
Appendices

Organization. In Section A, we analysis the issues in the proof of [Agrawal & Jia, 2017]. In Section
B, we give some basic lemmas (mainly concentration inequalities). Section C is devoted to the
missing proofs in the analysis of Theorem 1. At last, we present the proof of Corollary 1 in Section
D.

A Mistake in the Analysis of Previous Work

In this section we mainly analysis the mistake in the proof of Lemma C.2 and Lemma C.1 [Agrawal
& Jia, 2017]. The lemma can be described as
Lemma 6 (Lemma C.2, Agrawal & Jia, 2017). Let p̂ be the average of n independent multinoulli
trials with parameter p 2 �S . Let

Z := max
v2[0,D]S

(p̂� p)T v.

Then Z  D
q

2 log(1/⇢)
n , with probability 1� ⇢.

We give a counter example as following. Suppose D = 2, pi = 1
S for each 1  i  S, then we have

Z = max
v2[0,2]S

(p̂ � p)T v = max
v2[0,2]S

(p̂ � p)T (v � 1) = max
v2[�1,1]S

(p̂ � p)T v =
PS

i=1 |p̂i � 1
S |, and

E[Z] =
PS

i=1 E[|p̂i� 1
S |] = SE[|p̂1� 1

S |] due to symmetry of p. Therefore, E[Z] = SE[|p̂1� 1
S |] �

(1� 1
S )

n. On the other hand, if Lemma 6 is right, by setting ⇢ = 1
n we have E[Z] 

q
2 log(n)

n + 1
n .

Letting S !1, it follows that 1 = lim
S!1

(1� 1
S )

n  2
q

2 log(n)
n + 2

n , which is wrong when n � 30.

Lemma 7 (Lemma C.1 [Agrawal & Jia, 2017). ] Let p̃ ⇠ Dirichlet(mp). Let

Z := max
v2[0,D]S

(p̃� p)T v.

Then, Z  D
q

2 log(2/⇢)
m , with probability 1� ⇢.

Again, to build a counter example, let D = 2, pi =
1
S for any i. E[Z] = SE[|p̃1 � 1

S |] �
1
2 (P(p̃1 <

1
2S ) + P(p̃1 > 3

2S )). Note that p̃1 ⇠ Beta(mS ,m � m
S ). When m > 1 and S > m, the density

function of p̃1 is x
m
S

�1(1�x)m�m
S

B(m
S ,m�m

S ) for x 2 (0, 1), which is decreasing in x. Therefore, we have
that P(p̃1 < 1

2S ) �
1
2P(

1
2S  p̃1  3

2S ) = 1
2 (1 � (P(p̃1 < 1

2S ) + P(p̃1 > 3
2S ))), and thus

P(p̃1 < 1
2S ) + P(p̃1 > 3

2S ) �
1
3 . As a result, E[Z] � 1

6 , which contradicts to Lemma 7. Moreover,
we find that the mistake in their proof lies in the derivation

E[DY � Z|Z = z : z 2 Ev] = E[DY �DE[Yv � Z|Z = z : z 2 Ev]
= E[DYv �DE[Yv]� (p̂� p)T v|(p̂� p)T v]

= E[DYv � p̂T v|p̂T v] = 0

Actually, {Z = z : z 2 Ev} $ {Z = z : z = (p̂ � p)T v} because given the value of Z = z,
it’s still unknown that which v is selected to maximize (p̂ � p)T v. More rigorously, we have
E[E[DYv � p̂T v|Z = z, z 2 Ev]|Z 2 Ev] = E[DYv � p̂T v|Z 2 Ev] = pT v � E[p̂T v|Z 2 Ev] < 0,
since (p̂� p)T v > 0 conditioning on Z in Ev (except for p̂ = p). This contradicts to the analysis of
Lemma C.2 in [Agrawal & Jia, 2017], which says that E[DYv � p̂T v|Z = z, z 2 Ev] = 0.
Therefore, the algorithm in [Agrawal & Jia, 2017] may not reach the regret bound of Õ(D

p
SAT ) .

B Some Basic Lemmas

In this section, we present some useful lemmas. Some of them are well known so that we omit the
proof.
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Lemma 8 (Azuma’s Inequality). Suppose {Xk}k=0,1,2,3,.. is a martingale and |Xk+1 �Xk| < c.
Then for all positive integers N and all positive t,

P(|XN �X0| � t)  2exp(
�t2
2Nc2

). (16)

Let t = c
p
2N log(2/�), then P(|XN �X0| � t)  �.

Lemma 9 (Bernstein Inequality). Let {Xk}k�1 be independent zero-mean random variables. Sup-
pose that |Xk| M for all k. Then, for all positive t

P(|
nX

k=1

Xk| � t)  2exp(� t2

2(
Pn

k=1 E[X2
k ] +

1
3Mt)

). (17)

Let t = 2
pPn

k=1 E[X2
k ] log(2/�) + 2M log(2/�), then P(|

Pn
k=1 Xk| � t)  �.

Lemma 10. Let p̂n be the average of n independent multinomial trials with parameter p 2 �m.
Then, for any fixed vector u 2 Rm, with probability 1� �, it holds that

|(p̂n � p)Tu|  2

r
V (p, u)�

n
+ 2

sp(u)�

n
.

Proof. Given u 2 Rm and p 2 �m, let {Xk}k�1 be i.i.d. random variable s.t. P(Xk = ui�pTu) =
pi, 8k. Because E[X2

k ] = V (p, u) and 1
n

Pn
k=1 Xk = (p̂n � p)Tu, according to Lemma 9 we get

that

P(|(p̂n � p)Tu| � 2

r
V (p, u)�

n
+ 2

sp(u)�

n
)  �.

Lemma 11 (Freedman (1975)). Let (Mn)n�0 be a martingale such that M0 = 0. Let Vn =Pn
k=1 E[(Mk �Mk�1)2|Fk�1] for n � 0, where Fk = �(M1,M2, ...,Mk). Then, for any positive

x and for any positive y,

P(Mn � nx, Vn  ny)  exp(� nx2

2(y + 1
3x)

). (18)

Lemma 12. Suppose M is a flat MDP. Let h and ⇢ denote the optimal bias function and the optimal
average reward respectively. We run N steps under M and get a trajectory L of length N . Then we
have, no matter which action is chosen in each step, for each n 2 [N ], with probability 1� �, it holds
that

|
nX

i=1

(ri � ⇢)|  (2
p
n� + 1)sp(h). (19)

Moreover, suppose that the reward is bounded in [0, 1], n � 4�sp(h)2 and sp(h) � 10, then with
probability 1� 2� it holds that

|
nX

i=1

(ri � ⇢)|  4
p

n�sp(h) + sp(h). (20)

