
Supplementary Material371

A Robust Sparse Mean Estimation372

In this section, we prove correctness of Algorithm 1 establishing Theorem 1.2. For completeness,373

we restate a formal version of this theorem:374

Theorem A.1. Let D ∼ N (µ, I) be an identity covariance Gaussian distribution on R
d with un-375

known k-sparse mean vector µ, and ε, τ > 0. Let S be an ε-corrupted set of samples from D of size376

N = Ω̃(k2 log(d/τ)/ε2). There exists an efficient algorithm that, on input S, k, ε, and τ , returns a377

mean vector µ̂ such that with probability at least 1− τ it holds ‖µ̂− µ‖2 = O(ε
√
log(1/ε)).378

A.1 Preliminaries379

We will use the following notation and definitions.380

Basic Notation For n ∈ Z+, let [n]
def
= {1, 2, . . . , n}. Throughout this paper, for v =381

(v1, . . . , vd) ∈ R
d, we will use ‖v‖2 to denote its Euclidean norm. If M ∈ R

d×d, we will use382

‖M‖2 to denote its spectral norm, ‖M‖F to denote its Frobenius norm, and tr[M ] to denote its383

trace. We will also let � and � denote the PSD ordering on matrices. For a finite multiset S, we384

will write X ∈u S to denote that X is drawn from the empirical distribution defined by S. Given385

finite multisets S and S′ we let ∆(S, S′) be the size of the symmetric difference of S and S′ divided386

by the cardinality of S.387

For v ∈ R
d and S ⊆ [d], let vS be the vector with (vS)i = vi, i ∈ S, and (vS)i = 0 otherwise.388

We denote by hk(v) the thresholding operator that keeps the k entries of v with largest magnitude389

(breaking ties arbitrarily) and sets the rest to 0. For M ∈ R
d×d and U ⊆ [d], let MU denote the390

matrix M restricted to the U × U sub-matrix. For W ⊆ [d]× [d], then we will use M(W ) to denote391

the matrix M restricted to the elements whose entries are in W.392

Let δij denote the Kronecker delta function. We will denote erfc(z) = (2/
√
π)
∫∞
z

e−t2dt. The393

notation Õ(·) and Ω̃(·) hides logarithmic factors in the argument.394

A.2 Proof of Theorem A.1395

In this section, we describe and analyze our algorithm establishing Theorem A.1. We start by for-396

malizing the set of deterministic conditions on the good data under which our algorithm succeeds:397

Definition A.2. Fix 0 < ε, τ < 1 and k ∈ Z+. A multiset G of points in R
d is (ε, k, τ)-good with398

respect to N (µ, I) if, for X ∈u G and Y ∼ N (µ, I), the following conditions hold:399

(i) For all i ∈ [d], |E[Xi]−µi| ≤ ε/k, and for all i, j ∈ [d], |E [(Xi − µi)(Xj − µj)]−δij | ≤400

ε/k.401

(ii) For all x ∈ G and i ∈ [d], we have |xi − µi| ≤ O(
√
log(d|G|/τ)).402

(iii) For all 2k2-sparse unit vectors v ∈ R
d, we have that:403

(a) |E[v · (X − µ)]| ≤ O(ε),404

(b) |E[(v · (X − µ))2]− 1| ≤ O(ε), and405

(c) For all T ≥ 6, Pr[|v ·(X−µ)| ≥ T ] ≤ 3 ·erfc(T/
√
2)+ε2/

(
T 2 ln (k ln(d|G|/τ))

)
.406

(iv) For all homogeneous∗ degree-2 polynomials p with Var[p(Y )] = 1 and at most k2 terms,407

we have that:408

(a) |E[p(X)]−E[p(Y )]| ≤ O(ε
√
Var[p(Y )]) = O(ε), and,409

(b) For all T ≥ 5, Pr [|p(X)−E[p(Y )]| ≥ T ] ≤ 3 exp(−T/4) + ε2/(T ln2 T ).410

∗Recall that a degree-d polynomial is called homogeneous if its non-zero terms are all of degree exactly d.
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Our first lemma says that a sufficiently large set of samples from N (µ, I) is good with high proba-411

bility:412

Lemma A.3. A set of N = Ω̃
(
k2 log(d/τ)/ε2

)
samples from N (µ, I) is (ε, k, τ)-good (with re-413

spect to N (µ, I)) with probability at least 1− τ .414

Proof. Let G be a set of N = Ω̃
(
k2 log(d/τ)/ε2

)
i.i.d. samples drawn from N (µ, I). We will415

show that each of Conditions (i)-(iv) hold with probability at least 1− τ/5. The lemma then follows416

by a union bound.417

Proof of (i): To establish (i), let µG := EX∈uG[X] and note that the random variable NµG is418

distributed as N (N ·µ,N · I). Hence, µG has independent coordinates with NµG
i ∼ N (N ·µi, N).419

By standard Gaussian tail bounds, we have that Pr

[∣∣N(µG
i − µi)

∣∣ ≥ T
√
N
]
≤ 2 · exp(−T 2/2).420

Setting T/
√
N = ε/k gives that Pr

[
|µG

i − µi| ≥ ε/k
]
≤ 2 · exp(−Nε2/(2k2)) ≤ τ/(10d). By a421

union bound over all i ∈ [d], it follows that422

Pr
[
∃i ∈ [d] : |µG

i − µi| ≥ ε/k
]
≤ τ/10 .

