
Importance Resampling for Off-policy Prediction

Matthew Schlegel
University of Alberta

mkschleg@ualberta.ca

Wesley Chung
University of Alberta
wchung@ualberta.ca

Daniel Graves
Huawei

daniel.graves@huawei.com

Jian Qian
University of Alberta
jq1@ulberta.ca

Martha White
University of Alberta
whitem@ulberta.ca

Abstract

Importance sampling (IS) is a common reweighting strategy for off-policy predic-
tion in reinforcement learning. While it is consistent and unbiased, it can result
in high variance updates to the weights for the value function. In this work, we
explore a resampling strategy as an alternative to reweighting. We propose Im-
portance Resampling (IR) for off-policy prediction, which resamples experience
from a replay buffer and applies standard on-policy updates. The approach avoids
using importance sampling ratios in the update, instead correcting the distribution
before the update. We characterize the bias and consistency of IR, particularly
compared to Weighted IS (WIS). We demonstrate in several microworlds that IR
has improved sample efficiency and lower variance updates, as compared to IS
and several variance-reduced IS strategies, including variants of WIS and V-trace
which clips IS ratios. We also provide a demonstration showing IR improves over
IS for learning a value function from images in a racing car simulator.

1 Introduction

An emerging direction for reinforcement learning systems is to learn many predictions, formalized
as value function predictions contingent on many different policies. The idea is that such predictions
can provide a powerful abstract model of the world. Some examples of systems that learn many value
functions are the Horde architecture composed of General Value Functions (GVFs) [Sutton et al.,
2011, Modayil et al., 2014], systems that use options [Sutton et al., 1999, Schaul et al., 2015a],
predictive representation approaches [Sutton et al., 2005, Schaul and Ring, 2013, Silver et al., 2017]
and systems with auxiliary tasks [Jaderberg et al., 2017]. Off-policy learning is critical for learn-
ing many value functions with different policies, because it enables data to be generated from one
behavior policy to update the values for each target policy in parallel.

The typical strategy for off-policy learning is to reweight updates using importance sampling (IS).
For a given state s, with action a selected according to behavior µ, the IS ratio is the ratio between the
probability of the action under the target policy π and the behavior: π(a|s)

µ(a|s) . The update is multiplied
by this ratio, adjusting the action probabilities so that the expectation of the update is as if the actions
were sampled according to the target policy π. Though the IS estimator is unbiased and consistent
[Kahn and Marshall, 1953, Rubinstein and Kroese, 2016], it can suffer from high or even infinite
variance due to large magnitude IS ratios, in theory [Andradottir et al., 1995] and in practice [Precup
et al., 2001, Mahmood et al., 2014, 2017].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

There have been some attempts to modify off-policy prediction algorithms to mitigate this variance.1
Weighted IS (WIS) algorithms have been introduced [Precup et al., 2001, Mahmood et al., 2014,
Mahmood and Sutton, 2015], which normalize each update by the sample average of the ratios.
These algorithms improve learning over standard IS strategies, but are not straightforward to extend
to nonlinear function approximation. In the offline setting, a reweighting scheme, called importance
sampling with unequal support [Thomas and Brunskill, 2017], was introduced to account for samples
where the ratio is zero, in some cases significantly reducing variance. Another strategy is to rescale
or truncate the IS ratios, as used by V-trace [Espeholt et al., 2018] for learning value functions and
Tree-Backup [Precup et al., 2000], Retrace [Munos et al., 2016] and ABQ [Mahmood et al., 2017]
for learning action-values. Truncation of IS-ratios in V-trace can incur significant bias, and this
additional truncation parameter needs to be tuned.

An alternative to reweighting updates is to instead correct the distribution before updating the estima-
tor using weighted bootstrap sampling: resampling a new set of data from the previously generated
samples [Smith et al., 1992, Arulampalam et al., 2002]. Consider a setting where a buffer of data is
stored, generated by a behavior policy. Samples for policy π can be obtained by resampling from this
buffer, proportionally to π(a|s)

µ(a|s) for state-action pairs (s, a) in the buffer. In the sampling literature,
this strategy has been proposed under the name Sampling Importance Resampling (SIR) [Rubin,
1988, Smith et al., 1992, Gordon et al., 1993], and has been particularly successful for Sequential
Monte Carlo sampling [Gordon et al., 1993, Skare et al., 2003]. Such resampling strategies have
also been popular in classification, with over-sampling or under-sampling typically being preferred
to weighted (cost-sensitive) updates [Lopez et al., 2013].

A resampling strategy has several potential benefits for off-policy prediction.2 Resampling could
even have larger benefits for learning approaches, as compared to averaging or numerical integration
problems, because updates accumulate in the weight vector and change the optimization trajectory
of the weights. For example, very large importance sampling ratios could destabilize the weights.
This problem does not occur for resampling, as instead the same transition will be resampled mul-
tiple times, spreading out a large magnitude update across multiple updates. On the other extreme,
with small ratios, IS will waste updates on transitions with very small IS ratios. By correcting the
distribution before updating, standard on-policy updates can be applied. The magnitude of the up-
dates vary less—because updates are not multiplied by very small or very large importance sampling
ratios—potentially reducing variance of stochastic updates and simplifying learning rate selection.
We hypothesize that resampling (a) learns in a fewer number of updates to the weights, because it
focuses computation on samples that are likely under the target policy and (b) is less sensitive to
learning parameters and target and behavior policy specification.

In this work, we investigate the use of resampling for online off-policy prediction for known, un-
changing target and behavior policies. We first introduce Importance Resampling (IR), which sam-
ples transitions from a buffer of (recent) transitions according to IS ratios. These sampled transitions
are then used for on-policy updates. We show that IR has the same bias as WIS, and that it can be
made unbiased and consistent with the inclusion of a batch correction term—even under a slid-
ing window buffer of experience. We provide additional theoretical results characterizing when we
might expect the variance to be lower for IR than IS. We then empirically investigate IR on three mi-
croworlds and a racing car simulator, learning from images, highlighting that (a) IR is less sensitive
to learning rate than IS and V-trace (IS with clipping) and (b) IR converges more quickly in terms
of the number of updates.

2 Background

We consider the problem of learning General Value Functions (GVFs) [Sutton et al., 2011]. The
agent interacts in an environment defined by a set of states S, a set of actions A and Markov transi-
tion dynamics, with probability P(s′|s, a) of transitions to state s′ when taking action a in state s. A
GVF is defined for policy π : S×A→ [0, 1], cumulant c : S×A×S→R and continuation function

1There is substantial literature on variance reduction for another area called off-policy policy evaluation,
but which estimates only a single number or value for a policy (e.g., see [Thomas and Brunskill, 2016]). The
resulting algorithms differ substantially, and are not appropriate for learning the value function.

2We explicitly use the term prediction rather than policy evaluation to make it clear that we are not learning
value functions for control. Rather, our goal is to learn value functions solely for the sake of prediction.

2

γ : S×A×S → [0, 1], with Ct+1
def
= c(St, At, St+1) and γt+1

def
= γ(St, At, St+1) for a (random)

transition (St, At, St+1). The value for a state s ∈ S is

V (s)
def
= Eπ [Gt|St = s] where Gt

def
= Ct+1 + γt+1Ct+2 + γt+1γt+2Ct+3 +

The operator Eπ indicates an expectation with actions selected according to policy π. GVFs encom-
pass standard value functions, where the cumulant is a reward. Otherwise, GVFs enable predictions
about discounted sums of others signals into the future, when following a target policy π. These val-
ues are typically estimated using parametric function approximation, with weights θ ∈ Rd defining
approximate values Vθ(s).