Proof. Let M0 = hs1 and Mn �Mn�1 = hsn+1 � hsn + rn � ⇢ for n � 1. Then {Mn �M0}n�0

is a martingale martingale difference sequence since E[hsn+1 � hsn + rn � ⇢|Fn�1] =
P

a P(at =
a)[E][hsn+1 � hsn + rn � ⇢|Fn�1, at = a] =

P
a P(at = a)(PT

sn,ah � hsn + rsn,a � ⇢) = 0.
Because |Mn �Mn�1|  maxa |PT

sn,ah � hsn+1 |  sp(h), Vn  nsp(h)2. Plug y = sp(h)2

and x =
2
p
�sp(h)p

n
into (18), then (19) follows easily. To prove (20), we need to provide a tighter

bound for Vn. For v 2 RS , we use v2 to denote the vector [v21 , v
2
2 , ..., v

2
S ]

T . Because Vn =Pn
k=1 E[(Mk �Mk�1)2|Fk�1] =

Pn
k=1 P

T
sk,ak

h2 � (PT
sk,ak

h)2 and PT
sk,ak

h� hsk = ⇢� rsk,ak ,
we have that

Vn 
nX

k=1

(PT
sk,ak

h2 � h2
sk) +

nX

k=1

(sp(h)|⇢� rsk,ak |+ (⇢� rsk,ak)
2).
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By the assumption the reward is bounded in [0, 1], we have ⇢ 2 [0, 1] and |⇢ � rsk,ak |  1. Let
Xn =

Pn
k=1(P

T
sk,ak

h2 � h2
sk+1

) = Vn + h2
sn+1
� h2

s1 for n � 1 and X0 = 0. It’s clear {Xn}n�0 is
a martingale difference sequence and |Xk �Xk�1|  sp(h)2. According to Lemma 8, we have that

P (|Xn| �
p

2n�sp(h)2)  �

Then it follows that with probability 1 � �, |Vn|  (
p
2n� + 1)sp(h)2 + n(2sp(h) + 1). When

n � 4�sp(h)2 and sp(h) � 10, we get |Vn|  4nsp(h). Again, plugging x =
4
p

�sp(h)p
n

and
y = 4sp(h) into (18), noticing that n � 16�sp(h), we conclude that, with probability 1 � 2�,
|
Pn

i=1(ri � ⇢)|  4
p
n�sp(h) + sp(h).

We introduce a technical lemma which is actually an expansion of Lemma 19, [Jaksch et al., 2010].

Lemma 13. Suppose {xn}Nn=1 is sequence of positive real number with x1 = 1 and xn 
Pn�1

i=1 xi

for n = 2, 3, ..., N � 1. Then we have, for any 0 < ↵ < 1,

x1 +
NX

n=2

xn(
n�1X

i=1

xi)
�↵  2↵

1� ↵
(

NX

n=1

xn)
1�↵.

Moreover, in the case ↵ = 1, we have

x1 +
NX

n=2

xn(
n�1X

i=1

xi)
�1  1 + 2 log(

NX

n=1

xn).

Proof. Let Sn =
P

1in xi for n � 1, then it follows 2Sn � Sn+1 for n 2 [N � 1]. By basic
calculus, when ↵ < 1, for n � 2 we have

S1�↵
n � S1�↵

n�1 � (1� ↵)xnS
�↵
n � 1� ↵

2↵
xnS

�↵
n�1.

Note that S1�↵
1 = 1, we then have x1 +

PN
n=2 xnS

�↵
n�1  1 + 2↵

1�↵

PN
n=2(S

1�↵
n � S1�↵

n�1 ) 
2↵

1�↵S
1�↵
N + 1� 2↵

1�↵ 
2↵

1�↵S
1�↵
N .

In the case ↵ = 1, for n � 2 we have

log(Sn)� log(Sn�1) �
xn

Sn
� xn

2Sn�1
.

Note that log(S1) = 0, we then have x1 +
PN

n=2 xnS
�1
n�1  1 + 2(log(Sn � log(S1))) = 1 +

2 log(Sn).

Applying Lemma 13 to {vk,s,a}k�1, we have that for any 0 < ↵ < 1

X

k

vk,s,a
max{Nk,s,a, 1}↵

 2↵

1� ↵
(N (T )

s,a )1�↵

Combining this inequality and Jenson’s inequality, we get that
X

k,s,a

vk,s,a
max{Nk,s,a, 1}↵

 2↵

1� ↵
SA(

T

SA
)1�↵ (21)

In the case ↵ = 1, we also have
X

k,s,a

vk,s,a
max{Nk,s,a, 1}

 SA+ 2SA log(
T

SA
) (22)

With a slightly abuse of notations, we use Nk,s,a to denote max{Nk,s,a, 1} in the rest of the paper
for simplicity.

C Missing Proofs in the Analysis of Theorem 1

In this section, we present the proofs of Lemma 1-5 and give a detailed proof of Theorem 1.
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C.1 Proof of Lemma 1

Let h 2 RS and ⇢ 2 R be fixed. We define a Markov process X with state space S . Let {Ft}t�1 be
the corresponding filtered algebra, i.e., Ft = �(X1, ..., Xt). Let s1 be the initial state. For each state
s, there are some actions and each action a is equipped with a transition probability vector ps,a and a
reward r0s,a = hs + ⇢� pTs,ah. In the t-th step, there is a policy ⇡t. We select an action according to
⇡t, then execute it and reach the next state. We then have P[pt = pst,a, r

0
t = r0st,a] = ⇡t,a, where pt

is transition probability and r0t is the reward in current step.
Then it is clear {(st, st+1, r0t)}nt=1 is measurable with respect to Fn. For any two different states
s, s0 2 S, given a trajectory L = {(st, st+1, r0t)}nt=1, we define an indicator function Is,s0(L, t) as
following:
If t � n + 1, Is,s0(L, t) = 0. Otherwise, let U = {i|si 2 {s, s0}, 1  i  t}. If U is empty,
Is,s0(L, t) = 0; else Is,s0(L, t) = I[si⇤ = s] where i⇤ be the maximal element of U .
Let L be the N -step trajectory of X and Is,s0(t) = Is,s0(L, t). Note that Is,s0(t) is a random
variable, and it only depends on {su}tu=1, which is measurable with respect to Ft�1. Let Wt =Pt

u=1 Is,s0(u)(ru � hsu + hsu+1 � ⇢), then we have E[W1] = 0 and E[Wt �Wt�1|Ft�1] = 0 for
t � 2. It follows that {Wt}Nt=1 is a martingale with respect to {Ft}Nt=1. Because |Wt �Wt�1| =
|Is,s0(t)(r0t � hst + hst+1 � ⇢⇤)|  maxa |Is,s0(t)(hst+1 � pTst,ah)|  sp(h) and |W1|  sp(h), by
(16), we have that, for any n  N ,

P(|Wn| �
p
2N�sp(h) + sp(h))  �.