This completes the proof of the first part of (i).423

For the second part of (i), we will show that with probability at least 1 − τ/10 we have that for all424

i, j ∈ [d], |E [(Xi − µi)(Xj − µj)]− δij | ≤ ε/k. We will need the following simple technical fact:425

Fact A.4 (see, e.g., [LM00]). Let Yi be iid standard univariate Gaussians and ai ≥ 0, i ∈ [m]. If426

Z =
∑m

i=1 ai(Y
2
i − 1), then for any x ≥ 0 the following hold:427

Pr
[
Z ≥ 2‖a‖2

√
x+ 2‖a‖∞x

]
≤ exp(−x) , (1)

and428

Pr
[
Z ≤ −2‖a‖2

√
x
]
≤ exp(−x) . (2)

We start with the case that i = j. Note that the random variable N · EX∈uG

[
(Xi − µi)

2
]

follows429

a χ2-distribution with N degrees of freedom, i.e., it is the sum of N independent squared standard430

Gaussians. An application of Equation (1) implies that for all x ≥ 0 we have:431

Pr

[∣∣N ·EX∈uG

[
(Xi − µi)

2
]
−N

∣∣ ≥ 2
√
Nx+ 2x

]
≤ exp(−x).

Setting x := Nε2/(9k2), we get that432

Pr
[∣∣EX∈uG

[
(Xi − µi)

2
]
− 1
∣∣ ≥ 2ε/(3k) + 2ε2/(9k2)

]
≤ exp

(
−Nε2/(9k2)

)
≤ τ/(10d2).

We now analyze the case that i 6= j. Let Y ∼ N (µ, I). Note that for i 6= j, i, j ∈ [d], we have that433

(Yi − µi)(Yj − µj) =

(
(Yi − µi)

2
+

(Yj − µj)

2

)2

−
(
(Yi − µi)

2
− (Yj − µj)

2

)2

.

Since
(Yi−µi)

2 +
(Yj−µj)

2 and
(Yi−µi)

2 − (Yj−µj)
2 are independent and distributed as N (0, 1/2), for434

i 6= j, the random variable N · EX∈uG [(Xi − µi)(Xj − µj)] is distributed as the difference of a435

sum of N independent squared zero-mean Gaussians with variance 1/2, and another such sum. This436

random variable has expectation 0 and once again, by Equation (1) applied with ai = 1/2, it follows437

that438

Pr

[
|N ·EX∈uG [(Xi − µi)(Xj − µj)]| ≥ 2

√
Nx+ x

]
≤ exp(−x) .

Setting x := Nε2/(9k2) as above gives that439

Pr [|EX∈uG [(Xi − µi)(Xj − µj)]| ≥ ε/k] ≤ τ/(10d2).

A union bound over all i, j ∈ [d] implies that440

Pr [∃i, j ∈ [d] : |EX∈uG [(Xi − µi)(Xj − µj)]− δij | ≥ ε/k] ≤ τ/10.

This gives the second part of (i). By a union bound, Condition (i) holds with probability at least441

1− τ/5.442
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Proof of (ii): For Y ∼ N (µ, I), the standard Gaussian tail bound gives Pr [|Yi − µi| ≥ T ] ≤443

2 exp
(
−T 2/2

)
. Setting T =

√
2 ln (10Nd/τ) implies that Pr [|Yi − µi| ≥ T ] ≤ τ/(10Nd). By444

a union bound, the desired upper bound holds for all i ∈ [d] and all N samples with probability at445

least 1− τ/10.446

Proof of (iii): To establish (iii), we first prove that Conditions (iii)(a)-(c) hold for any fixed unit447

vector v and threshold T with sufficiently high probability, and then take a union bound over a net448

of 2k2-sparse unit vectors and thresholds.449

To avoid clutter in the notation, we will denote δ
def
= ε2

ln(k ln(Nd/τ)) , so that the second term in the450

RHS of Condition (iii)(c) is equal to δ/T 2.451

We start by proving the following claim:452

Claim A.5. For any unit vector v in R
d and threshold T ≥ Ω(1) with probability at least 1 −453

exp
(
−Ω

(
Nδ

log(1/δ)

))
, we have that (a) |EX∈uG[v · (X − µ)]| ≤ O(ε), (b) |EX∈uG[(v · (X −454

µ))2]− 1| ≤ O(ε), and (c) PrX∈uG[|v · (X − µ)| ≥ T ] ≤ (5/2) · erfc(T/
√
2) + δ/(2T 2).455

Proof. To prove (a), note that for each fixed unit vector v ∈ R
d, NEX∈uG[v ·(X−µ)] is distributed456

as N (0, N). By standard Gaussian tail bounds, we have that457

Pr [|EX∈uG[v · (X − µ)]| ≥ ε] ≤ 2 · exp(−Nε2/2) ≪ exp (−Ω (Nδ/ log(1/δ))) ,

where the last inequality follows from the fact that δ ≪ ε2.458

To prove (b), note that for each fixed unit vector v ∈ R
d the random variable N ·EX∈uG[(v · (X −459

µ))2] follows a χ2-distribution with parameter N . By Equation (1), we get460

Pr

[
|N ·EX∈uG[(v · (X − µ))2]−N | ≥ 2

√
Nx+ 2x

]
≤ exp(−x) ,

for x ≥ 0. Applying the above inequality for x := Nε2/9, we get461

Pr
[∣∣EX∈uG[(v · (X − µ))2

]
− 1| ≥ 2ε/3 + (2/9)ε2

]
≤ exp

(
−Nε2/9

)
.