In off-policy learning, transitions are sampled according to behavior policy, rather than the target
policy. To get an unbiased sample of an update to the weights, the action probabilities need to be
adjusted. Consider on-policy temporal difference (TD) learning, with update αtδt∇θVθ(s) for a
given St = s, for learning rate αt ∈ R+ and TD-error δt

def
= Ct+1 + γt+1Vθ(St+1) − Vθ(s). If

actions are instead sampled according to a behavior policy µ : S × A → [0, 1], then we can use
importance sampling (IS) to modify the update, giving the off-policy TD update αtρtδt∇θVθ(s) for
IS ratio ρt

def
= π(At|St)

µ(At|St) . Given state St = s, if µ(a|s) > 0 when π(a|s) > 0, then the expected value
of these two updates are equal. To see why, notice that

Eµ [αtρtδt∇θVθ(s)|St = s] = αt∇θVθ(s)Eµ [ρtδt|St = s]

which equals Eπ [αtρtδt∇θVθ(s)|St = s] because

Eµ [ρtδt|St = s] =
∑
a∈A

µ(a|s)π(a|s)
µ(a|s)

E [δt|St = s,At = a] = Eπ [δt|St = s] .

Though unbiased, IS can be high-variance. A lower variance alternative is Weighted IS (WIS). For
a batch consisting of transitions {(si, ai, si+1, ci+1, ρi)}ni=1, batch WIS uses a normalized estimate
for the update. For example, an offline batch WIS TD algorithm, denoted WIS-Optimal below,
would use update αt ρt∑n

i=1 ρi
δt∇θVθ(s). Obtaining an efficient WIS update is not straightforward,

however, when learning online and has resulted in algorithms in the SGD setting (i.e. n = 1)
specialized to tabular [Precup et al., 2001] and linear functions [Mahmood et al., 2014, Mahmood
and Sutton, 2015]. We nonetheless use WIS as a baseline in the experiments and theory.

3 Importance Resampling

In this section, we introduce Importance Resampling (IR) for off-policy prediction and characterize
its bias and variance. A resampling strategy requires a buffer of samples, from which we can re-
sample. Replaying experience from a buffer was introduced as a biologically plausible way to reuse
old experience [Lin, 1992, 1993], and has become common for improving sample efficiency, partic-
ularly for control [Mnih et al., 2015, Schaul et al., 2015b]. In the simplest case—which we assume
here—the buffer is a sliding window of the most recent n samples, {(si, ai, si+1, ci+1, ρi)}ti=t−n, at
time step t > n. We assume samples are generated by taking actions according to behavior µ. The
transitions are generated with probability dµ(s)µ(a|s)P(s′|s, a), where dµ : S → [0, 1] is the sta-
tionary distribution for policy µ. The goal is to obtain samples according to dµ(s)π(a|s)P(s′|s, a),
as if we had taken actions according to policy π from states3 s ∼ dµ.

The IR algorithm is simple: resample a mini-batch of size k on each step t from the buffer of
size n, proportionally to ρi in the buffer. Using the resampled mini-batch we can update our value
function using standard on-policy approaches, such as on-policy TD or on-policy gradient TD. The
key difference to IS and WIS is that the distribution itself is corrected, before the update, whereas
IS and WIS correct the update itself. This small difference, however, can have larger ramifications
practically, as we show in this paper.

3The assumption that states are sampled from dµ underlies most off-policy learning algorithms. Only a few
attempt to adjust probabilities dµ to dπ , either by multiplying IS ratios before a transition [Precup et al., 2001]
or by directly estimating state distributions [Hallak and Mannor, 2017, Liu et al., 2018]. In this work, we focus
on using resampling to correct the action distribution—the standard setting. We expect, however, that some
insights will extend to how to use resampling to correct the state distribution, particularly because wherever IS
ratios are used it should be straightforward to use our resampling approach.

3

We consider two variants of IR: with and without bias correction. For point ij sampled from the
buffer, let ∆ij be the on-policy update for that transition. For example, for TD, ∆ij = δij∇θVθ(sij).
The first step for either variant is to sample a mini-batch of size k from the buffer, proportionally
to ρi. Bias-Corrected IR (BC-IR) additionally pre-multiplies with the average ratio in the buffer
ρ̄

def
= 1

n

∑n
i=1 ρi, giving the following estimators for the update direction

XIR
def
= 1

k

k∑
j=1

∆ij XBC
def
= ρ̄

k

k∑
j=1

∆ij

BC-IR negates bias introduced by the average ratio in the buffer deviating significantly from the true
mean. For reasonably large buffers, ρ̄ will be close to 1 making IR and BC-IR have near-identical
updates4. Nonetheless, they do have different theoretical properties, particularly for small buffer
sizes n, so we characterize both.

Across most results, we make the following assumption.
Assumption 1. A buffer Bt = {Xt+1, ..., Xt+n} is constructed from the most recent n transitions
sampled by time t+n, which are generated sequentially from an irreducible, finite MDP with a fixed
policy µ.

To denote expectations under p(x) = dµ(s)µ(a|s)P(s′|s, a) and q(x) = dµ(s)π(a|s)P(s′|s, a), we
overload the notation from above, using operators Eµ and Eπ respectively. To reduce clutter, we
write E to mean Eµ, because most expectations are under the sampling distribution. All proofs can
be found in Appendix B.

3.1 Bias of IR

We first show that IR is biased, and that its bias is actually equal to WIS-Optimal, in Theorem 3.1.
Theorem 3.1. [Bias for a fixed buffer of size n] Assume a buffer B of n transitions sampled i.i.d
according to p(x = (s, a, s′)) = dµ(s)µ(a|s)P(s′|s, a). Let XWIS∗

def
=
∑n
i=1

ρi∑n
j=1 ρj

∆i be the
WIS-Optimal estimator of the update. Then,

E[XIR] = E[XWIS∗]

and so the bias of XIR is proportional to

Bias(XIR) = E[XIR]− Eπ[∆] ∝ 1

n
(Eπ[∆]σ2

ρ − σρ,∆σρσ∆) (1)

where Eπ[∆] is the expected update across all transitions, with actions from S taken by the tar-
get policy π; σ2

ρ = Var(1
n

∑n
j=1 ρj); σ2

∆ = Var(1
n

∑n
i=1 ρi∆i); and covariance σ(ρ,∆) =

Cov(1
n

∑n
j=1 ρj ,

1
n

∑n
i=1 ρi∆i).

Theorem 3.1 is the only result which follows a different set of assumptions, primarily due to using the
bias characterization of XWIS∗ found in Owen [2013]. The bias of IR will be small for reasonably
large n, both because it is proportional to 1/n and because larger n will result in lower variance
of the average ratios and average update for the buffer in Equation (1). In particular, as n grows,
these variances decay proportionally to n. Nonetheless, for smaller buffers, such bias could have an
impact. We can, however, easily mitigate this bias with a bias-correction term, as shown in the next
corollary and proven in Appendix B.2.
Corollary 3.1.1. BC-IR is unbiased: E[XBC] = Eπ[∆].

3.2 Consistency of IR

Consistency of IR in terms of an increasing buffer, with n → ∞, is a relatively straightforward
extension of prior results for SIR, with or without the bias correction, and from the derived bias of
both estimators (see Theorem B.1 in Appendix B.3). More interesting, and reflective of practice, is
consistency with a fixed length buffer and increasing interactions with the environment, t→∞. IR,
without bias correction, is asymptotically biased in this case; in fact, its asymptotic bias is the one
characterized above for a fixed length buffer in Theorem 3.1. BC-IR, on the other hand, is consistent,
even with a sliding window, as we show in the following theorem.

4ρ̄ ≈ E[ρ(a|s)] = E[π(a|s)
µ(a|s)] =

∑
s,a

π(a|s)
µ(a|s)µ(a|s)dµ(s) = 1.

4

Theorem 3.2. Let Bt = {Xt+1, ..., Xt+n} be the buffer of the most recent n transitions sampled
according to Assumption 1. Define the sliding-window estimator Xt

def
= 1

T

∑T
t=1X

(t)
BC. Then, if

Eπ[|∆|] <∞, then XT converges to Eπ[∆] almost surely as T →∞.

