using GWIN transformation
for the given certainty threshold τ . BNN and BNN+GWIN denote accuracy for the rejected subset
using only the Improved BNN and the Improved BNN with GWIN reformulation, respectively. With
no rejections (τ = 0), the Improved BNN had an accuracy of 90.5%. Overall Acc. ∆ denotes the
change in accuracy while % Error ∆ denotes the percent change in error rate for the entire subset
when the GWIN is applied to rejected queries. All results are presented as the mean over 10 runs.

τ % Reject IBNN Acc. IBNN+GWIN Acc. Rejected Acc. ∆ Overall Acc. ∆ % Error ∆

0.50 0.19 36.35± 9.30 45.77± 9.17 9.42± 11.05 0.02± 0.02 −0.17± 0.21
0.70 2.52 44.78± 2.87 55.72± 2.46 10.95± 2.35 0.28± 0.06 −2.89± 0.61
0.80 4.02 47.11± 2.37 56.78± 1.50 9.67± 2.93 0.39± 0.12 −4.05± 1.18
0.90 6.13 49.62± 1.35 58.15± 1.30 8.53± 1.91 0.52± 0.12 −5.48± 1.25
0.95 8.19 52.62± 2.15 58.77± 1.03 6.15± 2.11 0.50± 0.17 −5.28± 1.71
0.99 12.37 57.18± 1.11 60.26± 1.08 3.09± 1.59 0.38± 0.20 −4.00± 2.02

(a) Rejected subset accuracy (b) Overall test set accuracy

Figure 2: Test set accuracy for MNIST Fashion using GWIN transformation for the given certainty
threshold τ . Figure 2a shows BNN and BNN+GWIN accuracy on the rejected subset for the Improved
BNN. % Reject represents the percent of the 10,000 observations rejected by the classifier for the
current certainty threshold. Figure 2b shows the accuracy of the BNN and BNN+GWIN on the entire
test set for the Improved BNN. All results are presented as the mean over 10 runs and error bars show
standard deviation.

(a) MNIST Digits (b) MNIST Fashion

Figure 3: Change in rejected sample certainty of the ground truth label for varying certainty rejection
thresholds τ for the Improved BNN. Outliers are those values that fall outside of 1.5IQR and are
denoted with diamonds.

4



S3 GWIN Transformation Cost

For MNIST experiments using the LeNet-5 baseline, TensorFlow reports that a forward pass through
the BNN requires 15,431,592 FLOPS and a forward pass through the WGWIN-GP generator requires
54,179,350 FLOPS. The additional cost of the rejection loop, which includes transforming the query
and relabeling it, is then ~69.61 million FLOPS. The NVIDIA Titan X (Pascal) is rated at 11.0
TFLOPS, so the latency of rejection is ~0.06961 milliseconds on our devices.

Similarly, a forward pass through the Improved BNN baseline requires 61,829,923 FLOPS. The same
GWIN architecture is used for both baselines, so the additional cost of the rejection loop is then
~116.0 million FLOPS, adding a latency of ~0.1160 milliseconds on our devices.

Note that the latency incurred by the classifier is dependent upon the classifier’s architecture and that
this latency would increase as the number of samples, and thus forward passes, increases. In general,
the rejection and transformation will incur the cost of classification plus ~0.0542 milliseconds.

S4 Bayesian Neural Network and Rejection Function Interaction

The Generative Well-intentioned framework does not make any strong assumptions about how the
classifier and rejection function interact. As long as these two components support the interface
described in Figure 4, they can be used with a GWIN.

The LeNet-5 Bayesian Neural Network and the Improved Bayesian Neural Network, detailed in
Section S2, interact with the thresholded rejection function in the same way. We use Monte Carlo
sampling to determine the BNN’s predicted class and uncertainty metric. We first sample the model
ten times for the given input xi, effectively ensembling ten different networks. We treat the argmax of
the mean logits as the class prediction y′i. We treat the median of the probabilities for this predicted
class as the certainty metric ci. These two metrics are passed to the rejection function. We did not see
a significant difference in WGWIN-GP performance when treating the mean as the certainty metric.
Alternative approaches may consider the variance in the predicted class across models. Multiple
passes through an approximation of a Bayesian network [3] or ensembling [4] have been used in
related work to generate such uncertainties.

Classifier Reject?
r(ci, y’i)

y’i

y’i

ci

reject

xi

Figure 4: The expected interface of the rejection-based classifier. Aside from requiring the model to
emit a certainty metric ci and label y′i, no strong assumptions are made about the classifier. Since the
classifier is fixed during generative training, it need not be a perceptron-based model. The rejection
function r : {(c, y′)} → {reject, y′} determines if the given observation is rejected or labeled.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

[2] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A. Saurous. Tensorflow distributions, 2017.

[3] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, pages 1050–
1059, 2016.

5



[4] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pages 6402–6413, 2017.

[5] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[6] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

[7] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak
Lee. Generative adversarial text to image synthesis. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16, pages
1060–1069. JMLR.org, 2016.

[8] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient pseudo-
independent weight perturbations on mini-batches. In International Conference on Learning
Representations, 2018.

[9] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and
Dimitris N Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 5907–5915, 2017.

6


	Network Architectures
	Improved Bayesian Neural Network Baseline
	Network Architecture
	Results

	GWIN Transformation Cost
	Bayesian Neural Network and Rejection Function Interaction