To prove (c), we start by noting that, for any fixed unit vector v and Y ∼ N (µ, I), v · (Y − µ) is a462

standard univariate Gaussian, and therefore Pr[|v · (Y − µ)| ≥ T ] = 2erfc(T/
√
2). Let463

Q(T )
def
= (5/2)erfc(T/

√
2) + δ/(2T 2) .

Observe that N ·PrX∈uG[|v · (X−µ)| ≥ T ] is a sum of N independent Bernoulli random variables464

each with mean 2erfc(T/
√
2). An application of the Chernoff bound and the fact that Q(T ) ≥465

(5/4)
[
2erfc(T/

√
2)
]

gives that PrX∈uG[|v · (X − µ)| ≥ T ] ≥ Q(T ) holds with probability at466

most exp
(
−NQ(T )

60

)
.467

We choose T ′ to satisfy erfc(T ′) = δ2/(4T ′4), which implies that T ′ = Θ(
√
ln(1/δ)). We break468

the analysis into two cases: T ≤ T ′ or T > T ′.469

If T ≤ T ′, then Q(T ) ≥ Q(T ′) ≥ δ/(2T ′2) = Ω( δ
log(1/δ) ) and the above upper bound of470

exp
(
−NQ(T )

60

)
on the desired probability gives (c).471

If T > T ′, we have that erfc(T/
√
2) ≤ δ2/(4T 4). In this case, we require a more precise version472

of the Chernoff bound, which bounds from above the probability of the event PrX∈uG[|v · (X −473

µ)| ≥ T ] ≥ Q(T ) by exp
(
−N ·DKL(Q(T )||2erfc(T/

√
2))
)
, where DKL(p||q) denotes the KL-474

divergence between the Bernoulli random variables with probabilities p and q.475
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Let p = δ/(2T 2), q = 2erfc(T/
√
2), and note that q ≤ p2 or p/q ≥ q−1/2. We can now bound476

from below the KL-divergence by δ/10, as follows:477

DKL(Q(T )||q) ≥ DKL(p||q) = p ln(p/q) + (1− p) ln ((1− p)/(1− q))

≥ p ln(p/q)− ln(1− p) ≥ p (ln(p/q)− 1−O(p))

≥ δ/(2T 2) ·
(
ln(1/q1/2)− 1−O(p)

)

≥ δ/(2T 2) ·
(
T 2/8−O(1)

)
≥ δ/10 ,

where we used the assumption that T is at least a sufficiently large universal constant. Thus, we478

have that PrX∈uG[|v · (X −µ)| ≥ T ] ≥ Q(T ) with probability at most exp(−Ω(Nδ)) in this case.479

This completes the proof of (c).480

By a union bound, all events hold with probability at least 1 − exp
(
−Ω

(
Nδ

log(1/δ)

))
, completing481

the proof of Claim A.5.482

We now define a cover over all 2k2-sparse vectors as well as the possible values of T , and take a483

union bound over the product. To this end, let484

R
def
= Θ

(
k ·
√
log (Nd/τ)

)

be such that by (ii) we have ‖x− µ‖∞ ≤ R√
2k

, for x ∈ G.485

For each set U ⊆ [d] of coordinates of size 2k2, let CU be an ε/R2-cover, in ℓ2-norm, of the set486

of unit vectors supported on U (i.e., with all non-zero coordinates in U ). Such a cover exists with487

|CU | ≤ O
(
R2/ε

)2k2

. Let C be the union of CU over all sets U of coordinates of size 2k2. Then we488

have that489

|C| ≤
(

d

2k2

)
·O(R2/ε)2k

2 ≤ O
(
dR2/ε

)2k2

.

Let T := {
√
iε | i ∈ Z+, 0 ≤ i ≤ R2/ε2} be a net over thresholds T . Note that |C| · |T | ≤490

O(dR2/ε)2k
2+2. By a union bound, Claim A.5 holds for all v ∈ C and T ∈ T except with proba-491

bility at most492

O
(
(dk2/ε) log(Nd/τ)

)2k2+2 · exp(Ω(−Nδ/ log(1/δ))

= exp
(
O(k2 log (dk log(d/τ)/ε))− Ω

(
Nε2/ log3(k/ε log(d/τ))

))
≤ τ/10 ,

where we used the fact that N = Ω̃
(
k2 log(d/τ)/ε2

)
. It remains to prove (iii) assuming this event493

holds.494

By definition, for any k2-sparse unit vector v ∈ R
d, there exists a v′ ∈ C such that ‖v′−v‖2 ≤ ε/R2

495

and such that v′ − v is also k2-sparse. Thus, for any x ∈ G, we have496

|v · (x− µ)− v′ · (x− µ)| ≤ ‖v′ − v‖1‖x− µ‖∞
≤

√
2k‖v′ − v‖2R/

√
2k ≤ ε/R .