Then it follows that, with probability 1�N�, for any n 2 [N ],

|Wn| 
p

2N�sp(h) + sp(h).

Recall the notations in Definition 4, ts1(L) := min{min{t|st = s}, N + 2},
tek(L) := min{min{t|st = s0, t > tsk(L)}, N + 2}, k � 1,

tsk(L) := min{min{t|st = s, t > tek�1(L)}, N + 2}, k � 2.
and c(s, s0,L) := max{k|tek(L)  N + 1}. According to the definition of Is,s0(t), for any c 2
[c(s, s0,L)], we have

Wtec(L)�1 =
cX

u=1

(
X

tsu(L)tteu(L)�1

(r0t � ⇢) + hs0 � hs).

Given an algorithm G, we can view G as a function which maps previous samples, policies and current
state to a policy in current state, and we use Gt := G(st, (su,⇡u, au, ru, su+1)

t�1
u=1) to denote this

policy. By setting h = h⇤, ⇢ = ⇢⇤, ps,a = Ps,a and ⇡t = Gt, we have rs,a = h⇤
s+⇢⇤�pTs,ah⇤ = r0s,a,

since M is flat. It then follows that

Wtec(L)�1 =
cX

u=1

(
X

tsu(L)tteu(L)�1

(rt � ⇢⇤) + hs0 � hs).

As we proved before, with probability 1�N�, it holds that for any 1  n  N ,

|Wn| 
p

2N�sp(h) + sp(h).

Because 1  tsc(L)  tec(L)� 1  N for any 1  c  c(s, s0,L), Lemma 1 follows easily.

C.2 Proof of Lemma 2

Recall the definition of bad events.

B1,k :=

⇢
9(s, a), s.t.|(Ps,a � P̂ (k)

s,a )
Th⇤| > 2

s
V (Ps,a, h⇤)�)

Nk,s,a
+ 2

sp(h⇤�)

Nk,s,a

�
,

B2,k =

⇢
9(s, a, s0), s.t.|P̂ (k)

s,a,s0 � Ps,a,s0 | > 2

vuut P̂ (k)
s,a,s0�

Nk,s,a
+

3�

Nk,s,a
+

4�
3
4

N
3
4
k,s,a

�
,

B3,k =
n
|
X

1t<tk

(⇢⇤ � rst,at)| > 26HS
p

AT�,
X

k0<k

X

s,a

vk0,s,aregs,a > 22HS
p
AT�

o

B4,k =
�
{(⇡⇤, P ⇤, h⇤, ⇢⇤)|⇡⇤is a deterministic optimal policy} \Mk = ?

 
,
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Bk = B1,k [B2,k [B3,k [B4,k and B = [1kK+1Bk.
It’s easy to see that for each k, B1,k and B2,k indicate the events where the concentration inequalities
fail, and thus have a small probability. Suppose BC

k0 occurs for each k0 < k, we get that the regret
before the k-th episode does not exceed Õ(HS

p
AT ) with high probability based on the analysis of

REGAL.C.
To show P(B4,k) is small, we prove that, conditioned on \1k0<kBC

k0 occurs, with high probability, it
holds that h⇤ 2 H. Let ⇡⇤ be a deterministic optimal policy. Note that if (5)-(7) holds for any s, a, s0

with P 0(⇡) = P where P is the true transition model, we then have (⇡⇤, P, h⇤, ⇢⇤) 2Mk, since (8)
holds due to the optimality of ⇡⇤. Putting all together, we can bound P(B) up to Õ(S3A2T )�.
Note that tK+1 � 1 = T , then BK+1 is also well defined. Firstly, for each k, according to Lemma
10, we have P(B1,k)  SA� directly.
To bound the probability of B2,k, let (s, a) be fixed. Defining g(x) = [x, 1�x]T for x 2 [0, 1]. Then
we have |x1 � x2| = 1

2 |g(x1) � g(x2)|1 = 1
2 sup
y2{�1,1}2

(g(x1) � g(x2))T y for x1, x2 2 [0, 1]. It

follows that P(|x1� x2| � 2✏)  4 sup
y2{�1,1}2

P((g(x1)� g(x2))T y � ✏). Noting that V (g(x), y) 

4x for each y 2 {�1, 1}2, according to Lemma 10 we have, for any y 2 {�1, 1}2

P(|(g(P̂ (k)
s,a,s0)� g(Ps,a,s0))

T y| � 2

s
4Ps,a,s0�

Nk,s,a
+

2�

Nk,s,a
)  �

which means that P(|P̂ (k)
s,a,s0 � Ps,a,s0 | � 2

q
Ps,a,s0�

Nk,s,a
+ �

Nk,s,a
)  4�. Suppose that the event

{|P̂ (k)
s,a,s0 � Ps,a,s0 | < 2

q
Ps,a,s0�

Nk,s,a
+ �

Nk,s,a
} occurs, then we have

|P̂ (k)
s,a,s0 � Ps,a,s0 |  2

s
Ps,a,s0�

Nk,s,a
+

�

Nk,s,a

 2

vuut (P̂ (k)
s,a,s0 + 2

q
�

Nk,s,a
+ �

Nk,s,a
)�

Nk,s,a
+

�

Nk,s,a

 2

vuut P̂ (k)
s,a,s0�

Nk,s,a
+

3�

Nk,s,a
+

4�
3
4

N
3
4
k,s,a

.

Therefore, P(B2,k)  4S2A�.
For k = 1, BC

3,k and BC
4,k holds trivially. For k > 1, assuming \k0�1BC

1,k0 , \k0�1BC
2,k0 ,

\1k0<kBC
3,k0 and \1k0<kBC

4,k0 hold. We start to bound P(B4,k). Note that BC
3,k�1 ensures

that X

1k0<k

X

s,a

vk,s,aregs,a  22HS
p
AT� (23)

Note that if we replace the reward function rs,a by r0s,a = rs,a + regs,a, the MDP M will be flat.
According to Lemma 1, we have

|
c(s,s0,Ltk�1)X

i=1

X

tsijtei�1

(rsj ,aj + regsj ,aj � ⇢⇤)� c(s, s0,Ltk�1)�
⇤
s,s0 |  (

p
2T� + 1)H (24)

with probability 1� T �. Combining (23) and (24), we get that

|
c(s,s0,Ltk�1)X

i=1

X

tsijtei�1

(rsj ,aj�⇢⇤)�c(s, s0,Ltk�1)�
⇤
s,s0 |  (

p
2T�+1)H+22HS

p
AT� (25)