3.3 Variance of Updates

It might seem that resampling avoids high-variance in updates, because it does not reweight with
large magnitude IS ratios. The notion of effective sample size from statistics, however, provides
some intuition about why large magnitude IS ratios can also negatively affect IR, not just IS. Effec-
tive sample size is between 1 and n, with one estimator (

∑n
i=1 ρi)

2
/
∑n
i=1 ρ

2
i [Kong et al., 1994,

Martino et al., 2017]. When the effective sample size is low, this indicates that most of the probabil-
ity is concentrated on a few samples. For high magnitude ratios, IR will repeatedly sample the same
transitions, and potentially never sample some of the transitions with small IS ratios.

Fortunately, we find that, despite this dependence on effective sample size, IR can significantly
reduce variance over IS. In this section, we characterize the variance of the BC-IR estimator. We
choose this variant of IR, because it is unbiased and so characterizing its variance is a more fair
comparison to IS. We define the mini-batch IS estimator XIS

def
= 1

k

∑k
j=1 ρzj∆zj , where indices

zj are sampled uniformly from {1, . . . , n}. This contrasts the indices i1, . . . , ik for XBC that are
sampled proportionally to ρi.

We begin by characterizing the variance, under a fixed dataset B. For convenience, let µB =
Eπ[∆|B]. We characterize the sum of the variances of each component in the update estimator,
which equivalently corresponds to normed deviation of the update from its mean,

V(∆ | B)
def
= tr Cov(∆ | B) =

∑d
m=1 Var(∆m | B) = E[‖∆− µB‖22 | B]

for an unbiased stochastic update ∆ ∈ Rd. We show two theorems that BC-IR has lower variance
than IS, with two different conditions on the norm of the update. We first start with more general
conditions, and then provide a theorem for conditions that are likely only true in early learning.
Theorem 3.3. Assume that, for a given buffer B, ‖∆j‖22 > c

ρj
for samples where ρj ≥ ρ̄, and that

‖∆j‖22 < c
ρj

for samples where ρj < ρ̄, for some c > 0. Then the BC-IR estimator has lower
variance than the IS estimator: V(XBC | B) < V(XIS | B).

The conditions in Theorem 3.3 preclude having update norms for samples with small ρ be quite
large—larger than a number∝ 1

ρ—and a small norm for samples with large ρ. These conditions can
be relaxed to a statement on average, where the cumulative weighted magnitude of the update norm
for samples with ρ below the median needs to be smaller than for samples with ρ above the mean
(see the proof in Appendix B.5).

We next consider a setting where the magnitude of the update is independent of the given state
and action. We expect this condition to hold in early learning, where the weights are randomly
initialized, and thus randomly incorrect across the state-action space. As learning progresses, and
value estimates become more accurate in some states, it is unlikely for this condition to hold.
Theorem 3.4. Assume ρ and the magnitude of the update ‖∆‖22 are independent

E[ρj‖∆j‖22 | B] = E[ρj | B] E[‖∆j‖22 | B]

Then the BC-IR estimator will have equal or lower variance than the IS estimator: V(XBC | B) ≤
V(XIS | B).

These results have focused on variance of each estimator, for a fixed buffer, which provided insight
into variance of updates when executing the algorithms. We would, however, also like to characterize
variability across buffers, especially for smaller buffers. Fortunately, such a characterization is a
simple extension on the above results, because variability for a given buffer already demonstrates
variability due to different samples. It is easy to check that E[E[µIR | B]] = E[µIS | B] = Eπ[∆].
The variances can be written using the law of total variance

V(XBC) = E[V(XBC | B)] + V(E[XBC | B]) = E[V(XBC | B)] + V(µB)

V(XIS) = E[V(XIS | B)] + V(µB)

=⇒ V(XBC)− V(XIS) = E[V(XBC | B)− V(XIS | B)]

with expectation across buffers. Therefore, the analysis of V(XBC | B) directly applies.

5

4 Empirical Results

We investigate the two hypothesized benefits of resampling as compared to reweighting: improved
sample efficiency and reduced variance. These benefits are tested in two microworld domains—
a Markov chain and the Four Rooms domain—where exhaustive experiments can be conducted.
We also provide a demonstration that IR reduces sensitivity over IS and VTrace in a car simulator,
TORCs, when learning from images 5.

We compare IR and BC-IR against several reweighting strategies, including importance sam-
pling (IS); two online approaches to weighted important sampling, WIS-Minibatch with weighting
ρi/
∑k
j=1 ρj and WIS-Buffer with weighting ρi/ kn

∑n
j=1 ρj ; and V-trace6, which corresponds to

clipping importance weights [Espeholt et al., 2018]. We also compare to WIS-TD(0) [Mahmood
and Sutton, 2015], when applicable, which uses an online approximation to WIS, with a stepsize
selection strategy (as described in Appendix A.2). This algorithm uses only one sample at a time,
rather than a mini-batch, and so is only included in Figure 2. Where appropriate, we also include
baselines using On-policy sampling; WIS-Optimal which uses the whole buffer to get an update;
and Sarsa(0) which learns action-values—which does not require IS ratios—and then produces esti-
mate V (s) =

∑
a π(s, a)Q(s, a). WIS-Optimal is included as an optimal baseline, rather than as a

competitor, as it estimates the update using the whole buffer on every step.

In all the experiments, the data is generated off-policy. We compute the absolute value error (AVE)
or the absolute return error (ARE) on every step. For the sensitivity plots we take the average over
all the interactions as specified for the environment — resulting in MAVE and MARE respectively.
The error bars represent the standard error over runs, which are featured on every plot — although
not visible in some instances. For the microworlds, the true value function is found using dynamic
programming with threshold 10−15, and we compute AVE over all the states. For TORCs and
continuous Four Rooms, the true value function is approximated using rollouts from a random subset
of states generated when running the behavior policy µ, and the ARE is computed over this subset.
For the Torcs domain, the same subset of states is used for each run due to computational constraints
and report the mean squared return error (MSRE). Plots showing sensitivity over number of updates
show results for complete experiments with updates evenly spread over all the interactions. A tabular
representation is used in the microworld experiments, tilecoded features with 64 tilings and 8 tiles
is used in continuous Four Rooms, and a convolutional neural network is used for TORCs, with an
architecture previously defined for self-driving cars [Bojarski et al., 2016].

4.1 Investigating Convergence Rate

We first investigate the convergence rate of IR. We report learning curves in Four Rooms, as well as
sensitivity to the learning rate. The Four Rooms domain [Stolle and Precup, 2002] has four rooms
in an 11x11 grid world. The four rooms are positioned in a grid pattern with each room having
two adjacent rooms. Each adjacent room is separated by a wall with a single connecting hallway.
The target policy takes the down action deterministically. The cumulant for the value function is 1
when the agent hits a wall and 0 otherwise. The continuation function is γ = 0.9, with termination
when the agent hits a wall. The resulting value function can be thought of as distance to the bottom
wall. The behavior policy is uniform random everywhere except for 25 randomly selected states
which take the action down with probability 0.05 with remaining probability split equally amongst
the other actions. The choice of behavior and target policy induce high magnitude IS ratios.

As shown in Figure 1, IR has noticeable improvements over the reweighting strategies tested. The
fact that IR resamples more important transitions from the replay buffer seems to significantly in-
crease the learning speed. Further, IR has a wider range of usable learning rates. The same effect is
seen even as we reduce the total number of updates, where the uniform sampling methods perform
significantly worse as the interactions between updates increases—suggesting improved sample ef-
ficiency. WIS-Buffer performs almost equivalently to IS, because for reasonably size buffers, its
normalization factor 1

n

∑n
j=1 ρj ≈ 1 because E[ρ] = 1. WIS-Minibatch and V-trace both reduce

5Experimental code for every domain except Torcs can be found at https://mkschleg.github.io/
Resampling.jl

6Retrace, ABQ and TreeBackup also use clipping to reduce variance. But, they are designed for learning
action-values and for mitigating variance in eligibility traces. When trace parameter λ = 0—as we assume
here—there are no IS ratios and these methods become equivalent to using Sarsa(0) for learning action-values.