Therefore, for the mean we have that |EX∈uG[v ·X]| ≤ |EX∈uG[v
′ ·X]|+ ε

R ≤ O(ε). This gives497

Condition (iii)(a).498

To establish Condition (iii)(b), we note that for any x ∈ G, we have499

|(v · (x− µ))2 − (v′ · (x− µ))2| ≤ O (|v · (x− µ)− v′ · (x− µ)| (|v · (x− µ)|+ |v′ · (x− µ)|))
≤ O(ε/R) ·O(k ·R/k)

≤ O(ε) ,

where the second line uses the fact that |v ·(x−µ)| ≤ ‖v‖1‖x−µ‖∞ ≤ k‖x−µ‖∞ ≤ R. Therefore,500

we have that |EX∈uG[(v · (X − µ))2]− 1| ≤ |EX∈uG[(v
′ · (X − µ))2]− 1|+O(ε) = O(ε). This501

gives Condition (iii)(b).502
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We now prove Condition (iii)(c). Consider the event {x ∈ G : |v · (x − µ)| ≥ T} for T ≥503 √
2 ln(1/ε) + 2. First note that this event is contained in the event {x ∈ G : |v′ · (x − µ)| ≥504

T − ε/R}. Moreover, note that the event is empty, unless T ≤ ‖v‖1‖x− µ‖∞ ≤ R, in which case505

(T − ε/R)2 ≥ T 2 − 2ε. Therefore, by the definition of T , there is a T ′ ∈ T with T 2 − 2ε ≤ T ′2 ≤506

(T − ε/R)2. Then we have507

PrX∈uG [|v · (X − µ)| ≥ T ] ≤ PrX∈uG[|v′ · (X − µ)| ≥ T − ε/R]

≤ PrX∈uG[|v′ · (X − µ)| ≥ T ′]

≤ 5erfc(T ′)/2 + δ/(2T ′2)

≤ 5erfc
(√

T 2 − 2ε
)
/2 + δ/(2(T 2 − 2ε))

= (5/(2
√
2π))

∫ ∞

√
T 2−2ε

exp(−x2/2)dx+ δ/T 2

= (5/(2
√
2π))

∫ ∞

T

exp(−(y2 − 2ε)/2)(y/
√

y2 − 2ε)dy + δ/T 2

= (5/(2
√
2π))

∫ ∞

T

exp(ε) exp(−y2/2)(1 +O(ε))dy + δ/T 2

≤ (5/(2
√
2π))

∫ ∞

T

(1 +O(ε)) exp(−y2/2)dy + δ/T 2

≤ 3erfc(T/
√
2) + δ/T 2 ,

where the third line follows from Claim A.5(c) applied for (v′, T ′). This completes the proof of508

Condition (iii)(c).509

Proof of (iv): At a high-level, the proof is similar to that of Condition (iii) above. We start by510

proving that Conditions (iv)(a)-(b) hold for any fixed degree-2 polynomial and threshold T with511

sufficiently high probability, and then take a union bound over a net of k2-sparse p(x) and T .512

Note that a homogeneous degree-2 polynomial can be written as p(x) = (x − µ)TA(x − µ), for a513

symmetric matrix A, in which case we have EY∼N (µ,I)[p(Y )] = Tr(A) and VarY∼N (µ,I)[p(Y )] =514

‖A‖2F .515

We start by establishing the following claim:516

Claim A.6. Let Y ∼ N (µ, I). Given a homogeneous degree-2 polynomial p(x) with Var[p(Y )] =517

1 and T with 4 ≤ T ≤ R
def
= Θ(k ·

√
log(Nd/τ)), we have that: (a) |EX∈uG[p(X)]−E[p(Y )]| ≤518

O(ε), and (b) PrX∈uG[|p(X) − E[p(Y )]| ≥ T ] ≤ 2 exp(−T/4) + ε2/(2T ln2 T ), except with519

probability at most exp(−Ω(Nε2/ ln2(R/ε)).520

Proof. By diagonalizing A, we can write p(Y ) = c +
∑d

i=1 aiZ
2
i , where the Zi are independent521

and distributed as N (0, 1) and c, ai are real coefficients with
∑

i a
2
i = ‖A‖2F = 2. Note that522

NE[p(X)] is a sum of Nd independent squared Gaussians, each of which has variance at most523

‖A‖2F = 1 and the ℓ2-norm of all their variances is
√
N‖A‖F =

√
N . Equation (1) gives that524

Pr[|NE[p(X)]−NE[p(Y )]| ≥ 2
√
Nx+2x] ≤ exp(−x), for x ≥ 0. Taking x := Nε2, we obtain525

that526

Pr
[
|E[p(X)]−E[p(Y )]| ≥ 2ε+ 2ε2

]
≤ exp(−Nε2).

