
Supplementary Material for Recovering Bandits
A Preliminaries

Define the filtration {Ft}∞t=0 as F0 = ∅ and

Ft = σ(J1, . . . , Jt, Y1, . . . , Yt,Z1, . . . ,Zt) (7)

where Zt = [Z1,t, . . . , ZK,t]. It is important to note that µt(j), σt(j), Jt and Zt are Ft−1 measurable.

Recall that in both dRGP-UCB and dRGP-TS, we select a sequence of arms to play at time t by
building a d-step lookahead tree with root Zt and selecting the leaf node i with highest upper
confidence bound on Mi, the cumulative reward from playing all arms in that sequence,

Mi(Zt) =

d−1∑
`=0

fJt+`
(ZJt+`,t+`)

where {Jt+`}d−1`=0 are the sequence of arms played on the path to leaf i and {ZJt+`,t+`}
d−1
`=0 the

corresponding z values. Denote the posterior mean and variance of Mi(Zt) at time t as ηt(i) and
ςt(i), then, conditional on the history Ft−1, Mi(Zt) ∼ N (ηt(i), ς

2
t (i)). When each arm can be

played multiple times, there are interaction terms in the variance of the Mi(Zt)’s and thus we suffer
some additional cost for not updating after every play. For each leaf node i, we can calculate

ς2t (i) =

d−1∑
`=0

σ2
t (Jt+`) +

d−1∑
6̀=q;`,q=0

covt(fJt+`
(ZJt+`,t+`), fJt+q

(ZJt+q,t+q))

where covt(fJt+`
(ZJt+`,t+`), fJt+q (ZJt+q,t+q)) is 0 if Jt+` 6= Jt+q and

kJt+`
(ZJt+`,t+`, ZJt+qt+q;NJt+`

(t − 1)) for Jt+` = Jt+q. Note that throughout, we as-
sume that the variances and covariances are calculated at the Zj,t’s where the arms are played, ie.
σ2
t (Jt+`) = σ2

Jt+`
(ZJt+`,t+`;NJt+`

(t− 1)).

Before providing the proofs of the regret bounds, we need the following lemmas,

Lemma 9
T∑
t=1

K∑
j=1

σ2
t (Jt)I{Jt = j} ≤ C1KγT .

where C1 = 1/ log(1 + σ−2).

Proof: Using the results of Lemma 5.4 of [28] and the fact that the maximal information gain is
increasing in the number of data points, it follows that

T∑
t=1

K∑
j=1

σ2
t (Jt)I{Jt = j} =

K∑
j=1

Nj(T)∑
n=1

σ2
j (Z

(n)
j ;n− 1)

≤ T
K∑
j=1

C1I(yj,Nj(T); fj,Nj(T)) ≤ C1

K∑
j=1

γNj(T) ≤ C1KγT .

�

The following lemmas bound the amount of information we loose by only updating the posterior
every d steps in the case where we can play each arm multiple times in a d-step lookahead. The result
proves Lemma 4 in the main text.

Lemma 10 For any z ∈ Z arm j and n ∈ N, n ≥ 1, let Z(n) be the z value when arm j is played
for the nth time. Then,

σ2
j (z;n− 1)− σ2

j (z;n) =
k2j (Z

(n)
j , z;n− 1)

σ2
j (Z

(n)
j ;n− 1) + σ2

≤
σ2
j (Z

(n)
j ;n− 1)

σ2

11

Proof: For convenience, we drop the j notation and let kn(z) = [k(Z(1), z), . . . , k(Z(n), z)]T and
Kn = [k(Z(i), Z(j))]ni,j=1. Then,

σ2(z;n− 1)− σ2(z;n)

= k(z, z)− kn−1(z)T (Kn−1 + σ2I)−1kn−1(z)− k(z, z) + kn(z)T (Kn + σ2I)−1kn(z)

= kn(z)T (Kn + σ2I)−1kn(z)− kn−1(z)T (Kn−1 + σ2I)−1kn−1(z) (8)

We write,

kn(z) =

[
kn−1(z)
k(Z(n), z)

]
Kn + σ2I =

(
Kn−1 + σ2I kn−1(z)
kn−1(z)T k(Z(n), Z(n)) + σ2

)
=

(
A B
BT C

)
.

Then, by the block matrix inversion formula,

(Kn + σ2I)−1 =

(
A−1 + A−1B(C −BTA−1B)−1BTA−1 −A−1B(C −BTA−1B)−1

−(C −BTA−1B)−1BTA−1 (C −BTA−1B)−1

)
Hence,

kn(z)T (Kn + σ2I)−1kn(z) = [kn−1(z)T , k(Z(n), z)](Kn + σ2I)−1
[
kn−1(z)
k(Z(n), z)

]
= kn−1(z)T (A−1 + A−1B(C −BTA−1B)−1BTA−1)kn−1(z)

− k(Z(n), z)(C −BTA−1B)−1BTA−1kn−1(z)

− kn−1(z)TA−1B(C −BTA−1B)−1k(Z(n), z)

+ k(Z(n), z)(C −BTA−1B)−1k(Z(n), z)

= kn−1(z)TA−1kn−1(z)

+ kn−1(z)T (A−1B(C −BTA−1B)−1(BTA−1kn−1(z)− k(Z(n), z))

+ (k(Z(n), z)− kn−1(z)TA−1B)(C −BTA−1B)−1k(Z(n), z)

= kn−1(z)TA−1kn−1(z)