6

https://mkschleg.github.io/Resampling.jl
https://mkschleg.github.io/Resampling.jl

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

104.0 104.5 105.0 105.5 0.0

0.1

0.2

0.3

0.4

0.5MAVE

Learning Rate
1000 2000 3000 4000 5000

Step (102) Number of Updates (log)

IS(BC)IR WIS-Minibatch WIS-OptimalWIS-Buffer
SarsaClip = 1.0 Clip = 0.5*max Clip = 0.9*max

Figure 1: Four Rooms experiments (n = 2500, k = 16, 25 runs): left Learning curves for each
method, with updates every 16 steps. IR and WIS-Optimal are overlapping. center Sensitivity over
the number of interactions between updates. right Learning rate sensitivity plot.

the variance significantly, with their bias having only a limited impact on the final performance
compared to IS. Even the most aggressive clipping parameter for V-trace—a clipping of 1.0— out-
performs IS. The bias may have limited impact because the target policy is deterministic, and so
only updates for exactly one action in a state. Sarsa—which is the same as Retrace(0)—performs
similarly to the reweighting strategies.

The above results highlight the convergence rate improvements from IR, in terms of number of
updates, without generalization across values. Conclusions might actually be different with function
approximation, when updates for one state can be informative for others. For example, even if in one
state the target policy differs significantly from the behavior policy, if they are similar in a related
state, generalization could overcome effective sample size issues. We therefore further investigate if
the above phenomena arise under function approximation with RMSProp learning rate selection.

101.0 101.5 102.0 102.5 103.0

0.20

0.25

0.30

0.35

0.40
IR- WIS- TD(0)
NormIS
IR
WISBatch
VTrace_1.0
WIS- TD(0)

IS

V-trace

WIS-Minibatch

IR

Number of Updates (10^n)

IR + WIS-TD(0)

WIS-TD(0)

3.0 3.5 4.0 4.5 5.0 103.0 103.5 104.0 104.5 105.0

0.20

0.25

0.30

0.35

0.40

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

IS
V-trace

WIS-Minibatch

IR

3.0 3.5 4.0 4.5 5.0
Number of Updates (10^n)

Figure 2: Convergence rates in Continuous Four Rooms averaged over 25 runs with 100000 inter-
actions with the environment. left uniform random behavior policy and target policy which takes
the down action with probability 0.9 and probability 0.1/3 for all other actions. Learning used in-
cremental updates (as specified in appendix A.2). right uniform random behavior and target policy
with persistent down action selection learned with mini-batch updates with RMSProp.

We conduct two experiments similar to above, in a continuous state Four Rooms variant. The agent
is a circle with radius 0.1, and the state consists of a continuous tuple containing the x and y co-
ordinates of the agent’s center point. The agent takes an action in one of the 4 cardinal directions
moving 0.5 ± U(0.0, 0.1) in that directions with random drift in the orthogonal direction sampled
from N (0.0, 0.01). The representation is a tile coded feature vector with 64 tilings and 8 tiles. We
provide results for both mini-batch updating (as above) and incremental updating (i.e. updating
on each transition of a mini-batch incrementally, see appendix A.2 for details). For the mini-batch
experiment, the target policy deterministically takes the down action. For the incremental experi-
ment, the target policy takes the down action with probability 0.9 and selects all other action with
probability 0.1/3.

We find that generalization can mitigate some of the differences between IR and IS above in some
settings, but in others the difference remains just as stark (see Figure 2 and Appendix C.2). If we
use the behavior policy from the tabular domain, which skews the behavior in a sparse set of states,
the nearby states mitigate this skew. However, if we use a behavior policy that selects all actions

7

0 50 100 150 200 250
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

MAVE

Learning Rate

IS(BC)IR WIS-Minibatch WIS-OptimalWIS-Buffer Sarsa OnPolicy
Clip = 1.0 Clip = 0.5*max Clip = 0.9*max

Var
(10-2)

0.00

0.25

0.50

0.75

1.25

Learning Rate
Less

Learning
More

Learning
Learning Progress

Figure 4: Learning Rate sensitivity plots in the Random Walk Markov Chain, with buffer size n =
15000 and mini-batch size k = 16. Averaged over 100 runs. The policies, written as [probability
left, probability right] are µ = [0.9, 0.1], π = [0.1, 0.9] left learning rate sensitivity plot for all
methods but V-trace. center learning rate sensitivity for V-trace with various clipping parameters
right Variance study for IS, IR, and WISBatch. The x-axis corresponds to the training iteration,
with variance reported for the weights at that iteration generated by WIS-Optimal. These plots show
a correlation between the sensitivity to learning rate and magnitude of variance.

uniformly, then again IR obtains noticeable gains over IS and V-trace, for reducing the required
number of updates, as shown in Figure 2.

We find similar results for the incremental setting Figure 2 (left), where resampling still outperforms
all other methods in terms of convergence rates. Given WIS-TD(0)’s significant degrade in perfor-
mance as the number of updates decreases, we also compare with using WIS-TD(0) when sampling
according to resampling IR+WIS-TD(0). Interestingly, this method outperforms all others — albeit
only slightly against IR with constant learning rate. This result leads us to believe RMSProp may be
a optimizer poor choice for this setting. Expanded results can be found in Appendix C.2.

4.2 Investigating Variance

To better investigate the update variance we use a Markov chain, where we can more easily control
dissimilarity between µ and π, and so control the magnitude of the IS ratios. The Markov chain
is composed of 8 non-terminating states and 2 terminating states on the ends of the chain, with a
cumulant of 1 on the transition to the right-most terminal state and 0 everywhere else. We consider
policies with probabilities [left, right] equal in all states: µ = [0.9, 0.1], π = [0.1, 0.9]; further policy
settings can be found in Appendix C.1.

We first measure the variance of the updates for fixed buffers. We compute the variance of the
update—from a given weight vector—by simulating the many possible updates that could have
occurred. We are interested in the variance of updates both for early learning—when the weight
vector is quite incorrect and updates are larger—and later learning. To obtain a sequence of such
weight vectors, we use the sequence of weights generated by WIS-Optimal. As shown in Figure 4,
the variance of IR is lower than IS, particularly in early learning, where the difference is stark. Once
the weight vector has largely converged, the variance of IR and IS is comparable and near zero.

Learning Rate
10-6

0.12

0.16

0.20

Average
MSRE IS

(BC)IR

10-5 10-4

V-trace

Figure 3: Learning rate sensitivity in TORCs,
averaged over 10 runs. V-trace has clipping
parameter 1.0. All the methods performed
worse with a higher learning rate than shown
here, so we restrict to this range.

We can also evaluate the update variance by proxy
using learning rate sensitivity curves. As seen in
Figure 4 (left) and (center), IR has the lowest sensi-
tivity to learning rates, on-par with On-Policy sam-
pling. IS has the highest sensitivity, along with WIS-
Buffer and WIS-Minibatch. Various clipping pa-
rameters with V-trace are also tested. V-trace does
provide some level of variance reduction but incurs
more bias as the clipping becomes more aggressive.

4.3 Demonstration on a Car Simulator

We use the TORCs racing car simulator to perform
scaling experiments with neural networks to com-
pare IR, IS, and V-trace. The simulator produces

8

64x128 cropped grayscale images. We use an underlying deterministic steering controller that pro-
duces steering actions adet ∈ [−1,+1] and take an action with probability defined by a Gaussian
a ∼ N (adet, 0.1). The target policy is a Gaussian N (0.15, 0.0075), which corresponds to steering
left. Pseudo-termination (i.e., γ = 0) occurs when the car nears the center of the road, and the
cumulant becomes 1. Otherwise, the cumulant is zero and γ = 0.9. The policy is specified using
continuous action distributions and results in IS ratios as high as ∼ 1000 and highly variant updates
for IS.

Again, we can see that IR provides benefits over IS and V-trace, in Figure 3. There is even more
generalization from the neural network in this domain, than in Four Rooms where we found gen-
eralization did reduce some of the differences between IR and IS. Yet, IR still obtains the best
performance, and avoids some of the variance seen in IS for two of the learning rates. Additionally,
BC-IR actually performs differently here, having worse performance for the largest learning rate.
This suggest IR has an effect in reducing variance.