This shows (a).527

We proceed to prove (b). By Equation (1) applied for a single sample, we have that Pr[|p(Y ) −528

E[p(Y )]| ≥ 2
√
x+ 2x] ≤ exp(−x) for x ≥ 0. Taking x := T for T ≥ 4, we have 2

√
T ≤ T , and529

so530

Pr[|p(Y )−E[p(Y )]| ≥ T ] ≤ exp(−T/4).

Note that NPr[|p(X)−E[p(Y )]| ≥ T ] is a sum of N independent Bernoulli random variables each531

with expectation at most exp(−T/4). Let532

Q(T )
def
= 2 exp(−T/4) + ε2/(2T ln2 T ) .
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Since Q(T ) ≥ 2Pr[|p(Y ) − E[p(Y )]| ≥ T ], by the multiplicative Chernoff bound we have that533

Pr[|p(X)−E[p(Y )]| ≥ T ] ≤ Q(T ), except with probability at most exp(−NQ(T )/6).534

Let T ′ be such that exp(−T ′/6) = ε2/(2T ′ ln2(T ′)). Note that T ′ = Θ(log(1/ε)).535

For T ≤ T ′, we have that Q(T ) ≥ ε2/(T ′ ln2 T ′), and so exp(−NQ(T )/6) ≥536

exp(Ω(−Nε/ log(1/ε)(log log(1/ε))2)).537

For T ≥ T ′, note that ε2/(2T ln2(T )) ≥ exp(−T/6). Again we need to use a more explicit version538

of the Chernoff bound, which gives that PrX∈uG[|v · (X − µ)| ≥ T ] ≥ Q(T ) with probability at539

most exp(−NDKL(Q(T )|| exp(−T/4))).540

When T ′ ≤ T ≤ R, p = ε2/(2T ln2 T ), and q = 2 exp(−T/4), we obtain541

DKL(Q(T )||q) ≥ DKL(p||q) = p ln(p/q) + (1− p) ln((1− p)/(1− q))

≥ p ln(p/q)− ln(1− p)

≥ p(ln(p/q)− 1−O(p))

= (ε2/(2T ln2 T ))(ln(p/ exp(−T/4))− 1−O(p))

≥ (ε2/(2T ln2 T ))(ln(exp(T/6))− 1−O(p))

≥ (ε2/(2T ln2 T )) · (T/7)
≥ ε2/(14 ln2 T ) ≥ ε2/(14 ln2 R) ,

where we used the fact that Ω(1) ≤ T ≤ R. Thus, it follows that PrX∈uG[|v · (X − µ)| ≥ T ] ≥542

Q(T ) with probability at most exp(−Ω(Nε2/ ln2 R)) in this case. In either case, by a union bound,543

the claim holds except with probability exp(−Ω(Nε2/ ln2(R/ε))). This completes the proof of (b)544

and of Claim A.6.545

It remains to construct a cover of k2-sparse homogeneous degree-2 polynomials which have at most546

k2 terms and Var[p(Y )] = 1. Let U be the set of k2 monomials xixj , for 1 ≤ i, j ≤ d. We construct547

a cover CU of polynomials with terms only in the monomials in U as follows: We take a cover of548

unit vectors in R
k2

to within ℓ2-norm ε/R2 and use the coordinates of each vector as the coefficients549

of the corresponding monomial. Thus, we can take |CU | = 2O(k2). Then we let C be the union of550

CU for all sets of k2 monomials U . We therefore have that |C| ≤
(
d
k2

)
·O(R2/ε)k

2 ≤ O(dR2/ε)k
2

.551

Let T = {iε : i ∈ Z+, 0 ≤ i ≤ R2/ε2}. Thus, |C| · |T | ≤ O(dR2/ε)k
2+1. By a union bound,552

Claim A.6 holds for all p ∈ C and T ∈ T , except with probability at most553

O(dk2 log(Nd/τ)/ε)k
2+1 · exp(−Ω(Nε2/ ln2(R/ε)))

= exp
(
O(k2 log(dk log(N/τ)/ε))− Ω(Nε2/ ln2(k log(Nd/τ)/ε))

)
≤ τ/10 ,

where we used the fact that N = Ω̃
(
k2 log(d/τ)/ε2

)
. It remains to prove (iv) assuming this event554

holds.555

Consider any homogeneous degree-2 polynomial p(x) with at most k2 terms and Var[p(Y )] =556

1. By construction of the cover, there is a polynomial p′(x) ∈ C such that the total number of557

monomials appearing in either p(x) or p′(x) is at most k2, and if we write p(x) = (x−µ)TA(x−µ)558

and p′(x) = (x−µ)TA′(x−µ) for symmetric matrices A,A′, then ‖A−A′‖F ≤ ε/R2. Let U ′ be559

the set of coordinates appearing in either p(x) and p′(x) and note that |U ′| ≤ 2k2. For x ∈ G, we560

have561

|p(x)− p′(x)| = |(x− µ)T (A−A′)(x− µ)|
= |(x− µ)TU ′(A−A′)(x− µ)U ′ |
≤ ‖(x− µ)U ′‖2∞‖A−A′‖2
≤ R2 · ε/R2 ≤ ε .