+ (k(Z(n), z)− kn−1(z)TA−1B)(C −BTA−1B)−1(k(Z(n), z)− (kn−1(z)TA−1B)T)

Then, substituting back A = Kn−1 + σ2I,B = kn−1(z), C = k(Z(n), z(n)) + σ2 gives,

kn(z)T (Kn + σ2I)−1kn(z) =kn−1(z)T (Kn−1 + σ2I)−1kn−1(z)

+ (k(Z(n), z)− kn−1(z)T (Kn−1 + σ2I)−1kn−1(z))

(k(Z(n), Z(n))− kn−1(zn)T (Kn−1 + σ2I)−1kn−1(z) + σ2)−1

(k(Z(n), z)− (kn−1(z)T (Kn−1 + σ2I)−1kn−1(z))T)

= kn−1(z)T (Kn−1 + σ2I)−1kn−1(z) +
k2(Z(n), z;n− 1)

σ2(Z(n);n− 1) + σ2

Hence, substituting into (8) gives,

σ2(z;n− 1)− σ2(z;n) =
k2(Z(n), z;n− 1)

σ2(Z(n);n− 1) + σ2
.

Then, since the covariance matrix is positive semi-definite, for any z, z′ and m ∈ N, k(z, z′;m) ≤√
σ2(z;m)σ2(z′;m) and so

σ2(z;n− 1)− σ2(z;n) ≤ σ2(Z(n);n− 1)σ2(z;n− 1)

σ2(Z(n);n− 1) + σ2
≤ σ2(Z(n);n− 1)

σ2

since for any z ∈ Z and m ∈ N, 0 ≤ σ2(z;m) ≤ 1. This concludes the proof. �

We then use this result in the following lemma,

12

Lemma 11 For any leaf node i of the d-step look ahead tree constructed at time t,

ς2t (i) ≤ 3

K∑
j=1

(Nj(t+d)∑
m=Nj(t)+1

Nj(t+ d)−m+ 1

σ2
σ2
j (z(m);m− 1)

)
= ζ2t

and ζt is Ft−1 measurable.

Proof: First note that since the posterior covariance matrix of fj is positive semi-definite, for any
z1, z2 and number of samples, n−1, kj(z1, z2;n−1) ≤ 1/2(σ2

j (z1;n−1)+σ2
j (z2;n−1)). Hence,

ςt(i) ≤ 3

d−1∑
`=0

σ2
t (Jt+`).

Now consider arm j and assume it appears s ≤ d times in the d-step look ahead policy selected at
time t. Then, the contribution of arm j (which for ease of notation we assume has been played n− 1
times previously) to ς2t (i) is given below where we use the notation σ2

j (z(i);n − 1) to denote the
posterior variance at the ith z of arm j given n− 1 observations of arm j.
n+s−1∑
m=n

σ2
j (Z

(m)
j ;n− 1) = σ2

j (z(n);n− 1) + · · ·+ σ2
j (z(n+s−1);n− 1)

= σ2
j (z(n);n− 1) + σ2

j (z(n+1);n) +
(
σ2
j (z(n+1);n− 1)− σ2

j (z(n+1);n)
)

+ . . .

+ σ2
j (z(n+s−1);n+ s− 2) +

(
σ2
j (z(n+s−1);n+ s− 3)− σ2

j (z(n+s−1);n+ s− 2)
)

+ · · ·+
(
σ2
j (z(n+s−1);n− 1)− σ2

j (z(n+s−1);n)
)

≤ σ2
j (z(n);n− 1) + σ2

j (z(n+1);n) +
σ2
j (z(n);n− 1)

σ2
+ . . .

+ σ2
j (z(n+s−1);n+ s− 2) + · · ·+

σ2
j (z(n+1);n)

σ2
+
σ2
j (z(n);n− 1)

σ2

=

s−1∑
q=0

(1 +
s− q − 1

σ2
)σ2
j (z(n+q);n+ q − 1)

≤
s−1∑
q=0

s− q
σ2

σ2
j (z(n+q);n+ q − 1)

which follows by recursively applying Lemma 4. Then, summing over all arms j gives,

ς2t (i) ≤ 3

K∑
j=1

(Nj(t+d)∑
m=Nj(t)+1

σ2
j (z(m);Nj(t))

)

≤ 3

K∑
j=1

(Nj(t+d)∑
m=Nj(t)+1

Nj(t+ d)−m+ 1

σ2
σ2
j (z(m);m− 1)

)
Then, we note that ζt is Ft−1 measurable since for a given leaf node i of the tree constructed at time
t, the sequence of arms played to get to node i is known so Nj(t + d) will be known and also the
sequence of Z(m)

j ’s where arm j is played will also be known. Since the posterior variance of arm j
after m plays depends only on the number of plays and the covariates (not the observed rewards),
σ2
j (z(m);m− 1) is Ft−1 measurable for m = Nj(t) + 1, . . . , Nj(t+ d). �

We also need the following result on the expectation of the maximum.

Lemma 12 Let X1, . . . Xn be Gaussian random variables such that max1≤i≤nV(Xi) ≤ ζ2. Then,

E
[

max
1≤i≤n

Xi

]
≤ ζ
√

2 log(n).

Proof: See for example, Lemma 2.2 in [9]. �

13

B Theoretical Results for dRGP-UCB

We first prove the following lemma.

Lemma 13 For any leaf node i, initial node z and constant a > 0,∫ ∞
a

P(Mi(z)− ηt(i) ≥ x|Ft−1)dx ≤
√

2πςt(i) exp

{
− a2

2ς2t (i)

}
.