Furthermore, BC
3,k also implies that |

P
1k0<k

P
s,a vk,s,a(⇢

⇤ � rs,a)|  26HS
p
AT�, then it

follows (
P

1k0<k lk0)|⇢̂k � ⇢⇤|  26HS
p
AT� where lk0 is the length of the k0-th episode and
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⇢̂k =
P

1ttk�1 rt

max{
P

1k0k lk0 ,1} is the average reward before the k-th episode. Therefore, we have that

|
c(s,s0,Ltk�1)X

i=1

X

tsijtei�1

(rsj ,aj � ⇢̂k)� c(s, s0,Ltk�1)�
⇤
s,s0 |

 |
c(s,s0,Ltk�1)X

i=1

X

tsijtei�1

(rsj ,aj � ⇢⇤)� c(s, s0,Ltk�1)�
⇤
s,s0 |+ |(

X

1k0<k

lk0)(⇢̂k � ⇢⇤)|

 (
p
2T� + 1)H + 48HS

p
AT�

(26)

which means that h⇤ 2 H in the beginning of the k-th episode.
The last step is to prove that (5), (6) and (7) hold for P 0(⇡) = P with high probability. (5) holds
evidently because of BC

2,k. According to the L1 norm concentration inequality [Weissman et al,.

2003], we see that P(|Ps,a � P̂ (k)
s,a | 

q
12S�
Nk,s,a

)  �, thus (6) is satisfied. In order to prove (7) holds
for P 0 = P with high probability, by using Lemma 10 twice, we have that for each (s, a)

|(Ps,a � P̂ (k)
s,a )

Th⇤|  2

s
V (Ps,a, h⇤)�

Nk,s,a
+ 2

H�

Nk,s,a

 2

s
V (P̂ (k)

s,a , h⇤)�

Nk,s,a
+ 2

s
|V (Ps,a, h⇤)� V (P̂ (k)

s,a , h⇤)|�
Nk,s,a

+ 2
H�

Nk,s,a

 2

s
V (P̂ (k)

s,a , h⇤)�

Nk,s,a
+ 2

vuutH2(2
q

�
Nk,s,a

+ 2 �
Nk,s,a

)�

Nk,s,a
+ 2

H�

Nk,s,a

 2

s
V (P̂ (k)

s,a , h⇤)�

Nk,s,a
+ 12

H�

Nk,s,a
+ 10

H�3/4

N3/4
k,s,a

.

holds with probability 1� 2�. Therefore, P(BC
4,k)  (T + 3SA)�.

On the other side, note that \1k0<kBC
4,k0 ensures that {(⇡⇤, P ⇤, h⇤, ⇢⇤)|⇡⇤ 2 O} \Mk 6= ?. It

means that ⇢(⇡k) � ⇢⇤. Following the proof of Theorem 2 [Bartlett and Tewari, 2009], we get that
when T � A log(T )

X

1ttk�1

(⇢⇤ � rt)  |
X

k

vTk (P
0
k � Pk)|1H + |

X

k

vTk (Pk � I)hk|

 2H(
X

k,s,a

vk,s,a

s
12S�

Nk,s,a
+
p
2T� +K)

 18HS
p
AT�

with probability 1� 2AT �. Moreover, note that
X

1ttk�1

regst,at =
X

1ttk�1

(⇢⇤ � rt) +
X

1ttk�1

(h⇤
st � PT

st,at
h⇤) (27)

By Azuma’s inequality (Lemma 8), we have that

|
X

1it

(h⇤
si � PT

si,ai
h⇤)|  2H +

p
2T�H (28)

holds for any 1  t  T with probability 1� T �. Assuming (27) and (28) hold for any 1  t  T ,
noticing that regs,a � 0 for any (s, a), we have

|
X

1ttk�1

regst,at |  18HS
p

AT� + 2H +
p
2T�H  22HS

p
AT�
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and

|
X

1ttk�1

(⇢⇤ � rt)|  |
X

1ttk�1

regst,at |+ |
X

1it

(h⇤
si � PT

si,ai
h⇤)|  26HS

p
AT�

At last, we conclude that when \k0�1BC
1,k0 , \k0�1BC

2,k0 , \1k0<kBC
3,k0 and \1k0<kBC

4,k0 hold,
P(B3,k)  (2AT + T )�.
Putting all together we have

P(B)  (K + 1)(2AT + 8S2A+ 2T )�  (6AT + 12S2A)SA log(T )�

when T � A log(T ) and SA � 4.

C.3 Proof of Lemma 3

Lemma 14. Let V =
P

k

P
s,a vk,s,aV (Ps,a, hk) and W =

P
k 1�k. For any C > 0, we have

P(|V |  C, |W | � KH + (4H + 2
p
C)�)  2�

Proof. Let Xk,n =
Pn

i=1(P
T
sk,i,ak,i

hk � hk,sk,i+1) where (ski , aki , rki , ski+1) is the i-th sample in
the k-th episode. We use lk to denote the length of the k-th episode. Let en = max{k|tk  n}
and Zn =

Pen�1
k=1 Xk,lk + Xen,n�ten+1. Let Fn = �(Z1, ..., Zn). It’s easy to see E[Zn+1 �

Zn|Fn] = E[Xen,n+2�ten � Xen,n+1�ten |Fn] = 0 if en = en+1, and E[Zn+1 � Zn|Fn] =
E[Xen+1,1|Fn] = 0 otherwise. Therefore, {Zn}n�1 is a martingale with respect to {Fn}n�1. On
the other hand, it’s easy to see |Zn+1�Zn|  H , We then apply Lemma 11 to {Zn}n�1 with n = T ,
nx = (2

p
C + 4H)� and ny = C, and obtain that

P(ZT � 2
p
C� + 4H�, |V |  C)  �

At last, because |W � ZT | = |
P

k �hk,s1 + hk,slk+1 |  KH , we conclude that,

P(|V |  C, |W | � KH + (4H + 2
p
C)�)  2�.