5 Conclusion
In this paper we introduced a new approach to off-policy learning: Importance Resampling. We
showed that IR is consistent, and that the bias is the same as for Weighted Importance Sampling.
We also provided an unbiased variant of IR, called Bias-Corrected IR. We empirically showed that
IR (a) has lower learning rate sensitivity than IS and V-trace, which is IS with varying clipping
thresholds; (b) the variance of updates for IR are much lower in early learning than IS and (c) IR
converges faster than IS and other competitors, in terms of the number of updates. These results
confirm the theory presented for IR, which states that variance of updates for IR are lower than IS
in two settings, one being an early learning setting. Such lower variance also explains why IR can
converge faster in terms of number of updates, for a given buffer of data.

The algorithm and results in this paper suggest new directions for off-policy prediction, particularly
for faster convergence. Resampling is promising for scaling to learning many value functions in
parallel, because many fewer updates can be made for each value function. A natural next step is a
demonstration of IR, in such a parallel prediction system. Resampling from a buffer also opens up
questions about how to further focus updates. One such option is using an intermediate sampling
policy. Another option is including prioritization based on error, such as was done for control with
prioritized sweeping [Peng and Williams, 1993] and prioritized replay [Schaul et al., 2015b].

Acknowledgments

We would like to thank Huawei for their support, and especially for allowing a portion of this
work to be completed during Matthews internship in the summer of 2018. We also would like to
acknowledge University of Alberta, Alberta Machine Intelligence Institute, IVADO, and NSERC
for their continued funding and support, as well as Compute Canada (www.computecanada.ca)
for the computing resources used for this work.

References
Sigrun Andradottir, Daniel P Heyman, and Teunis J Ott. On the Choice of Alternative Measures in

Importance Sampling with Markov Chains. Operations Research, 1995.

M S Arulampalam, S Maskell, N Gordon, and T Clapp. A Tutorial on Particle Filters for Online
Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing, 2002.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, and others. IMPALA: Scalable distributed Deep-
RL with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

N J Gordon, D J Salmond, Radar, AFM Smith IEE Proceedings F Signal, and 1993. Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. IET, 1993.

9

www.computecanada.ca

Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. arXiv preprint
arXiv:1702.07121, 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement Learning with Unsupervised Auxiliary Tasks. In
International Conference on Representation Learning, 2017.

H Kahn and A W Marshall. Methods of Reducing Sample Size in Monte Carlo Computations.
Journal of the Operations Research Society of America, 1953.

Augustine Kong, Jun S Liu, and Wing Hung Wong. Sequential imputations and Bayesian missing
data problems. Journal of the American Statistical Association, 1994.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

Long-Ji Lin. Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and
Teaching. Machine Learning, 1992.

Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Carnegie
Mellon University, 1993.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the Curse of Horizon: Infinite-
Horizon Off-Policy Estimation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31. Curran
Associates, Inc., 2018.

Victoria Lopez, Alberto Fernandez, Salvador Garcia, Vasile Palade, and Francisco Herrera. An
insight into classification with imbalanced data: Empirical results and current trends on using
data intrinsic characteristics. Information Sciences, 2013.

A R Mahmood and R.S. Sutton. Off-policy learning based on weighted importance sampling with
linear computational complexity. In Conference on Uncertainty in Artificial Intelligence, 2015.

A Rupam Mahmood, Hado P van Hasselt, and Richard S Sutton. Weighted importance sampling
for off-policy learning with linear function approximation. In Advances in Neural Information
Processing Systems, 2014.

Ashique Rupam Mahmood, Huizhen Yu, and Richard S Sutton. Multi-step Off-policy Learning
Without Importance Sampling Ratios. arXiv:1509.01240v2, 2017.

Luca Martino, Vı́ctor Elvira, and Francisco Louzada. Effective sample size for importance sampling
based on discrepancy measures. Signal Processing, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Joseph Modayil, Adam White, and Richard S Sutton. Multi-timescale nexting in a reinforcement
learning robot. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Sys-
tems, 2014.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G Bellemare. Safe and Efficient Off-
Policy Reinforcement Learning. Advances in Neural Information Processing Systems, 2016.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

Jing Peng and Ronald J Williams. Efficient Learning and Planning Within the Dyna Framework.
Adaptive Behavior, 1993.

Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility Traces for Off-Policy Policy
Evaluation. ICML, 2000.

10

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-Policy Temporal-Difference Learning
with Function Approximation. ICML, 2001.

Donald B Rubin. Using the SIR algorithm to simulate posterior distributions. Bayesian statistics,
1988.

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo Method. John Wiley &
Sons, 2016.

Tom Schaul and Mark Ring. Better generalization with forecasts. In International Joint Conference
on Artificial Intelligence, 2013.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value Function Approxi-
mators. In International Conference on Machine Learning, 2015a.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay.
arXiv:1511.05952 [cs], 2015b.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David P Reichert, Neil C Rabinowitz, André Barreto, and Thomas Degris. The
Predictron - End-To-End Learning and Planning. In AAAI Conference on Artificial Intelligence,
2017.

Øivind Skare, Erik Bølviken, and Lars Holden. Improved Sampling-Importance Resampling and
Reduced Bias Importance Sampling. Scandinavian Journal of Statistics, 2003.

AFM Smith, AE Gelfand The American Statistician, and 1992. Bayesian statistics without tears: a
sampling–resampling perspective. Taylor & Francis, 1992.

Martin Stolle and Doina Precup. Learning Options in Reinforcement Learning. In International
Symposium on Abstraction, Reformulation, and Approximation, 2002.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.

Richard S Sutton, Eddie J Rafols, and Anna Koop. Temporal Abstraction in Temporal-difference
Networks. In Advances in Neural Information Processing Systems, 2005.

Richard S Sutton, J Modayil, M Delp, T Degris, P.M. Pilarski, A White, and D Precup. Horde: A
scalable real-time architecture for learning knowledge from unsupervised sensorimotor interac-
tion. In International Conference on Autonomous Agents and Multiagent Systems, 2011.

Philip Thomas and Emma Brunskill. Data-Efficient Off-Policy Policy Evaluation for Reinforcement
Learning. In AAAI Conference on Artificial Intelligence, 2016.

Philip S Thomas and Emma Brunskill. Importance Sampling with Unequal Support. In AAAI
Conference on Artificial Intelligence, 2017.

11

A Weighted Importance Sampling

A.1 Mini-Batch Algorithms

We consider three weighted importance sampling updates as competitors to IR. n is the size of the
experience replay buffer, k is the size of a single batch. WIS-Minibatch and WIS-Buffer both follow
a similar protocol as IS, in that they uniformly sample a mini-batch from the experience replay buffer
and use this to update the value functions. The difference comes in the scaling of the update. The
first, WIS-Minibatch, uses the sum of the importance weights ρi in the sampled mini-batch, while
WIS-Buffer uses the sum of importance weights in the experience replay buffer. WIS-Buffer is also
scaled by the size of the buffer and brought to the same effective scale as the other updates with 1

k .
WIS-Optimal follows a different approach and performs the best possible version of WIS where the
gradient descent update is calculated from the whole experience replay buffer. We do not provide
analysis on the bias or consistency of WIS-Minibatch or WIS-Buffer, but are natural versions of
WIS one might try.