Proof: The proof follows using the normality of the posterior of Mi(z) (so at time t, Mi(Zt) ∼
N (ηt(i), ςt(i)

2)).∫ ∞
a

P(Mi(z)− ηt(i) ≥ x|Ft−1)dx ≤
∫ ∞
a

exp

{
− x2

2ς2t (i)

}
dx

=
√

2πςt(i)

∫ ∞
a

1√
2πςt(i)

exp

{
− x2

2ς2t (i)

}
dx

≤
√

2πςt(i) exp

{
− a2

2ς2t (i)

}
.

Where we have used that if X ∼ N (µ, σ2), P(X − µ ≥ b) ≤ exp{− b2

2σ22} for any b > 0, and the
last inequality follows through integration of the pmf of a N (0, ςt(i)) random variable. �

Then, define MI∗t
(Zt) to be the sum of the fj(z)’s to leaf It∗ of the optimal d step look ahead

policy from time t chosen using the unknown fj(z)’s. Let rt be the per step regret at time t. We
now bound the expected regret from time steps t, t+ 1, . . . , t+ d− 1 where we have played arms
according to the choice of It by our algorithm. Let rs be the contribution to the regret at time s, that
is rs = fJ∗

t
(ZJ∗

t ,t
)− fJt(ZJt,t). Then, let

αt =
√

2 log((K|Z|)d(t+ d− 1)2).

We will use the following lemma,

Lemma 14 Assume we start a d-step look ahead policy at time t, selecting leaf node It, then
t+d−1∑
s=t

E[rs|Ft−1] ≤
√

2dπ

(t+ d− 1)2
+ αtςt(It).

Proof: From (3), the upper confidence bound of node i at time t is given by,

ηt(i) + αtςt(i),

and since we play node It, this has the highest upper confidence bound. Then, we use the following
decomposition of the regret,
t+d−1∑
s=t

E[rs|Ft−1] = E[MI∗t
(Zt)−MIt(Zt)|Ft−1]

= E[MI∗t
(Zt)− (ηt(I

∗
t) + αtςt(I

∗
t)) + (ηt(I

∗
t) + αtςt(I

∗
t))−MIt(Zt)|Ft−1]

≤ E[MI∗t
(Zt)− (ηt(I

∗
t) + αtςt(I

∗
t)) + (ηt(It) + αtςt(It))−MIt(Zt)|Ft−1]

= E[MI∗t
(Zt)− ηt(I∗t)− αtςt(I∗t)|Ft−1] + E[ηt(It) + αtςt(It)−MIt(Zt)|Ft−1]

For the first term, note that for any random variable X , E[X] ≤ E[XI{X > 0}] =
∫∞
0

P(X ≥ x)dx.
Then, by Lemma 13 and using the fact that ς2t (i) ≤

∑d−1
`=0 k(z`, z`) ≤ d, it follows that,

E[MI∗t
(Zt)− ηt(I∗t)− αtςt(I∗t)|Ft−1] ≤

∫ ∞
0

P(MI∗t
(Zt)− ηt(I∗t)− αtςt(I∗t) ≥ x|Ft−1)dx

≤
∫ ∞
0

Kd∑
i=1

∑
z∈Zd

P(Mi(z)− ηt(i)− αtςt(i) ≥ x|Ft−1)dx

14

=

Kd∑
i=1

∑
z∈Zd

∫ ∞
αtςt(i)

P(Mi(z)− ηt(i) ≥ x|Ft−1)dx

=

Kd∑
i=1

∑
z∈Zd

√
2πςt(i) exp

{
− (αtςt(i))

2

2ς2t (i)

}

≤
Kd∑
i=1

∑
z∈Zd

√
2dπ

1

(t+ d− 1)2(K|Z|)d

=

√
2dπ

(t+ d− 1)2
,

where the last inequality follows from the definition of αt.

For the second term, recall that ηt(i) = E[Mi(Zt)|Ft−1] and It is Ft−1 measurable. Hence,

E[ηt(It) + αtςt(It)−MIt(Zt)|Ft−1] = ηt(It) + αtςt(It)− ηt(It) = αtςt(It).

Combining both terms gives the result.

�

We now prove the regret bounds for dRGP-UCB in the repeating and non-repeating cases.

B.1 Non-Repeating

Theorem 2 The d-step single play lookahead regret of dRGP-UCB satisfies,

E[R
(d,s)
T] ≤ O(

√
KTγT log(TK|Z|)).

Proof: For ease of notation define RT as the d-step lookahead regret with single plays that we are
interested in (i.e. RT = R

(d,s)
T) and note that,

E[RT] ≤
bT/dc∑
h=0

E
[(h+1)d∑
s=hd+1

E[rs|Fhd]
]
.

Then, using Lemma 14, and the fact that since we cannot repeat plays, σt(Jt+`) = σt+`(Jt+`) for
any ` = 0, . . . , d− 1,

E[RT] ≤
bT/dc∑
h=0

E
[(h+1)d∑
s=hd+1

E[rs|Fhd]
]

≤
bT/dc∑
h=0

E
[√

2dπ

(h+ 1)2d2
+ αhd+1

√
ς2hd+1(Ihd+1)

]

≤
√

2π

d

bT/dc+1∑
h=1

1

h2
+

bT/dc∑
h=0

√
2 log((K|Z|)d(h+ 1)2d2)E

[√√√√d−1∑
`=0

σhd+1(Jhd+1+`)

]

≤ π5/2

√
23d

+
√

4 log((K|Z|)d(T + d))
√
bT/dc+ 1E

[√√√√ T∑
t=1

σ2
t (Jt)

]

≤ π5/2

√
23d

+
√

4 log((K|Z|)d(T + d))
√
bT/dc+ 1E

[√√√√ K∑
j=1

T∑
t=1

σ2
t (j)I{Jt = j}

]

≤ π5/2

√
23d

+
√

4 log((K|Z|)d(T + d))
√
bT/dc+ 1

√
C1KγT

where C1 = 1/ log(1 + σ−2) and the last line follows by Lemma 9. This gives the result.