Therefore, we have that |E[p(X)]−E[p(Y )]| ≤ |E[p′(X)]−E[p′(Y )]|+2ε ≤ O(ε), since Claim A.6562

holds for p′(x). We have thus established Condition (iv)(a).563
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To show Condition (iv)(b), consider the event {x ∈ G : |p(x)| ≥ T} for T > 5. Let T ′ ∈ T be such564

that T − 2ε ≤ T ′ ≤ T − ε. Then, |p(x)| ≥ T implies that |p′(x)| ≥ T ′, and therefore565

PrX∈uG[|p(X)| ≥ T ] ≤ PrX∈uG[|p′(X)| ≥ T ′]

≤ 2 exp(−T ′/3) + ε2/(2T ′ ln(T ′)2)

≤ 2 exp(−(T − 2ε)/3) + ε2/(2(T − 2ε) ln2(T − 2ε))

≤ 3 exp(−T/4) + ε2/(T ln2 T ) ,

where the second line follows from Claim A.6(b) for (p′, T ′). This completes the proof of Condition566

(iv)(b).567

The proof of Lemma A.3 is now complete.568

Our algorithm iteratively applies the procedure ROBUST-SPARSE-MEAN (Algorithm 1). The crux569

of the proof is the following performance guarantee of ROBUST-SPARSE-MEAN:570

Proposition A.7. Algorithm 1 has the following performance guarantee: On input a multiset S of571

N points in R
d such that ∆(G,S) ≤ 2ε, where G is an (ε, k, τ)-good set with respect to N (µ, I),572

procedure ROBUST-SPARSE-MEAN returns one of the following:573

1. A mean vector µ̂ such that ‖µ̂− µ‖2 = O(ε
√
log(1/ε)), or574

2. A multiset S′ ⊂ S satisfying ∆(G,S′) ≤ ∆(G,S)− ε/N .575

We note that our overall algorithm terminates after at most 2N iterations of Algorithm 1, in which576

case it returns a candidate mean vector satisfying the first condition of Proposition A.7. Note that577

the initial ε-corrupted set S satisfies ∆(G,S) ≤ 2ε. If S(i) ⊂ S is the multiset returned after the578

i-th iteration, then we have that 0 ≤ ∆(S(i), G) ≤ 2ε− i(ε/N).579

In the rest of this section, we prove Proposition A.7.580

We start by showing the first part of Proposition A.7. Note that Algorithm 1 outputs a candidate581

mean vector only if ‖(Σ̃− I)(U)‖F ≤ O(ε log(1/ε)). We start with the following lemma:582

Lemma A.8. If ‖(Σ̃ − I)(U)‖F ≤ O(ε log(1/ε)), then for any T ⊆ [d] with |T | ≤ k, we have583

‖µ̃T − µT ‖2 ≤ O(ε
√

log(1/ε)).584

Proof. Fix T ⊆ [d] with |T | ≤ k. By definition, ‖(Σ̃ − I)T ‖F is the Frobenius norm of the585

corresponding sub-matrix on T × T . Note that this is the ℓ2-norm of a set of k diagonal entries and586

k2 − k off-diagonal entries of Σ̃ − I . By construction, U is the set that maximizes this norm, and587

therefore588

‖(Σ̃− I)T ‖2 ≤ ‖(Σ̃− I)T ‖F ≤ ‖(Σ̃− I)(U)‖F ≤ O(ε log(1/ε)) .

Given this bound, we leverage a proof technique from [DKK+16] showing that a bound on the589

spectral norm of the covariance implies a ℓ2-error bound on the mean. This implication is not590

explicitly stated in [DKK+16], but follows directly from the arguments in Section 5.1.2 of that work.591

In particular, the analysis of the “small spectral norm” case in that section shows that ‖µ̃T −µT ‖2 ≤592

O
(√

ε‖(Σ̃− I)T ‖1/22 + ε
√
log(1/ε)

)
, from which the desired claim follows. This completes the593

proof of Lemma A.8.594

Given Lemma A.8, the correctness of the sparse mean approximation output in Step 4 of Algorithm 1595

follows from the following corollary:596

Corollary A.9. Let µ̂ = hk(µ̃). If ‖(Σ̃ − I)(U)‖F ≤ O(ε log(1/ε)), then ‖µ̂ − µ‖2 ≤597

O(ε
√
log(1/ε)).598

Proof. For vectors x, y, let Nx denote the set of coordinates on which x is non-zero and Nx|y599

denote the set of coordinates on which x is non-zero and y is zero. Setting T = Nµ and T = Nµ̂|µ600

in Lemma A.8, we get that ‖µ̃Nµ
− µ‖2 ≤ O(ε

√
log(1/ε)) and ‖µ̃Nµ̂|µ

‖2 ≤ O(ε
√
log(1/ε)).601
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If µ̃ has k or fewer non-zero coordinates, then µ̂ = µ̃ and ‖µ̂ − µ‖2 = ‖µ̃Nµ∪Nµ̂|µ
− µ‖2 ≤602