Note that 1�k = vTk (Pk � I)Thk =
Pn

i=1(P
T
si,ai

hk � hk,si) =
Plk

i=1(P
T
si,ai

hk � hk,si+1) �
hk,s1 + hk,slk+1 . Let Xn =

Pn
i=1(P

T
si,ai

hk � hk,si+1). Now it suffices to show thatP
k

P
s,a vk,s,aV (Ps,a, hk) = O(TH) w.h.p.. Let x2 denote the vector [x2

1, ..., x
2
S ]

T for x =

[x1, ..., xS ]T . Note that
X

k

X

s,a

vk,s,aV (Ps,a, hk) =
X

k

X

s,a

vk,s,a(P
T
s,ah

2
k � ((P 0

k,s,a)
Thk)

2)

+
X

k

X

s,a

vk,s,a(P
0
k,s,a � Ps,a)

Thk(P
0
k,s,a + Ps,a)

Thk.
(29)

By the definition of hk, we have that (P 0
k,s,a)

Thk � hk,s = ⇢k � rs,a. Then we obtain that,

|
X

k,s,a

vk,s,a(P
T
s,ah

2
k � ((P 0

k,s,a)
Thk)

2)| = |
X

k,s,a

vk,s,a(P
T
s,ah

2
k)� h2

k,s|+ |
X

k,s,a

h2
k,s � (hk,s + ⇢k � rs,a)

2|

 |
X

k,s,a

vk,s,a(P
T
s,ah

2
k)� h2

k,s|+ |
X

k,s,a

(⇢k � rs,a)(2hk,s + ⇢k � rs,a)|


X

k,s,a

vk,s,a(P
T
s,ah

2
k � h2

k,s) +
X

k,s,a

vk,s,a(2H + 1)

(30)
According to Lemma (8), we have that, with probability 1� �

X

k,s,a

vk,s,a(P
T
s,ah

2
k � h2

k,s) 
p

2T�H2 +KH2 (31)
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Combining (30) and (31), we have that, with probability 1� �, it holds that

|
X

k,s,a

vk,s,a(P
T
s,ah

2
k � ((P 0

k,s,a)
Thk)

2)| 
p
2T�H2 +KH2 + T (2H + 1) (32)

Assuming the good event G occurs, the second term in (29) can be bounded by
4H2

P
k,s,a vk,s,a

q
S�

Nk,s,a
. Combining this with (32), we obtain that, with probability 1 � �, it

holds that
X

k

X

s,a

vk,s,aV (Ps,a, hk) 
p
2T�H2 +KH2 + T (2H + 1)) + 4

p
2H2S

p
AT� (33)

The dominant term is the right hand side of (33) is 2TH when T is large enough. Specifically, when
T � S2AH2�, we have

P
k

P
s,a vk,s,aV (Ps,a, hk)  12TH .

Let C = 12TH in Lemma 14, then it follows that

P(|
X

k

1�k| � KH + (4H + 2
p
12TH)�  P(

X

k

X

s,a

vk,s,aV (Ps,a, hk) � 12TH)+

P(
X

k

X

s,a

vk,s,aV (Ps,a, hk)  12TH, |
X

k

1�k| � KH + (4H + 2
p
12TH)�)

 3�.

C.4 Proof of Lemma 4

Lemma 15. When T � H2S2A�, with probability 1 � �, it holds that
P

s,a N
(T )
s,a V (Ps,a, h⇤) 

49TH

Proof. Noting that PT
s,ah

⇤ = h⇤
s + ⇢⇤ � rs,a � regs,a, we have

X

s,a

N (T )
s,a V (Ps,a, h

⇤) =
X

s,a

N (T )
s,a (PT

s,ah
⇤2 � (PT

s,ah
⇤)2)

=
X

s,a

N (T )
s,a (PT

s,ah
⇤2 � h⇤2

s ) +
X

s,a

N (T )
s,a (regs,a + rs,a � ⇢⇤)(PT

s,ah
⇤ + h⇤

s)


p
2T�H2 +KH2 + 2H

X

s,a

N (T )
s,a regs,a + 2TH

(34)
with probability 1 � �. By definition of BC

3,K+1, we have
P

s,a N
(T )
s,a regs,a  22HS

p
AT�. By

combining this inequality with (34), when T � H2S2A�, we have
X

s,a

N (T )
s,a V (Ps,a, h

⇤)  2TH +H2(44S
p

AT� +
p
2T� +K)  49TH

holds with probability 1� �.

Assuming (34) holds, we have that

X

k,s,a

vk,s,a

s
V (Ps,a, h⇤)�

Nk,s,a
=
X

s,a

q
V (Ps,a, h⇤)�

X

k

vk,s,a

s
1

Nk,s,a

 2
p
2
X

s,a

q
N (T )

s,a V (Ps,a, h⇤)�

 2
p

2SA�

sX

s,a

N (T )
s,a V (Ps,a, h⇤)

 21
p
SAHT�.

(35)

Here the first inequality is by Lemma 13 with ↵ = 1
2 , the second inequality is Jenson’s inequality and

(34) implies the last inequality. Obviously, Lemma 4 follows by Lemma 15.
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C.5 Proof of Lemma 5

Note that if we replace the reward rs,a by rs,a + regs,a, then the MDP M would be a flat MDP.
According to Lemma 1, we have that, with probability 1� S2T �, for any t  T and two different
states s, s0, it holds that

|
c(s,s0,Ltk

)X

k=1

X

tskitek(L)�1

(ri + regsi,ai � ⇢⇤)� c(s, s0,Ltk)�
⇤
s,s0 |  (

p
2T� + 1)H

At the same time, BC
4,k implies (26) is true for t = tk. Then we have

|
c(s,s0,Ltk

)X

k=1

X

tskitek(L)�1

(ri � ⇢̂k)� c(s, s0,Ltk)�k,s,s0 |  (
p

2T� + 1)H + 48HS
p

AT�

Because BC
3,k occurs, (tk � 1)|⇢⇤ � ⇢̂k|  26HS

p
AT� and

P
1k0<k regsk0 ,ak0  22HS

p
AT�.

Let Nk,s,a,s0 =
P

1ttk�1 I[st = s, at = a, st+1 = s0]. Because |a�b|  |a+c|+|b+d|+|c|+|d|,
by letting

a =

c(s,s0,Ltk
)X

k=1

X

tskitek(L)�1

(ri � ⇢⇤)� c(s, s0,Ltk)�
⇤
s,s0 ,

b =

c(s,s0,Ltk
)X

k=1

X

tskitek(L)�1

(ri � ⇢⇤)� c(s, s0,Ltk)�k,s,s0 ,

c =

c(s,s0,Ltk
)X

k=1

X

tskitek(L)�1

regsi,ai , d =

c(s,s0,Ltk
)X

k=1

X

tskitek(L)�1

(⇢⇤ � ⇢̂k),

we have that

|Nk,s,a,s0(�k,s,s0 � �⇤s,s0)|  |c(s, s0,Ltk)(�k,s,s0 � �⇤s,s0)|  2(
p

2T� + 1)H + 96HS
p

AT�

and
X

k

X

s,a

vk,s,a
X

s0

vuut P̂ (k)
s,a,s0 |(�k,s,s0 � �⇤s,s0)|

Nk,s,a

=
X

k,s,a

vk,s,a
Nk,s,a

X

s0

q
Nk,s,a,s0 |(�k,s,s0 � �⇤s,s0)|

 KS2
q
2(
p
2T� + 1)H + 96HS

p
AT�

 11KS
5
2A

1
4H

1
2T

1
4 �

1
4 ,

(36)

where the first inequality holds because
P

k,s,a
vk,s,a

Nk,s,a

P

k,s,a I[⇡k(s) = a]  KS.