�

15

B.2 Repeating

Theorem 5 The d-step multiple play lookahead regret of dRGP-UCB satisfies,

E[R
(d,m)
T] ≤ O

(√
KTγT log((K|Z|)dT)

)
.

Proof: For ease of notation define RT as the d-step lookahead regret with multiple plays that we are
interested in (i.e. RT = R

(d,m)
T) and note that,

E[RT] =

bT/dc∑
h=0

E
[(h+1)d∑
s=hd+1

E[rs|Fhd]
]
.

Then, note that from Lemma 11, it follows that

ς2t (i) ≤ 3

K∑
j=1

(Nj(t+d)∑
m=Nj(t)+1

Nj(t+ d)−m+ 1

σ2
σ2
j (z(m);m−1)

)
≤ 3d

σ2

K∑
j=1

Nj(t+d)∑
m=Nj(t)+1

σ2
j (z(m);m−1).

Hence, by lemma 14 and summing over all time points where we start a d-step look ahead policy, it
follows that,

E[RT] =

dT/de−1∑
h=0

E
[(h+1)d∑
s=hd+1

E[rs|Fhd]
]

≤
bT/dc∑
h=0

E
[√

2dπ

(h+ 1)2d2
+ αhd+1

√
ς2hd+1(Ihd+1)

]

≤
√

2π

d

bT/dc+1∑
h=1

1

h2
+

bT/dc∑
h=0

√
2 log((K|Z|)d(h+ 1)2d2)E

[√√√√√3d

σ2

K∑
j=1

Nj(d(h+1))∑
m=Nj(dh)+1

σ2
j (z(m);m− 1)

]

≤ π5/2

√
23d

+

√
12d

σ2
log((K|Z|)d(T + d))

√
bT/dc+ 1E

[√√√√√bT/dc∑
h=0

K∑
j=1

Nj(d(h+1))∑
m=Nj(dh)+1

σ2
j (z(m);m− 1)

]
Then, from Lemma 9 and the fact that γn is increasing in n,√√√√√bT/dc∑

h=0

K∑
j=1

Nj(d(h+1))∑
m=Nj(dh)+1

σ2
j (z(m);m− 1) =

√√√√ K∑
j=1

Nj(T)∑
m=1

σ2
j (z(m);m− 1)

≤

√√√√ K∑
j=1

C1γNj(T) ≤
√
C1KγT

for C1 = (1 + log(σ−2))−1. Hence,

E[RT] ≤ π5/2

√
23d

+

√
12d

σ2
log((K|Z|)d(T + d))

√
T/d+ 1

√
C1KγT

and so the result follows. �

C Theoretical Results for dRGP-TS

The regret bounds for the Thompson sampling approach(dRGP-TS) follow in a similar manner to
those for dRGP-UCB using the techniques of [25]. Specifically, using [25], we get the following
result which is equivalent to Lemma 14, and which can then be used to get the regret bound much in
the same way as Theorem 2 and Theorem 5.

16

Lemma 15 Assume we start a d-step look ahead policy at time t, selecting leaf node It, then

t+d−1∑
s=t

E[rs|Ft−1] ≤
√

2dπ

(t+ d− 1)2
+ αtςt(It).

Proof: As in [25] we relate the Bayesian regret of Thompson sampling to the upper confidence
bounds used in our upper confidence bound approach. Specifically, by Proposition 1 in [25],

t+d−1∑
s=t

E[rs|Ft−1] = E[MI∗t
(Zt)−MIt(Zt)|Ft−1]

= E[MI∗t
(Zt)− ηt(I∗t)− αtςt(I∗t)|Ft−1] + E[ηt(It) + αtςt(It)−MIt(Zt)|Ft−1]

The same argument as Lemma 14 then gives the result.

�

C.1 Non-Repeating

Theorem 3 The d-step single play lookahead regret of dRGP-TS satisfies,

E[R
(d,s)
T] ≤ O(

√
KTγT log(TK|Z|)).

Proof: Given Lemma 15, the proof follows in the same manner as the proof of Theorem 2. �

C.2 Repeating

Theorem 6 The d-step multiple play lookahead regret of dRGP-TS satisfies,

E[R
(d,m)
T] ≤ O

(√
KTγT log((K|Z|)dT)

)
.

Proof: Again, the proof follows by the same argument as Theorem 5 using Lemma 15. �

D Optimality of the Lookahead Oracle

For any policy π, let VT (π) denote the expected cumulative reward from playing policy π up to
horizon T . We say a policy π is periodic with period p ∈ N from some initial z1 if there is some
t0 > 0 such that for all t > t0, zπt = zπt+p and jπt = jπt+p∗ , where jπt is the action taken at time t by
policy π and zπt is the vector of z values obtained at time t from playing according to policy π for
t− 1 steps. For a periodic policy π and initial z1, we will assume that p ≥ t0.

Lemma 16 If π∗ is an optimal stationary deterministic policy then if T > |Z|K , then π∗ must be
periodic with some period p∗ ≤ |Z|K .