∆θ =

∑k
i ρiδi∇θV (si; θ)∑k

j ρj
WIS-Minibatch

∆θ =
n

k

∑k
i ρiδi∇θV (si; θ)∑n

j ρj
WIS-Buffer

∆θ =

∑n
i ρiδi∇θV (si; θ)∑n

j ρj
WIS-Optimal

A.2 Incremental Algorithm

While implementing an efficient true WIS algorithm for mini-batch updating is beyond the scope of
this work, we compare WIS-TD(0) to the incremental versions of IR, IS, VTrace, and WISBatch.
The difference between the mini-batch and incremental algorithms is how the updates are calcu-
lated. In the incremental scheme a random mini-batch of data is similarly sampled from the buffer.
We then use each sample individually to update our value function. We do this to more naturally
compare our baselines to WIS-TD(0) Mahmood and Sutton [2015]. WIS-TD(0) has parameters
u0 ∈ { 1

64 , 1, 5, 10, 50} ∗ 64, µ ∈ 10−2:0.25:1, and η = µ
u0

. WIS-TD(0) follows the update equations:

ui+1 = (1− ηφi ◦ φi) ◦ ui + ρiφi ◦ φi . ◦ def
= element wise product

αi+1 = 1� ut+1 .� def
= element wise division

δ̄i = Ci + γiθ
>
i φ
′
i − θ>i−1φi

θi+1 = θt + αi+1 ◦ ρi(θ>i−1φi − θ>i φi)φi + ρiδ̄iαi+1 ◦ φi

where θ ∈ Rd is the weight vector of the value function, φi ∈ Rd is the feature vector of the i-th
transition in the experience replay buffer, and φ′i ∈ Rd is the feature vector of the next state of the
i-th transition in the experience replay buffer.

B Additional Theoretical Results and Proofs

B.1 Bias of IR

Theorem 3.1(Bias for a fixed buffer of size n) Assume a buffer B of n transitions sampled i.i.d
according to p(x = (s, a, s′)) = dµ(s)µ(a|s)P(s′|s, a). Let XWIS∗

def
=
∑n
i=1

ρi∑n
j=1 ρj

∆i be the
WIS-Optimal estimator of the update. Then,

E[XIR] = E[XWIS∗]

and so the bias of XIR is proportional to

12

Bias(XIR) = E[XIR]− Eπ[∆] ∝ 1

n
(Eπ[∆]σ2

ρ − σρ,∆σρσ∆)

where Eπ[∆] is the expected update across all transitions, with actions from S taken by the tar-
get policy π; σ2

ρ = Var(1
n

∑n
j=1 ρj); σ2

∆ = Var(1
n

∑n
i=1 ρi∆i); and covariance σ(ρ,∆) =

Cov(1
n

∑n
j=1 ρj ,

1
n

∑n
i=1 ρi∆i).

Proof. Notice first that when we weight with ρi, this is equivalent to weighting with
dµ(Si)π(Ai|Si)P(Si+1|Si,Ai)
dµ(Si)µ(Ai|Si)P(Si+1|Si,Ai) , and so is the correct IS ratio for the transition.

E[XIR] = E [E[XIR|B]] = E
[
E
[

1
k

k∑
j=1

∆ij |B
]]

= E
[

1
k

k∑
j=1

E[∆ij |B]
]

. E[∆ij |B]=

n∑
i=1

ρi∑n
j=1 ρj

∆i

= E
[n∑
i=1

ρi∑n
j=1 ρj

∆i

]
= E[XWIS∗].

This bias of XIR is the same as XWIS∗ , which is characterized in Owen [2013], completing the
proof.

B.2 Proof of Unbiasedness of BC-IR

Corollary 3.1.1 BC-IR is unbiased: E[XBC] = Eπ[∆].

Proof.

E[XBC] = E
[
ρ̄
k

k∑
j=1

E[∆ij |B]
]

= E
[
ρ̄

n∑
i=1

ρi∑n
j=1 ρj

∆i

]
= E

[
1
n

n∑
i=1

ρi∆i

]
= 1

n

n∑
i=1

E
[π(Ai|Si)
µ(Ai|Si)

∆i

]
= 1

n

n∑
i=1

E
[dµ(Si)π(Ai|Si)P(Si+1|Si, Ai)
dµ(Si)µ(Ai|Si)P(Si+1|Si, Ai)

∆i

]
= 1

n

n∑
i=1

Eπ [∆i] = Eπ [∆] .

The last equality follows from the fact that the samples are identically distributed.

B.3 Consistency of the resampling distribution with a growing buffer

We show that the distribution when following a resampling strategy is consistent: as n → ∞, the
resampling distribution converges to the true distribution. Our approach closely follows that of
[Smith et al., 1992], but we recreate it here for convenience.

Proposition B.1. LetXn = {x1, x2, ..., xn} be a buffer of data sampled i.i.d. according to proposal
density p(xi). Let q(xi) be some distribution of interest with associated random variable Q and as-
sume the proposal distribution samples everywhere where q(·) is non-zero, i.e supp(q) ⊆ supp(p).
Also, let Y be a discrete random variable taking values xi with probability ∝ q(xi)

p(xi)
. Then, Y

converges in distribution to Q as n→∞.

13

Proof. Let ρi = q(xi)
p(xi)

. From the probability mass function of Y , we have that:

P[Y ≤ a] =

n∑
i=1

P[Y = xi]1{xi ≤ a}

=
n−1

∑n
i=1 ρi1{xi ≤ a}

n−1
∑n
i=1 ρi

n→∞−−−−→ Eq[ρ(x)1{x ≤ a}]
Eq[ρ(x)]

=
1 ·
∫ a
−∞

q(x)
p(x)p(x)dx+ 0 ·

∫∞
a

q(x)
p(x)p(x)dx∫∞

−∞
q(x)
p(x)p(x)dx

=

∫ a

−∞
q(x)dx = P[Q ≤ a]

Y
d−→ Q

This means a resampling strategy effectively changes the distribution of random variable Xn to that
of q(x), meaning we can use samples from Y to build statistics about the target distribution q(x).
This result motivates using resampling to correct the action distribution in off-policy learning. This
result can also be used to show that the IR estimators are consistent, with n→∞.

B.4 Consistency under a sliding window

Lemma B.2. Let Bt = {Xt+1, ..., Xt+n} be the buffer of the most recent n transitions sampled by
time t + n, which are generated sequentially from an irreducible, finite MDP with a fixed policy µ.
We define X(t)

BC be the BCIR estimator for buffer Bt. If Eπ[|∆|] <∞, then E[X
(t)
BC] = Eπ[∆].

Proof. Let Xt = (St, At, Rt+1, St+1) be a transition and {Bt}t∈N be the sequence of buffers that
are observed, each containing n consecutive transitions.

Using the law of iterated expectations,

E
[
X

(t)
BC

]
= E

[
E[X

(t)
BC|Bt]

]
where the outer expectation is over the stationary distribution ofBt and the inner expectation is over
the sampling distribution of IR from the buffer Bt.

Using the definition of X(t)
BC|Bt, we have that

E[X
(t)
BC|Bt] = ρ̄

n∑
i=1

∆i
ρi∑n
i=1 ρi

=
1

n

n∑
i=1

ρi∆i

Next, the stationary distribution of Bt is given by d(Bt) = Pr(Bt = (xt+1, ..., xt+n)) =
dX(xt)p(xt+1|xt)...p(xt+n|xt+n−1), where dX is the stationary distribution of Xt. We can verify
directly by checking that for all B′ = (x2, ..., xn+1)∑

B

d(B)p(B′|B) = d(B′)

where B = (x1, ..., xn)

To see this, first note that p(B′|B) = p(xn+1|xn)1(B,B′) where 1(B,B′) is equal to 1 if the states
(x2, ..., xn) in B match the states (x2, .., xn) in B′. In other words, the first n− 1 transitions in B′

14

must match the last n− 1 transitions in B for p(B′|B) to be positive. Next, fixing B′,

∑
B

d(B)p(B′|B)

=
∑

x1,...,xn

dµ(x1)p(x2|x1)...p(xn|xn−1)p(xn+1|xn)1(B,B′)

=
∑
x1

dµ(x1)p(x2|x1)...p(xn|xn−1)p(xn+1|xn) since (x2, ..., xn) have to match

= dµ(x2)p(x3|x2)...p(xn|xn−1)p(xn+1|xn)

= d(B′)

which verifies the expression for the stationary distribution of Bt.

Continuing from before, we expand the expectation as:

E

[
1

n

n∑
t=1

ρt∆t

]

=
∑

x1,...xn

dX(x1)p(x2|x1)...p(xn|xn−1)

(
1

n

n∑
t=1

ρt∆t

)

=
∑

s1,a1,r2,s2,...,
sn,an,rn+1,sn+1

dµ(s1)

(
n∏
i=1

µ(ai|si)p(si+1, ri+1|si, ai)

)(
1

n

n∑
t=1

ρt∆t

)

=
1

n

n∑
t=1

∑
s1,a1,r2,s2,...,
sn,an,rn+1,sn+1

dµ(s1)

(
n∏
i=1

µ(ai|si)p(si+1, ri+1|si, ai)

)
(ρt∆t) .