C.6 Detailed Proof of Theorem 1

According to Lemma 2, the probability of bad event is bounded by (6AT +12S2A)SA log(T ) when
T � A log(T ) and SA � 4. We then consider to bound the regret when the good event occurs. We
present more rigorous analysis compared to the proof sketch in Section 5.2. Recall that

Rk = vTk (⇢
⇤
1� rk)  vTk (⇢k1� rk) = vTk (P

0
k � I)Thk

= vTk (Pk � I)Thk| {z }
1�k

+ vTk (P̂k � Pk)
Th⇤

| {z }
2�k

+ vTk (P
0
k � P̂k)

Thk| {z }
3�k

+ vTk (P̂k � Pk)
T (hk � h⇤)| {z }

4�k

;

2�k 
X

s,a

vk,s,a

✓
2

s
V (Ps,a, h⇤)�

Nk,s,a
+ 2

H�

Nk,s,a

◆
, (37)
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q
V (P̂ (k)

s,a , hk)�
q
V (Ps,a, h⇤) 

X

s0

q
4HP̂ (k)

s,a,s0 |�k,s,s0 � �⇤s,s0 |+

vuut4H2

s
14S�

Nk,s,a
. (38)

Plugging (38) into (11), we get that

3�k 
X

s,a

vk,s,aL2(Nk,s,a, P̂
(k)
s,a , hk) =

X

s,a

vk,s,a

✓
2

s
V (P̂ (k)

s,a , hk)�

Nk,s,a
+ 12

H�

Nk,s,a
+ 10

H�3/4

N3/4
k,s,a

◆


X

s,a

vk,s,a

✓
2

s
V (Ps,a, h⇤)�

Nk,s,a
+ 4

X

s0

vuutHP̂ (k)
s,a,s0 |�k,s,s0 � �⇤s,s0 |�

Nk,s,a
+

8HS
1
4 �3/4

N3/4
k,s,a

+ 12
H�

Nk,s,a
+ 10

H�3/4

N3/4
k,s,a

◆
.

(39)
Based on (14), BC

2,k and the fact |�k,s,s0 � �⇤s,s0 |  2H , we have that

4�k =
X

s,a

vk,s,a(P̂
(k)
s,a � Ps,a)

T (hk � hk,s1� h⇤ + h⇤
s1) =

X

s,a

vk,s,a
X

s0

(P̂ (k)
s,a,s0 � Ps,a,s)(�

⇤
s,s0 � �k,s,s0)


X

s,a

vk,s,a
X

s0

(2

vuut P̂ (k)
s,a,s0�

Nk,s,a
+

3�

Nk,s,a
+

4�3/4

N3/4
k,s,a

)|�k,s,s0 � �⇤s,s0 |

 2
X

k,s,a

vk,s,a

✓X

s0

vuut2HP̂ (k)
s,a,s0 |�k,s,s0 � �⇤s,s0 |

Nk,s,a
+

6SH�

Nk,s,a
+

8SH�3/4

N3/4
k,s,a

◆

(40)
Taking sum of RHS of (37), (39) and (40), based on the fact S � 1 we obtain that

2�k + 3�k + 4�k 
X

s,a

vk,s,a

✓
4

s
V (Ps,a, h⇤)�

Nk,s,a
+ 20

SH�

Nk,s,a
+ 7

X

s0

vuutHP̂ (k)
s,a,s0 |�k,s,s0 � �⇤s,s0 |�

Nk,s,a
+ 26

SH�3/4

N3/4
k,s,a

◆

(41)
According to (9),(41) Lemma 4, Lemma 5 and Lemma 13, we obtain that when T � S3AH2� and
SA � 4, with probability at least 1� 20S3A2T log(T )�, it holds that

R(T ) =
X

k

Rk  KH + (4H + 2
p
TH)�

+
X

k,s,a

vk,s,a

✓
4

s
V (Ps,a, h⇤)�

Nk,s,a
+ 20

SH�

Nk,s,a
+ 7

X

s0

vuutHP̂ (k)
s,a,s0 |�k,s,s0 � �⇤s,s0 |�

Nk,s,a
+ 26

SH�3/4

N3/4
k,s,a

◆

 KH + (4H + 2
p
TH)� + 84

p
SAHT� + 77KS

5
2A

1
4HT

1
4 �

3
4

+ 20SH�(1 + 2SA log(T )) + 208S
7
4A

3
4T

1
4H�

3
4 = Õ(

p
SATH).

(42)
Let �1 = 20S3A2T log(T )�. When T � {S12A3H2, H2SA, HSA log(T )2, H2S2 log(T )}
where  = log( 40S

3A2T log(T )
�1

), with probability 1� �1, we have that

R(T )  490

s

SATHlog(
40S2A2T log(T )

�1
).

The selection of p1: Let p1(S,A,H, log( 1� )) = 64 log( 1� ))
2(S4A4H6 + S4A4H4 + S6A2H6) +

S12A3H3 + 100. When T � p1(S,A,H, log( 1� )) and S,A � 20, we have
that T � S12A3H3 and T

log3(T ) �
p
T � 8 log( 1� )max{S2A2H3, S3AH3} �

1
log(T ) max{H2SA, HSA log(T )2, H2S2 log(T )}, since 8SA � 

log( 1
� ) log(T )

. Therefore,
T � max{S12A3H2, H2SA, HSA log(T )2, H2S2 log(T )}.
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D Proof of Corollary 1

In this section we consider to learn MDPs with finite diameter. According to Theorem 1, in order
to reach an Õ(

p
DSAT ) upper bound for the regret, it suffices to provide a real number H such

that sp(h⇤)  H  D within o(
p
T ) steps. For a transition model P , we use P (x,y) to denote the

transition model satisfying that P (x,y)
s,a = Ps,a when s 6= x, and P (x,y)

s,a = 1y
6 when s = x, 8a. Let

Dxy = min
⇡:S!�A

T⇡
x!y , then we try to learn Dxy directly.

In Algorithm 3, when we start from x, we target to reach y as soon as possible by employing
a UCRL2-like algorithm. Once we reach y, we change the target to achieve x. Let mdp(P, r)
denote the MDP with transition model P and reward function r. We maintain the two learning
process separately, so they are corresponding to running two independent learning processes, which
learn mdp(P (y,x), 1y) and mdp(P (x,y), 1x) respectively. Based on Algorithm 3, we can get a close
approximation for Dxy within T

1
4 steps. Without loss of generality, we assume T

1
4 is an integer.

Lemma 16. When T � (136D3S
p
A�)8, for any x 6= y 2 S, let (D̂xy, D̂yx) be the output

of Algorithm 3 with (T 1/4, �, x, y) as the input, then with probability 1 � 8SAT
1
2 �, it holds that

|D̂xy �Dxy|  1 and |D̂yx �Dyx|  1.