Proof: The proof follows by noting that π∗ must be a deterministic mapping from z to actions since
a stationary policy does not depend on the time step. In particular, π∗ : ZK → {1, . . . ,K} with
π∗(z) = j for some 1 ≤ j ≤ K, and each z corresponds to only one action. We now argue for a
contradiction. Assume that π∗ is not periodic. Then since T > |Z|K , there must exist some z which
is arises twice, so there exists some t and 0 < p∗ ≤ |Z|K such that zt = zt+p∗ = z. Since π∗ is a
deterministic mapping, the same action must be taken in both cases, which will lead to the same next
value of z′ = zt+1 = zt+p∗+1, since the evolution of the z is deterministic conditional on actions.
Repeatedly applying same argument, we see that π∗ will take the same sequence of p∗ actions from
z in both cases before returning to z (if the horizon is long enough). Hence π∗ must be periodic,
contradicting the assumption. �

Proposition 1 Let p∗ be the period of the optimal SD policy π∗. For any l = 1, . . . , bT−zmax

p∗ c, the

optimal (zmax + lp∗)-lookahead policy, π∗l , satisfies, VT (π∗l) ≥
(
1− (l+1)p∗+zmax

T+p∗

)
lp∗

lp∗+zmax
VT (π∗).

17

Proof: Define a vector z = (z1, . . . , zK) as feasible for the recovering bandits problem starting from
z0 with K arms and a fixed value of zmax, if it is possible to play a sequence of arms up to any
time t ≥ 1 such that zt = z. We begin by observing that it is possible to get from any feasible
z = (z1, . . . , zK) to any other feasible z′ = (z′1, . . . , z

′
K) in at most zmax steps. For this, we need the

following properties of z that are consequences of the update procedure in equation (1). Equation (1)
guarantees that there must be exactly one element of z equal to 0, and ifzi, zj 6= zmax, then zi 6= zj
for i 6= j. For the target vector z′, let n be the number of elements with value zmax. The remaining
K−n entries must all be unique and one must be 0, denote the index of this i0. In the following zmax

steps, we play each arm corresponding to zi 6= zmax at step zmax − zi and play i0 in the intervening
steps, and at step zmax. It is clear to see that this procedure will go from z to z′ in zmax steps.

Let v∗ be the reward achieved in p∗ steps of the optimal policy π∗. By the above argument, from any
initial state of the lookahead Zt, it is possible to get to any other (feasible) z in at most zmax steps. In
particular, it is possible to get to one of the elements z(1), . . . , z(p

∗) of the optimal periodic policy
in zmax steps. Hence, the policy that chooses the quickest route to the optimal periodic policy and
then plays that policy for lp∗ steps is a valid (zmax + lp∗)-lookahead policy. This policy will achieve
reward of at least lv∗ over this period. Consequently, the optimal (zmax + lp∗)-lookahead policy,
π∗l will achieve reward of at least lv∗ every (zmax + lp∗) steps. We select a lookahead policy every
(zmax + lp∗) steps, therefore the total reward of π∗l must be at least b T

lp∗+zmax
clv∗. The total reward

of π∗ is less than d Tp∗ ev
∗. Therefore,

VT (π∗l)

VT (π∗)
≥
b T
lp∗+zmax

clv∗

d Tp∗ ev∗
≥

T
lp∗+zmax

− 1
T
p∗ + 1

l =

(
1− (l + 1)p∗ + zmax

T + p∗

)
lp∗

lp∗ + zmax
.

This gives the result. �

E Theoretical Guarantees on Optimistic Planning Procedure

Proposition 8 For the optimistic planning procedure with budget N , if the procedure stops at step
n < N because a node in of depth d is selected, then v∗ − v(in) = 0. Otherwise, if there exist
λ ∈ (1

K , 1] and 1 ≤ d0 ≤ d such that ∀l ≥ d0, pl((d− l)∆) ≤ λl, then for N > n0 = Kd0+1−1
K−1 ,

v∗ − v(iN) ≤
(
d− log(N − n0)

log(λK)
− log(λK − 1)

log(λK)
+ 1

)
∆. (6)

Proof: Since our f̃j(z)’s are samples from a Gaussian posterior, they can be negative. Hence
it will be convenient to work with a transformation that guarantees positivity. To this end, let
δ = −minj,z f̃j(z) if minj,z f̃j(z) < 0 and δ = 0 if minj,z f̃j(z) ≥ 0 and for any arm j and
covariate z, define,

f̃ ′j(z) = f̃j(z) + δ ≥ 0.

Then we define the corresponding v, b and u values of any node i ∈ Sn at step n and Ψ functions as,

v′(i) = v(i) + dδ b′n(i) = bn(i) + dδ u′(i) = u(i) + l(i)δ

Ψ′(z(i), d− l(i)) = Ψ(z(i), d− l(i)) + (d− l(i))δ Ψ′∗(l) = Ψ∗(l) + lδ,

where l(i) is the depth of node i. Note that node i∗ maximizing v(i) will also maximize v′(i) and
that if at step n we select a node maximizing bn(i) this will also be the node maximizing b′n(i) and
so v(i1) ≥ v(i2) ⇐⇒ v′(i1) ≥ v′(i2) and b(i1) ≥ b(i2) ⇐⇒ b′(i1) ≥ b′(i2) for all nodes i1, i2.
Furthermore, it holds that v′(i) ≥ u′(i) and that b′(i) is an upper bound on v′(i) for all nodes i and
in particular b′(i) = u′(i) + Ψ′(z(i), d− l(i)).