Next, by taking the sums over (s1, a1, ...rn+1, sn+1) within the products to make the summands
depend only on the variables being summed over, we get

=
1

n

n∑
t=1

∑
s1

dµ(s1)
∑

a1,r2,s2

µ(a1|s1)p(s2, r2|s1, a1)
∑

a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

∑
at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (ρt∆t)

∑
at+1,rt+2,st+2,...,
sn,an,rn+1,sn+1

n∏
i=t+1

µ(ai|si)p(si+1, ri+1|si, ai)

=
1

n

n∑
t=1

∑
s1

dµ(s1)
∑

a1,r2,s2

µ(a1|s1)p(s2, r2|s1, a1)
∑

a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

∑
at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (ρt∆t) .

This followed since the third line is summing over the probability of all trajectories starting from
st+1 and thus is equal to 1. Next, we note that, if C is a constant that does not depend on s1, a1, r2,
then

∑
s1,a1,r2

dµ(s1)µ(a1|s1)p(s2, r2|s1, a1)C = dµ(s2)C since dµ(s2) is the stationary distri-
bution (if we additionally assume p(s2, r2|s1, a1) = p(s2|s1, a1)p(r2|s1, a1) or equivalently that
rewards depend only on state and action).

15

Continuing from before, by reordering the sums we have and repeatedly using the above note,

=
1

n

n∑
t=1

∑
s2

∑
s1,a1,r2

dµ(s1)µ(a1|s1)p(s2, r2|s1, a1)︸ ︷︷ ︸
dµ(s2)

∑
a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

∑
at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (ρt∆t)

=
1

n

n∑
t=1

∑
s2

dµ(s2)
∑

a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

∑
at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (ρt∆t)

= ... (Repeating the same process)

=
1

n

n∑
t=1

∑
st,at,rt+1,st+1

dµ(st)µ(at|st)p(st+1, rt+1|st, at) (ρt∆t) .

Recall that ∆t = ∆(st, at, rt+1, st+1) is a function of the transition so we cannot simplify further.

Finally,

=
1

n

n∑
t=1

∑
st,at,rt+1,st+1

dµ(st)µ(at|st)p(st+1, rt+1|st, at)
(
π(at)

µ(at)
∆t

)

=
1

n

n∑
t=1

∑
st,at,rt+1,st+1

dµ(st)π(at|st)p(st+1, rt+1|st, at)∆t

=
1

n

n∑
t=1

Eπ[∆]

= Eπ[∆]

Theorem 3.2 Let Bt = {Xt+1, ..., Xt+n} be the buffer of the most recent n transitions sampled
by time t+ n, which are generated sequentially from an irreducible, finite MDP with a fixed policy
µ. Define the sliding-window estimator Xt

def
= 1

T

∑T
t=1X

(t)
BC. Then, if Eπ[|∆|] < ∞, then XT

converges to Eπ[∆] almost surely as T →∞.

Proof. Let Xt = (St, At, Rt+1, St+1) be a transition. Then the sequence {Xt}t∈N forms an irre-
ducible Markov chain as there is positive probability of eventually visiting any X ′ starting from any
X since this is true for states S′ and S in the original MDP (by irreducibility).

Let {Bt}t∈N be the sequence of buffers that are observed. This also forms an irreducible Markov
chain by the same reasoning as above since {Xt}t∈N is irreducible. Additionally, the sequence of
pairs {(X(t)

BC, Bt)}t∈N is an irreducible Markov chain.

Using the ergodic theorem (theorem 4.16 in [Levin and Peres, 2017]) on {(X(t)
BC, Bt)}t∈N with the

projection function f(x, y) = x, we have that

lim
T→∞

1

T

T∑
t=1

X
(t)
BC = E

[
X

(t)
BC

]
where the expectation is over the joint stationary distribution of (X

(t)
BC, Bt).

Using Lemma B.2 we can show that E
[
X

(t)
BC

]
= Eπ[∆], completing the proof.

16

B.5 Variance of BC-IR and IS

This lemma characterizes the variance of the BC-IR and IS estimators for a fixed buffer.

Lemma B.3. Let µB = Eπ[∆|B] be the mean update on the batch B. Denoting the size of the
buffer by n and the number of size of the minibatch by k, let XIS = 1

k

∑k
j=1 ρzj∆zj (with each zj

sampled uniformly from {1, ..., n}) be the importance sampling estimator and XBC = 1
k

∑n
j=1 ∆ij

(with each ij being sampled from ` ∈ {1, ..., n} with probability proportional to ρ`) be the bias-
corrected importance resampling estimator. Then, the variances of the two estimators are given
by

V(XIS | B) =
1

k

 1

n

n∑
j=1

ρ2
j ‖∆j‖22 − µ

>
BµB

V(XBC | B) =

1

k

 ρ̄

n

n∑
j=1

ρj ‖∆j‖22 − µ
>
BµB

Proof. Since we condition on the buffer B, the only source of randomness is the sampling mecha-
nism. Each index is sampled independently so we have that,

V(XBC | B) =
1

k2

k∑
j=1

V(ρ̄∆ij | B) =
1

k
V(ρ̄∆i1 | B)

and similarly V(XIS | B) = 1
kV(ρz1∆z1 |B)

We can further simplify these expressions. For the IS estimator

V(ρz1∆z1 |B)

= E[ρ2
z1∆>z1∆z1 |B]− E[ρz1∆z1 |B]>E[ρz1∆z1 |B] by definition of V(·)

= E[ρ2
z1‖∆z1‖22|B]− µ>BµB since ρz1∆z1 |B is unbiased for µB

=
1

n

n∑
j=1

ρ2
j‖∆j‖22 − µ>BµB

The last line follows from the uniform sampling distribution. For the BC-IR estimator, recalling that
ρ̄ = 1

n

∑n
i=1 ρi, we follow similar steps,

V(ρ̄∆i1 |B)

= E
[
ρ̄2∆>i1∆i1 |B

]
− E[ρ̄∆i1 |B]>E[ρ̄∆i1 |B]

= E
[
ρ̄2‖∆ij‖22|B

]
− µ>BµB since ρ̄∆i1 |B is unbiased for µB

=

n∑
j=1

ρ̄2 ρj∑n
i=1 ρi

‖∆j‖22 − µ>BµB

=
ρ̄

n

n∑
j=1

ρj‖∆j‖22 − µ>BµB

The fourth line follows from the sampling distribution of the ij .

The following two theorems present certain conditions when the BC-IR estimator would have lower
variance than the IS estimator.

Theorem 3.3 Assume that ‖∆j‖22 > c
ρj

for samples where ρj ≥ ρ̄, and that ‖∆j‖22 < c
ρj

for
samples where ρj < ρ̄, for some c > 0. Then the BC-IR estimator has lower variance than the IS
estimator.

17

Proof. We show V(XIS|B)− V(XBC|B) > 0:

V(XIS|B)− V(XBC|B) =
1

nk

n∑
j=1

‖∆j‖22 (ρ2
j − ρ̄ρj)

=
1

nk

∑
s:ρs<ρ̄

‖∆s‖22︸ ︷︷ ︸
≤c/ρs

ρs (ρs − ρ̄)︸ ︷︷ ︸
≤0

+
1

nk

∑
l:ρl≥ρ̄

‖∆l‖22︸ ︷︷ ︸
>c/ρs

ρl (ρl − ρ̄)︸ ︷︷ ︸
≥0

>
1

nk

∑
s:ρs<ρ̄

c

ρs
ρs (ρs − ρ̄) +

1

nk

∑
l:ρl≥ρ̄

c

ρl
ρl (ρl − ρ̄)

=
c

nk

n∑
j=1

(ρj − ρ̄) = 0

Theorem 3.4 Assume ρ and the magnitude of the update ‖∆‖22 are independent

E[ρj‖∆j‖22 | B] = E[ρj | B] E[‖∆j‖22 | B]

Then the BC-IR estimator will have equal or lower variance than the IS estimator.