Proof of Corollary 1. Obviously, an MDP with finite diameter is weak-communicating. We run
Algorithm 3 for all s 6= s0 with T0 = T 1/4 and �0 = � (without loss of generality, we as-
sume that T

1
4 is an integer.). Denote the output of Algorithm 3 with input (T 1/4, �, s, s0) as

(D̂ss0 , D̂s0s). Let Ĥ = max
s,s0

D̂ss0 + 1. According to Lemma 16, sp(h⇤)  max
s,s0

Dss0 

Ĥ  D + 2 with probability 1 � 8S3AT
1
2 �. We then execute Algorithm 1 with H = Ĥ

for T � S(S � 1)T
1
4 steps. Since the total number of time steps for performing Algorithm

3 is at most S2T
1
4 , the regret in the first stage is at most S2T

1
4 . According to Theorem 1,

when T � 2max{(136D3S
p
A)8, S12A3D2, DSAlog2(T ), D2SA, D2S2log(T )} where

 = log( 44S
2A2Tlog(T )

�1
), the regret can be bounded as

R(T )  491

r
SATD(log(

S3A2T log(T )

�
).

,with probability 1� �, the regret is at most 491
q

SATD log( 44S
2A2T log(T )

�1
) .

The selection of p2: Let p2(S,A,D, log( 1� )) = 4(136D3S
p
A)16(8SA)8 + log( 1� )

81016. When
T � p2(S,A,D, log( 1� )) and S,A,D � 20, T

log( 1
� )

4 log(T )4
�
p
T � 2(136D3S

p
A)8(8SA)4 �

2(136D3S
p
A)8

log( 1
� )

4 log(T )4
, since 8SA � 

log( 1
� ) log(T )

. Therefore, T � max{2(136D3S
p
A)8,

2(D3S
p
A)16} = 2max{(136D3S

p
A)8, S12A3D2, DSAlog2(T ), D2SA, D2S2 log(T )} .

D.1 Proof of Lemma 16

In Algorithm 3, we maintain two learning process. We use Ix,y(t) to indicate whether the t-th step
is contained by the first process. For t � T0 + 1, we set Ix,y(t) = 0. Let M1 be the MDP with
transition probability P (x,y) and reward 1y, and h(1), ⇢(1) denote the optimal bias function and the
optimal average reward of M1 respectively. In the same way we define M2, h(2) and ⇢(2) according
to transition probability P (y,x) and reward 1x.
For the first process, the regret R(1) =

P
1tT0,Ix,y(t)=1 ⇢

(1) +
P

1tT0,st+1=y,Ix,y(t)=1(⇢
(1) �

1) = (t(1) + k(1))⇢(1) � k(1), where t(1) =
P

1tT0
Ix,y(t) and k(1) = |{t  T0|st+1 =

y, Ix,y(t) = 1}|. We aim to prove that with probability 1� p for some p 2 (0, 1), it holds that

|R1|  34DS
p
AT0�. (43)

6We use 1y to denote the vector v satisfying vs = I[s = y], 8s.
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Because ⇢(1) = 1
Dxy+1 , assuming (43) holds, we have | t

(1)

k(1) �Dxy|  68D2S
p
AT0�

k(1) . On the other
side, we define t(2) =

P
1tT0

(1 � Ix,y(t)), k(2) = |{t  T0|st+1 = x, Ix,y(t) = 0}|, and thus
R2 = (t(2) + k(2))⇢(2) � k(2). Assuming

|R2|  34DS
p

AT0� (44)

holds, it follows that | t
(2)

k(2)�Dyx|  68D2S
p
AT0�

k(2) . Noticing that |k(1)�k(2)|  1 and t(1)+t(2) = T0,
we derive that k(1) � T0

2D and k(2) � T0
2D . Therefore, we get that

| t
(1)

k(1)
�Dxy| 

68D2S
p
AT0

k(1)
 136D3S

p
A�p

T0

| t
(2)

k(2)
�Dyx| 

68D2S
p
AT0

k(2)
 136D3S

p
A�p

T0
.

Because
p
T0 � 136D3S

p
A�, we conclude that | t

(1)

k(1) � Dxy|  1 and | t
(2)

k(2) � Dyx|  1 with
probability 1� 2p.
Theorem2 in [Jaksch et al., 2010] provides a solid foundation to prove (43) holds with high probability.
Following the analysis of this theorem, we have some lemmas below.
Lemma 17. Let X1, X2, ... be i.i.d. discrete random variables with support X . Let In 2 {0, 1}
be random variables in {0, 1} for n = 1, 2, .... Assume that for each n, Xn is independent of
{I1, ..., In}. Let ak = min{i � 1|

Pi
j=1 Ij � k}. For any k � 1, if ak <1 with probability 1, then

the joint distribution of (Xa1 , ..., Xak) is the same as the joint distribution of (X1, ..., Xk), which
means Xa1 , ..., Xak are i.i.d. random variables.

Proof. When k = 1, for each i � 1, conditioning on a1 = i, the distribution of Xak is the same
as the distribution of X1, since Xi is independent of (X1, ..., Xi�1, I1, ..., Ii). Because ak < 1
with probability 1, then we have P(Xak = x) =

P1
i=1 P(ak = i)P(X1 = x) = P(X1 = x)

for any x 2 X . For n � 2, we assume that this lemma holds for k = n � 1. In the same way
we have that for any x 2 X , P(Xan = x|a1, a2, ..., an, X1, ..., Xan�1) = P(X1 = x). It then
follows that for any (x1, ..., xn) 2 Xn, P(Xa1 = x1, ..., Xan = xn) = P(Xa1 = x1, ..., Xan�1 =
xn�1)P(Xan = xn|Xa1 = x1, ..., Xan�1 = xn�1) = P(Xa1 = x1, ..., Xan�1 = xn�1)P(X1 =
xn) = ⇧n

i=1P(X1 = xi). Then the conclusion follows by induction.

Lemma 18. With probability 1� �
60T 6

0
, in any episode, the true transition probability P is in P .

Proof. Because the rewards {rs,a}s2S,a2A are assumed to be known in the beginning, it suffices to

make sure |Ps,a � P̂ (1)
s,a |1 

r
14SA log(2AT0/�0)

max{N(1)
s,a(t),1}

.