We begin with the case where the algorithm is stopped after some number n of nodes have been
expanded because the selected node is of depth d. Let i∗1, . . . , i

∗
d be the nodes on the path to the

optimal node i∗ and let j be the maximal depth of this path in Tn ∪ Sn. If in is the node at depth d
selected to be expanded at time n, then,

0 ≤ v∗ − v(in) = v′(i∗j)− v′(in) ≤ b′(i∗j)− v′(in) ≤ b′(in)− v′(in) = Ψ′(z(in), d− d) = 0,

since we select node in at time n so it must have the largest bn(i) and b′n(i) value. This proves the
first statement.

18

For the other case, define the set

Γ =

d⋃
l=0

{ node i of depth l such that v∗ − v(i) ≤ Ψ′∗(d− l)},

and note that if v∗ − v(i) ≤ Ψ′∗(d− l) then also v′∗ − v′(i) ≤ Ψ′∗(d− l). As in [13], we will show
that all nodes expanded by our algorithm are in Γ. For this, let node i of depth l be chosen to be
expanded at time n. This means it has the largest bn(i) (and b′n(i)) value of all nodes in Sn. We
also now need to define the b value of a node in Tn as bn(i) = maxj∈C(i) bn(j) where C(i) is the
set of all children of node i, and we define b′n(i) correspondingly. This definition together with the
previous remark means that for any j ∈ Tn, b′n(i) ≥ b′n(j). Then for some 1 ≤ j ≤ d, i∗j ∈ Tn, so it
follows that b′n(i∗j) ≤ b′n(in). But, the best value of any continuation of a path to the optimal node is
simply v∗ and so by definition of the b values b′n(i∗j) ≥ v′(i∗j) = v′∗. Hence, since v′(i) ≥ u′(i) and
Ψ′(z(i), d− l) ≤ Ψ′∗(d− l)„

v′(i) ≥ u′(i) = b′n(i)−Ψ′(z(i), d−l) ≥ b′n(i∗j)−Ψ′(z(i), d−l) ≥ v′∗−Ψ′(z(i), d−l) ≥ v′∗−Ψ′∗(d−l),

it follows that i ∈ Γ. Then, we bound from below the maximal depth at which a node is chosen
to be expanded. Let n0 be the number of policies in Γ up to depth d0 and let dN be the maximal
depth of any node expanded before the algorithm is stopped at time N . By the assumption in
the proposition, the proportion of (d − l)∆-optimal nodes at depth l is bounded by λl. Then,
Ψ′∗(d − l) = Ψ(d − l) + (d − l)δ ≤ (d − l) maxj,z f̃j(z) − (d − l) minj,z f̃j(z) = (d − l)∆ by
definition of Ψ and so pl(Ψ′∗(d− l)) ≤ pl((d− l)∆) ≤ λl. Hence,

N ≤ n0 +

dN∑
l=d0

λlKl = n0 +

dN∑
l=d0

Al ≤ n0 +Ad0+1A
dN−d0 − 1

A− 1

for A = λK > 1. Rearranging gives,

dN ≥ d0 + logA

(
(N − n0)(A− 1)

Ad0+1
+ 1

)
≥ d0 + logA

(
(N − n0)(A− 1)

Ad0+1

)
≥ log(N − n0)

log(Kλ)
− 1 +

log(λK − 1)

log(λK)

Let iN be the node the algorithm outputs at step N when the computational resources have been
exceeded and note that this is the node in TN with largest depth (i.e. l(iN) = dN) that has the largest
bN (or b′N) value. Since iN ∈ TN , there is some step n ≤ N when node iN was expanded. Then, let
j be the maximal depth of nodes on the path i∗1, . . . , i

∗
d in Sn. It then follows that

v′∗ − v′(iN) ≤ b′n(i∗j)− v′(iN) ≤ b′n(iN)− v(iN) ≤ Ψ′(z(iN), d− l(iN)) ≤ Ψ′∗(d− dN).

Hence,

v∗ − v(iN) = v′∗ − v′(iN) ≤ Ψ′∗(d− dN) = Ψ∗(d− dN) + (d− dN)δ

≤ (d− dN)(max
j,z

f̃j(z)−min
j,z

f̃j(z)) ≤
(
d− log(N − n0)

log(Kλ)
− log(λK − 1)

log(λK)
+ 1

)
∆

which gives the result.

�

F Regret Bounds for Non-Parametric Approach

We use an algorithm which has no information about the recovery structure as a baseline. For this,
we model each (arm, z) pair as an arm. This reduces the problem to a standard multi-armed bandit
problem with K|Z| arms, where only some arms are available each round.

Let µj,z denote the expected reward of arm j when zj = z. We can then create estimates Ȳj,z,t of
the reward of each arm from the Nj,z(t) samples of arm j with Zj = z we receive up to time t.

19

These estimates can be used to define an upper confidence bound style algorithm over the ‘arms’
{(j, z)}K,Zmax

j=1,z=0. We define confidence bound based on UCB1 [2] and [25]

U(j, z, t) = Ȳz,j,t +

√
σ2(2 + 6 log(T))

Nj,z(t)
.

where σ is the standard error of the noise. After playing each j, z combinations once, we proceed to
play the arm with largest U(j, Zj,t, t) at time t. We now bound the Bayesian regret of this algorithm
to horizon T .