O(ε
√
log(1/ε)) and we are done. Otherwise, µ̂ has exactly k non-zero coordinates and so |Nµ|µ̂| ≤603

|Nµ̂|µ|. Since the nonzero coordinates of µ̂ are the k largest magnitude coordinates of µ̃, for any604

i ∈ Nµ|µ̂ and j ∈ Nµ̂|µ, we have that |µ̃i| ≤ |µ̃j |. Since ‖µ̃Nµ̂|µ
‖2 ≤ O(ε

√
log(1/ε)), at least one605

coordinate j ∈ Nµ̂|µ must have µ̃2
j ≤ O(ε2 log(1/ε))/|Nµ̂|µ|. Therefore, for any i ∈ Nµ|µ̂, we have606

that µ̃2
i ≤ O(ε2 log(1/ε))/|Nµ̂|µ|.607

Thus, we have608

‖µ̃Nµ|µ̂
‖22 =

∑

i∈Nµ|µ̂

µ̃2
i ≤ |Nµ|µ̂| ·O(ε2 log(1/ε))

|Nµ̂|µ|
≤ O(ε2 log(1/ε)) ,

where the second inequality used that |Nµ|µ̂| ≤ |Nµ̂|µ|.609

Since ‖µ̃Nµ
− µ‖2 ≤ O(ε

√
log(1/ε)), by the triangle inequality we have that ‖µNµ|µ̂

‖2 ≤610

O(ε
√
log(1/ε)). Finally, we have that611

‖µ− µ̂‖22 = ‖µNµ∩Nµ̂
− µ̂Nµ∩Nµ̂

‖22 + ‖µNµ|µ̂
‖22 + ‖µ̃Nµ̂|µ

‖22 ≤ O(ε2 log(1/ε)) ,

concluding the proof.612

Lemma A.8 and Corollary A.9 give the first part of Proposition A.7.613

We now analyze the complementary case that ‖(Σ̃ − I)(U)‖F = Ω(ε log(1/ε)). In this case, we614

apply two different filters, a linear filter (Steps 5-8), and a quadratic filter (Steps 9-11). To prove615

the second part of Proposition A.7, we will show that at least one of these two filters: (i) removes at616

least one point, and (ii) it removes more corrupted than uncorrupted points.617

The analysis in the case of the linear filter follows by a reduction to the linear filter in [DKK+16]618

for the non-sparse setting (see Proposition 5.5 in Section 5.1 of that work). More specifically, the619

linear filter in Steps 5-8 is essentially identical to the linear filter of [DKK+16] restricted to the620

2k2 × 2k2 matrix Σ̃U ′ . We note that Definition A.2 implies that every restriction to 2k2 coordinates621

satisfies the properties of the good set in the sense of [DKK+16] (Definition 5.2(i)-(ii) of that work).622

This implies that the analysis of the linear filter from [DKK+16] holds in our case, establishing the623

desired properties. Since the linear filter removes more corrupted points than uncorrupted points, it624

will remove at most a 2ε fraction of the points over all the iterations.625

If the condition of the linear filter does not apply, i.e., if ‖(Σ̃ − I)U ′‖2 ≤ O(ε log(1/ε)), the626

aforementioned analysis in [DKK+16] implies ‖µ̃U ′ − µU ′‖2 ≤ O(ε
√
log(1/ε)). In this case, we627

show that the second filter behaves appropriately.628

Let p(x) be the polynomial considered in the quadratic filter. We start with the following technical629

lemma analyzing the expectation and variance of p(x) under various distributions:630

Lemma A.10. The following hold true:631

(i) For Y ∼ N (µ̃, I), we have that E[p(Y )] = 0 and Var[p(Y )] = 1.632

(ii) For X ∈u S, we have that E[p(X)] = ‖(Σ̃− I)(U)‖F .633

(iii) For Z ∼ N (µ, I), we have that |E[p(Z)]| ≤ O(ε2 log(1/ε)) and Var[p(Z)] = 1 +634

O(ε2 log(1/ε)).635

Proof. Let A = (Σ̃−I)

‖(Σ̃−I)‖F
and p(x) := (x− µ̃)TA(U)(x− µ̃)− Tr[A(U)]. We have636

E[(Y − µ̃)TA(U)(Y − µ̃)] = Tr[A(U)E[(Y − µ̃)(Y − µ̃)T ]] = Tr[A(U)I] = Tr[A(U)] .

Therefore, E[p(Y )] = Tr[A(U)]− Tr[A(U)] = 0. Similarly,637

E[(X − µ̃)TA(U)(X − µ̃)] = E[Tr[A(U)(X − µ̃)(X − µ̃)T ]] = Tr[A(U)E[(X − µ̃)(X − µ̃)T ]] = Tr[A(U)Σ̃] ,
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and so638

E[p(X)] = Tr[A(U)(Σ̃− I)] = Tr[A(U)A]‖(Σ̃− I)(U)‖F = ‖AU‖F ‖(Σ̃− I)(U)‖F = ‖(Σ̃− I)(U)‖F .