Proof. Because of the condition, we can further simplify the variance equations from Lemma B.3.
Let c = E[‖∆j‖22 | B]. Then for BC-IR we have

ρ̄

nk

n∑
j=1

ρj ‖∆j‖2 =
1

k
ρ̄E
[
ρj ‖∆j‖2 |B

]
=

1

k
ρ̄ρ̄c =

1

k
ρ̄2c

and for IS we have

1

nk

n∑
j=1

ρ2
j‖∆j‖22 =

1

k
E
[
ρ2
j ‖∆j‖22 |B

]
=
c

k
E
[
ρ2
j |B
]

Now when we take the difference, we get

V(XIS|B)− V(XBC|B) =
c

k
(E
[
ρ2
j |B
]
− ρ̄2)

=
c

k
σ̂2(ρj | B)

where σ̂2(ρj) is the sample variance of the importance weights {ρj}nj=1 for B. Because the sample
variance is greater than zero and c ≥ 0, the BC-IR estimator will have equal or lower variance than
the IS estimator.

B.6 Variance of BC-IR and WIS for a fixed dataset

The variance of BC-IR as compared to IS discussed in section 3.3 is only one comparison we can
make. Similarly to bias, we can characterize the variance of the IR estimator relative to WIS-
Optimal. XWIS∗ is able to use a batch update on all the data in the buffer, which should result
in a low-variance estimate but is an unrealistic algorithm to use in practice. Instead, it provides a
benchmark, where the goal is to obtain similar variance toXWIS∗ , but within realistic computational
restrictions. Because of the relationship between IR and WIS, as used in Theorem 3.1, we can
characterize the variance of XIR relative to XWIS∗ using the law of total covariance:

V(XIR) = V [E[XIR|B]] + E [V[XIR|B]]

= V [XWIS∗] + E [V[XIR|B]]

where the variability is due to having randomly sampled buffers B and random sampling from B.
The second term corresponds to the noise introduced by sampling a mini-batch of k transitions
from the buffer B, instead of using the entire buffer like WIS. For more insight, we can expand

18

this second term, E [V[XIR|B]] = E
[
(1
k

∑k
j=1 ∆ij − 1

n

∑n
i=1 ∆i)

2|B
]
, where we consider the

variance independently for each element of ∆i and so apply the square element-wise. The variability
is not due to IS ratios, and instead arises from variability in the updates themselves. Therefore,
the variance of IR corresponds to the variance of WIS, with some additional variance due to this
variability around the average update in the buffer.

C Extended Experimental Results

C.1 Markov Chain

This section contains the full set of markov chain experiments using several different policies. Re-
sults can be found in figure 4 and figure 6. See figure captions for more details.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

RMSVE

Learning Rate

IS(BC)IR WIS-Minibatch WIS-OptimalWIS-Buffer Sarsa OnPolicy

Figure 5: Sensitivity curves for Markov Chain experiments with policy action probabilities [left,
right] left µ = [0.5, 0.5], π = [0.1, 0.9]; center µ = [0.9, 0.1], π = [0.1, 0.9]; right µ =
[0.99, 0.01], π = [0.01, 0.99].

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

RMSVE

Learning Rate

IS(BC)IR Clip = 1.0 Clip = 0.5*max Clip = 0.9*max

Figure 6: Learning rate sensitivity plots for V-Trace (with the same settings as Figure 4). Three
clipping parameters were chosen, including 1.0, 0.5 ρmax and 0.9 ρmax, where ρmax is the maximum
possible IS ratio. For 1.0 ρmax, updates under V-trace become exactly equivalent to IS.

C.2 Continuous Four Rooms

The continuous four rooms environment is an 11x11 2d continuous world with walls setup as the
original four rooms environment grid world. The agent is a circle with radius 0.1, and the state
consists of a continuous tuple containing the x and y coordinates of the agent’s center point. The
agent takes an action in one of the 4 cardinal directions moving 0.5± U(0.0, 0.1) in that directions
and random drift in the orthogonal direction sampled from N(0.0, 0.01). The simulation takes 10
intermediary steps to more accurately detect collisions.

We use three behavior policies in our experiments. Uniform: the agent selects all actions uniformly,
State Variant: the agent selects all actions uniformly except in pre-determined subsections of the
environment where the agent will take down with likelihood 0.1 and the rest distributed evenly
over the other actions, State Weight Variant: the agent selects all actions uniformly except in
pre-determined subsections where the pmf is defined randomly. We also use two target policies.
Persistent Down: where the agent always takes the down action, Favored Down: where the agent
takes the down action with likelihood 0.9 and uniformly among the other actions with likelihood
0.1. We use a cumulant function which indicates collision with a wall and a termination function

19

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

Figure 7: SGD: Target Policy: Top: persistent down, Bottom favored down. Behaviour Policy: left
State Variant center State Weight Variant right Uniform. Sample efficiency plots.

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

103.0 103.5 104.0 104.5 105.0
0.1

0.2

0.3

0.4

0.5

Number of Updates (log)

IR
IS
WISBatch
VTrace_1.0

Figure 8: RMSProp Target Policy: Top: persistent down, Bottom favored down. Behaviour Policy:
left State Variant center State Weight Variant right Uniform. Sample efficiency plots.

103.0 103.5 104.0 104.5 105.0

0.2

0.3

0.4

0.5

0.6 IR-WIS-TD(0)
NormIS
IR
WISBatch
VTrace_1.0
WIS-TD(0)

103.0 103.5 104.0 104.5 105.0

0.2

0.3

0.4

0.5

0.6 IR-WIS-TD(0)
NormIS
IR
WISBatch
VTrace_1.0
WIS-TD(0)

103.0 103.5 104.0 104.5 105.0

0.2

0.3

0.4

0.5

0.6 IR-WIS-TD(0)
NormIS
IR
WISBatch
VTrace_1.0
WIS-TD(0)

103.0 103.5 104.0 104.5 105.0

0.2

0.3

0.4

0.5

0.6 IR-WIS-TD(0)
NormIS
IR
WISBatch
VTrace_1.0
WIS-TD(0)

103.0 103.5 104.0 104.5 105.0

0.2

0.3

0.4

0.5

0.6 IR-WIS-TD(0)
NormIS
IR
WISBatch
VTrace_1.0
WIS-TD(0)

103.0 103.5 104.0 104.5 105.0

0.2

0.3

0.4

0.5

0.6 IR-WIS-TD(0)
NormIS
IR
WISBatch
VTrace_1.0
WIS-TD(0)

Figure 9: Incremental Experiments Target Policy: Top: persistent down, Bottom favored down.
Behaviour Policy: left State Variant center State Weight Variant right Uniform. Sample efficiency
plots.

20

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Learning Rate
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Learning Rate
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Learning Rate

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Learning Rate
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Learning Rate
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Learning Rate

Figure 10: SGD: Target Policy: Top: persistent down, Bottom favored down. Behaviour Policy:
left State Variant center State Weight Variant right Uniform. Learning Rate Sensitivity

which terminates on collision and is 0.9 otherwise for all value functions. We present results using
SGD and RMSProp over many algorithms and parameter settings in figures 7, 8, , and 10.

21

	Introduction
	Background
	Importance Resampling
	Bias of IR
	Consistency of IR
	Variance of Updates

	Empirical Results
	Investigating Convergence Rate
	Investigating Variance
	Demonstration on a Car Simulator

	Conclusion
	Weighted Importance Sampling
	Mini-Batch Algorithms
	Incremental Algorithm

	Additional Theoretical Results and Proofs
	Bias of IR
	Proof of Unbiasedness of BC-IR
	Consistency of the resampling distribution with a growing buffer
	Consistency under a sliding window
	Variance of BC-IR and IS
	Variance of BC-IR and WIS for a fixed dataset

	Extended Experimental Results
	Markov Chain
	Continuous Four Rooms