Theorem 17 The instantaneous regret up to time T of the UCB1 algorithm with K|Z| arms can be
bounded by

E[R
(1)
T] ≤ O(

√
K|Z|T log(T) +K|Z|2)

Proof: We first consider the initialization phase. For this, note that in order to play arm j at Zj = z,
we need to wait z rounds from when it was last played. This means that the total number of plays
required to play each arm at each z value can be bounded by t0 = K|Z|(|Z|+ 1) (since in the worst
case, for arm j, we need to wait, 1 round, then 2 rounds, up to |Z| rounds). We can bound the per-step
regret from this initialization period using Lemma 12. For any 1 ≤ t ≤ t0,

E[fJ∗
t
(ZJ∗

t ,t
)− fJt(ZJt,t)] ≤ E[max

1≤t≤t0
{fJ∗

t
(ZJ∗

t ,t
)− fJt(ZJt,t)}] ≤ 2

√
2 log(t0)

since the distribution of the difference of two zero mean Gaussian random variables with variances
σ2
1 , σ

2
2 ≤ 1 is also a Gaussian random variable with mean 0 and variance σ2

1 +σ2
2 ≤ 2 here. Then, we

can use a similar technique to [25] to bound the cumulative regret in the remaining t0 + 1 ≤ t ≤ T
steps but using Lemma 12 again to bound the maximal difference in fj’s.

E[RT] =

T∑
t=t0

E[fJ∗
t
(ZJ∗

t ,t
)− fJt(ZJt,t)I{∀j, z; fj(z) ∈ [L(j, z, t), U(j, z, t)]}]

+

T∑
t=t0

E[fJ∗
t
(ZJ∗

t ,t
)− fJt(ZJt,t)I{∃j, z; fj(z) /∈ [L(j, z, t), U(j, z, t)]}]

≤
T∑
t=t0

E[U(J∗t , ZJ∗
t ,t
, t)− L(Jt, ZJt,t, t)] + 2

√
2 log(T)TP(∃j, z; fj(z) /∈ [L(j, z, t), U(j, z, t)])

≤
T∑
t=t0

E[U(Jt, ZJt,t, t)− L(Jt, ZJt,t, t)] + 2
√

2 log(T)T

K∑
j=1

∑
z∈Z

P(fj(z) /∈ [L(j, z, t), U(j, z, t)])

Since εt ∼ N (0, σ2), by Lemma 1 in [25],

2
√

2 log(T)T

K∑
j=1

∑
z∈Z

P(fj(z) /∈ [L(j, z, t), U(j, z, t)]) ≤
2
√

2 log(T)T |Z|K
T

≤ 2K|Z|
√

2 log(T).

Then, for the first term, by the same argument as [25],
T∑
t=t0

E[U(Jt, ZJt,t, t)− L(Jt, ZJt,t, t)] ≤
T∑
t=t0

K∑
j=1

∑
z∈Z

E[U(j, z, t)− L(j, z, t)I{Jt = j, ZJt,t = z}]

≤ 2
√
σ2(2 + 6 log(T))

T∑
t=t0

K∑
j=1

∑
z∈Z

E
[

1√
2Nj,z(t)

I{Jt = j, ZJt,t = z}
]

≤ 2
√
σ2(2 + 6 log(T))

K∑
j=1

∑
z∈Z

E
[Nj,z(T)−1∑

l=0

1√
l + 1

]

≤ 2
√
σ2(2 + 6 log(T))

K∑
j=1

∑
z∈Z

E
[√

Nj,z(T)

]
≤ 2
√
σ2(2 + 6 log(T))

√
K|Z|T

where the last line follows by Cauchy-Schwartz. This concludes the proof. �

20

G Further Experimental Results

G.1 Posterior Distributions and Covariates

G.1.1 dRGP-UCB

In this section, we plot the posterior (blue) of dRGP-UCB. with density given by the blue region in
the instantaneous case. The red curve is the true recovery curve and the crosses are our observed
samples for various values of d and different kernels. Note that as the kernel gets smoother, the
algorithm places more samples in the good regions. This is to be expected as for smoother kernels,
there is less need to explore as many sub-optimal regions. Also, as d increases more samples are at
the peaks of the recovery curves.

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(a) d = 1

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(b) d = 2

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(c) d = 3

Figure 5: dRGP-UCB with squared exponential kernel with l = 0.5

21

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(a) d = 1

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(b) d = 2

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(c) d = 3

Figure 6: dRGP-UCB with squared exponential kernel with l = 2

22

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(a) d = 1

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(b) d = 2

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(c) d = 3

Figure 7: dRGP-UCB with squared exponential kernel with l = 5

23

G.1.2 dRGP-TS

In this section, we plot the posterior (blue) of dRGP-TS. with density given by the blue region
with different l’s and d’s. We see much the same pattern as for dRGP-UCB, although it does seem
to demonstrate poorer estimation of the recovery curve in the single step case. This suggests that
the Thompson sampling approach is focusing on exploitation rather than exploration, as has been
observed in other settings (eg. in linear bandits [1] show that the variance of the posterior needs to be
inflated to encourage more exploration in Thompson Sampling). However, it is worth noting that the
algorithms have only been run once for these plots.