To apply Lemma 17, we have to make sure ak  1 with probability 1 for 8k  T0. But it’s
easy to see that, if we let In = Ix,y(t(n, s, a)) for n  T0 where t(n, s, a) is the first time (s, a)
is visited for n times (if the visit number of (s, a) is less than n, we set t(n, s, a) = T0 + 1 and
In = Ix,y(T0 + 1) = 0 ). For T0 + 1  n  2T0, we set In = 1 , then it follows ak  2T0 for
8k  T0. Note that Ix,y(t) is a function of the random events before the t-th round, and thus Ix,y(t)
is obviously independent of subsequent states (st+1, st+2, ...). When n � T0 + 1, In is independent
of all other random variables. As a result, for any k  T0, the conclusion of Lemma 17 holds for
P̂s,a,1, P̂s,a,2, ... and I1, I2, ..., where P̂s,a,i 2 RS is the result of the i-th try of executing a in s.

Because N (1)
s,a (t)  T0, according to Lemma 17, the distribution of P̂ (1)

s,a (t) is the same as the distri-

bution of 1

N(1)
s,a(t)

PN(1)
s,a(t)

i=1 Ps,a,i, where Ps,a,1, Ps,a,2, ... are i.i.d. distributed obeying multinomial
distribution with parameter Ps,. Based on the analysis in Lemma 17 [Jaksch et al., 2010], we conclude
that with probability 1� �

60T 6
0

, , for any t  T0 and any (s, a), it holds that

|Ps,a � P̂ (1)
s,a (t)| 

s
14SA log(2AT0/�0)

max{N (1)
s,a (t), 1}
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Lemma 19. Let P 0
k denote the transition model of the optimal extended MDP in the k-th episode, and

uk denote the optimal bias function of mdp(P 0
k, 1y). Then we have sp(uk)  Dy := supz 6=yDzy .

Proof. Firstly, it’s easy to see that uk,y � uk,z for any z 2 S. Assume that there exists z such that
uk,y � uk,z > Dy � Dzy. We can design a nonstationary policy to achieve better value for uk,z:
in the first, we start from z following some policy to reach y as quickly as possible. Because the
true transition model P 2 P in each episode, we can reach y within Dzy steps in expectation. After
reaching y, we follow the original optimal policy. Let Rt(s) be the optimal t-step accumulative reward
starting from s and ⇢ be the corresponding optimal average reward. According to the definition of
optimal bias function, we have limt!1Rt(z)�⇢t = uk,z � limt!1Rt�Dzy (y)�⇢t � uk,y�Dzy .
Therefore, sp(uk)  maxz{uk,y � uk,z}  Dzy .

According to the derivation in Section 4 [Jaksch et al., 2010], we have that

R(mdp(P (x,y), 1y), T0)  |
X

k

vTk (P
0
k � I)Tuk|  |

X

k

vTk (Pk � I)Tuk|+ |
X

k

vTk (P
0
k � Pk)uk|

 D

r
5

2
T log(

8T0

�0
) +DSA log2(

8T

SA
) + (2D

r
14S log(

2AT0

�0
) + 2)(

p
2 + 1)

p
T

(45)
holds with probability 1� 2T0

�

12T 5/4
0

� �
60T 6

0
.

Remark: We can prove (45) holds with high probability for all t  T0 in the same way. As a result,
we conclude that, with probability 1�3SAT 2

0 �, for any t  T0, it holds that R(mdp(P (x,y), 1y), t) 
34DS

p
AT0�.

With a slight abuse of notations, we use regs,a to denote the single step regret for mdp(P (x,y), 1y).
Noting that sp(h(1)) = Dy

1+Dxy
 D, according to (19) in Lemma 12, for any t  T0 it holds that

R(mdp(P (x,y), 1y), t)�
tX

i=1

regsi,ai � �2
p
T0�D �D � �34DS

p
AT0�

with probability 1 � �. Therefore, we conclude that with probability 1 � 4SAT 2
0 �, it holds that

|R(mdp(P (x,y), 1y), t)|  34DS
p
AT0� for any t  T0.
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Algorithm 3 LD: Learn the Diameter
Input: T0, �0, x 6= y 2 S
t 1, Ix,y(t) 0, t(1)lu  1, t(2)lu  1, ⇡(1)(s),⇡(2)(s) arbitrary policy, 8s;
N (1)

s,a (t)  0,N (2)
s,a (t)  0, N (1)

s,a,s0(t)  0, N (2)
s,a,s0(t)  0 P̂ (1)

s,a,s0(t)  0,P̂ (2)
s,a,s0(t)  0,

8s, a, s0;
if current state is not x then

r(t)  1x;
else

r(t)  1y;
end if

for t = 1, 2, ...T0 do

if r(t) = 1x then

Ix,y(t) 0;
if 9(s, a), s.t. N (1)

s,a (t) � 2N (1)
s,a (t

(1)
lu ) or t = 1 then

t(1)lu  t;

update P as: P = {P 0|8(s, a),|P 0
s,a � P̂ (1)

s,a (t)|1 
r

14SA log(2AT0/�0)

max{N(1)
s,a(t),1}

P1  argmax
Q2P

⇢(mdp(Q(x,y), 1x));

⇡(1)  optimal policy for mdp(P (x,y)
1 , 1x);

end if

Execute ⇡(1)(st), get rt = r(t)(st, at) and transits to st+1;
if st+1 = x then

r(t+1) = 1y

end if

else

Ix,y(t) 1;
if 9(s, a), s.t. N (2)

s,a (t) � 2N (2)
s,a (t

(2)
lu ) or t = 0 then

t(2)lu  t;

update P as: P = {P 0|8(s, a),|P 0
s,a � P̂ (2)

s,a (t)|1 
r

14SA log(2AT0/�0)

max{N(2)
s,a(t),1}

P2  argmax
Q2P

⇢(mdp(Q(y,x), 1y));

⇡(2)  optimal policy for M 0
2;

end if

Execute ⇡(2)(st), get rt = r(t)(st, at) and transits to st+1;
if st+1 = y then

r(t+1) = 1x

end if

end if

Update:
N (1)

s,a (t + 1) =
Pt

i=1 I[st = s, at = a, r(t) = 1x];N
(2)
s,a (t) =

Pt
i=1 I[st = s, at = a, r(t) =

1y]

N (1)
s,a,s0(t+ 1) =

Pt
i=1 I[st = s, at = a, st+1 = s0, r(t) = 1x];N

(2)
s,a,s0(t+ 1) =

Pt
i=1 I[st =

s, at = a, st+1 = s0, r(t) = 1y];

P̂ (1)
s,a,s0(t+ 1) =

N(1)

s,a,s0 (t+1)

max{N(1)
s,a(t+1),1}

;P̂ (2)
s,a,s0(t+ 1) =

N(2)

s,a,s0 (t+1)

max{N(2)
s,a(t+1),1}

.
end for

Return:( |{t|rt=1y}|
|{t|st=y,r(t�1)=1y}| ,

|{t|rt=1x}|
|{t|st=x,r(t�1)=1x}| ).
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