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(a) d = 1

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(b) d = 2

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(c) d = 3

Figure 8: dRGP-TS for squared exponential kernel with l = 0.5

24

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(a) d = 1

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(b) d = 2

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(c) d = 3

Figure 9: dRGP-TS for squared exponential kernel with l = 2

25

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(a) d = 1

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(b) d = 2

3

2

1

0

1

2

3

0 5 10 15 20 25 30
3

2

1

0

1

2

3

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

z

fj(z)

(c) d = 3

Figure 10: dRGP-TS wit squared exponential kernel with l = 5

26

G.2 Implementation of RogueUCB-Tuned

We briefly discuss the steps that were taken to map the recovering bandits problem into the setup
of [18]. For this, we need to encode the recovery dynamics into a state dynamics function used
by [18]. This can trivially be done by defining the functions h : (Z,A) → Z as h(z, j) =
max{z + 1, zmax} −max{zj + 1, zmax}ej , where 1 is the vector of ones, ej is the standard basis
vector consisting of all zeros and a 1 in position j, and the maximum is taken component wise. As in
[18], we did not implement the RogueUCB algorithm, but rather the empirical version, RogueUCB-
Tuned, for which there are no theoretical guarantees. When implementing this, we set the parameter
η to be the maximal value of the KL-divergence, as in [18].

G.3 Values of Theta used in Parametric Experiments

Here we give the values of θ (to 3dp) which were used in the logistic and gamma experiments in
Section 7. These were sampled uniformly. Note that this sampling had no influence over our choice
of kernel.

G.3.1 Logistic

Table 2: θ values used in experiments with logistic recovery functions

θ

Arm 1 0.584 0.521 12.239
Arm 2 0.971 0.357 10.460
Arm 3 0.121 0.622 25.631
Arm 4 0.240 0.943 18.870
Arm 5 0.613 0.925 20.310
Arm 6 0.480 0.914 1.452
Arm 7 0.974 0.484 10.128
Arm 8 0.780 0.422 0.396
Arm 9 0.658 0.591 23.264

Arm 10 0.687 0.753 7.908

G.3.2 Gamma

Table 3: θ values used in experiments with gamma recovery functions

θ

Arm 1 2.068 0.249 0.508
Arm 2 5.023 0.375 0.551
Arm 3 3.657 0.470 0.772
Arm 4 0.560 0.176 0.569
Arm 5 3.901 0.747 0.500
Arm 6 0.600 0.145 0.266
Arm 7 6.482 0.522 0.554
Arm 8 13.645 0.748 0.678
Arm 9 7.365 0.562 0.288

Arm 10 2.705 0.593 0.381

G.4 Results for Different Lengthscales

In this section, we present results for the parametric setting where we have used different lenghtscales
for the kernel of the Gaussian process in our methods. The parametric functions that we are
considering are quite smooth so we choose a squared exponential kernel and used l = 5 in the

27

Table 4: Total reward at T = 1000 for l = 2.5

Setting 1RGP-UCB (l = 2.5) 1RGP-TS (l = 2.5) RogueUCB-Tuned UCB-Z

Logistic 448.6 (441.1,456.6) 452.5 (443.7,460.3) 446.2 (438.2,453.5) 242.6 (229.6,256.0)
Gamma 145.1 (138.5, 151.5) 155.8 (148.8,162.5) 132.7 (111.0,144.5) 116.8 (108.4,125.5)

Table 5: Total reward at T = 1000 for l = 7.5

Setting 1RGP-UCB (l = 7.5) 1RGP-TS (l = 7.5) RogueUCB-Tuned UCB-Z

Logistic 465.1 (457.3,472.9) 465.1 (457.4,472.7) 446.2 (438.2,453.5) 242.6 (229.6,256.0)
Gamma 145.2 (139.8, 151.0) 155.8 (149.0,162.5) 132.7 (111.0,144.5) 116.8 (108.4,125.5)

main text, and present results here for l = 2.5 and l = 7.5. Note that in this setting looking at the
smoothness of the recovery functions to inform a decision about the lengthscale is reasonable since
we are comparing our algorithms to RogueUCB-Tuned of [18] which requires knowledge of the
parametric family and Lipschitz constant of the recovery function.

The results for l = 2.5 are shown in Table 4 and Figure 11. The results for l = 7.5 are in Table 5 and
Figure 12. From these results, we can see that in the Gamma case, our algorithms are almost invariant
to the choice of l, obtaining similar results for all choices of l. In particular, for all three choices
of l considered, our algorithms considerably outperform RogueUCB-Tuned of [18]. In the logistic
setting, there is slightly more variation in the performance of our algorithms when the lengthscale
changes, although the results are still fairly similar. In this case, we see that choosing l = 7.5 leads to
the best results for both of our algorithms. This is most likely due to the fact that logistic functions
are quite smooth and l = 7.5 represents the smoothest GPs we have considered.

0 200 400 600 800 1000
t

0
25
50
75

100
125
150
175
200

cu
m

m
ul

at
iv

e
re

gr
et RGP-UCB

RGP-TS
RogueUCB
UCB-Z

(a) Logistic setup, l = 2.5

0 200 400 600 800 1000
t

0

50

100

150

200

250

300

cu
m

m
ul

at
iv

e
re

gr
et RGP-UCB

RGP-TS
RogueUCB
UCB-Z

(b) Gamma setup, l = 2.5

Figure 11: Cumulative instantaneous regret l = 2.5

0 200 400 600 800 1000
t

0
25
50
75

100
125
150
175
200

cu
m

m
ul

at
iv

e
re

gr
et RGP-UCB

RGP-TS
RogueUCB
UCB-Z

(a) Logistic setup, l = 7.5

0 200 400 600 800 1000
t

0

50

100

150

200

250

300

cu
m

m
ul

at
iv

e
re

gr
et RGP-UCB

RGP-TS
RogueUCB
UCB-Z

(b) Gamma setup, l = 7.5

Figure 12: Cumulative instantaneous regret l = 7.5

28