We have thus shown (ii) and the first part of (i).639

We now proceed to show the first part of (iii). Note that640

E[(Z − µ̃)(Z − µ̃)T ] = E[(Z − µ)(Z − µ)T ] +E[(µ̃− µ)(Z − µ̃)T ] +E[(Z − µ)(µ̃− µ)T ]

= I + (µ̃− µ)(µ̃− µ)T + 0.

Thus, we can write641

E[p(Z)] = Tr[A(U)(E[(Z − µ̃)(Z − µ̃)T ]− I)] = (µ̃− µ)TA(U)(µ̃− µ) ,

and so642

|E[p(Z)]| ≤ ‖µ̃U ′ − µU ′‖22‖A(U)‖2 ≤ ‖µ̃U ′ − µU ′‖22 ≤ O(ε2 log(1/ε)) .

This proves all the statements about expectations.643

We now analyze the variance of p(x) for Y and Z. Since A(U) is symmetric, we can write A(U) =644

OTΛO for an orthogonal matrix O and a diagonal matrix Λ. Note that Y ′ = O(Y − µ̃) is distributed645

as N (0, I). Under these substitutions, p(Y ) =
∑

i ΛiiY
′2
i , and so646

Var[p(Y )] =
∑

i

Λ2
iiVar[Y ′2

i ] = ‖Λ‖2F = ‖A(U)‖2F = 2.

Similarly, if we take Z ′ = OT (Z−µ̃), then Z ′ ∼ N (OT (µ̃−µ), I). We have E[Z ′
i] = (OT (µ̃−µ))i647

and, letting Z ′′ = Z ′ −E[Z ′], we get that648

E[Z ′2
i ] = E[(Z ′′

i +E[Z ′
i])

2] = E[Z ′′2
i ] + 2E[Z ′

i]E[Z ′′
i ] +E[Z ′

i]
2 = 1 + 0 +E[Z ′

i]
2 .

Next we can write649

E[Z ′4
i ] = E[(Z ′′

i +E[Z ′
i])

4] = E[Z ′′4
i ] + 0 + 6E[Z ′′2

i ]E[Z ′
i]
2 +E[Z ′

i]
4 = 2 + 6E[Z ′

i]
2 +E[Z ′

i]
4 .

Thus, Var[Z ′2
i ] = 2 + 6E[Z ′

i]
2 +E[Z ′

i]
4 − (1 +E[Z ′

i]
2)2 = 1 + 4E[Z ′

i]
2. We therefore have650

Var[p(Z)] =
∑

i

Λ2
iiVar[Z ′2

i ] =
∑

i

Λ2
ii(1 + 4E[Z ′

i]
2) =

∑

i

Λ2
ii + 4Λ2

ii(O
T (µ̃− µ))i

= ‖Λ‖2F + (µ̃− µ)TOΛ2OT (µ̃− µ) = 1 + (µ̃− µ)TA2
(U)(µ̃− µ)

≤ 1 + ‖µ̃U ′ − µU ′‖22 · ‖A2
(U)‖22 ≤ 1 +O(ε2 log(1/ε)) · 1 .

This completes the proof of Lemma A.10.651

Suppose that we find a threshold T > 0 such that Step 10 of the algorithm holds, i.e., the quadratic652

filter applies. Then we can show that Step 11 removes more bad points than good points. This653

follows from standard arguments, by combining Definition A.2(iv)(b) with our upper bound for654

EZ∼N (µ,I)[p(Z)] from Lemma A.10. Let S = G ∪ E \ L. By Definition A.2(iv)(b), for the655

good set G, we have that for X ∈u G, Pr
[∣∣p(X)−EZ∼N (µ,I)[p(Z)]

∣∣ ≥ T
]
≤ 3 exp(−T/4) +656

ε2/(T ln2 T ). Lemma A.10(iii) implies that |E[p(Z)]| ≤ O(ε2 log(1/ε)). Therefore, we obtain the657

following corollary:658

Corollary A.11. We have that:659

(i) |EX∈uG[p(X)]| ≤ O(ε) and,660

(ii) For T ≥ 6, PrX∈uG[|p(X)| ≥ T ] ≤ (3+O(ε)) exp(−T/4)+(1+O(ε))
(
ε2/(T ln2 T )

)
.661

Condition (ii) implies that the fraction of points in G that violate the quadratic filter condition is less662

than 1/2 the fraction of points in S that violate the same condition. Therefore, the quadratic filter663

removes more bad points than good points.664

It remains to show that if Algorithm 1 does not terminate in Step 4 and the linear filter does not665

apply, then the quadratic filter necessarily applies. To establish this, we need a couple more technical666

lemmas. We first show that the expectation of p(x) over the set of good samples that are removed is667

small:668
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Lemma A.12. We have that |L| · |EX∈uL[p(X)]| ≤ |S| ·O(ε log(1/ε)).669

Proof. Since L ⊂ G and |G| = O(|S|), for T ≥ 6 we have670

|L| ·PrX∈uL[|p(X)| ≥ T ] ≤ |G| ·PrX∈uG[|p(X)| ≥ T ] ≤ O
(
|S|(exp(−T/4) + ε2/(T ln2 T ))

)
,

where we used Corollary A.11. Thus, we obtain that671

|L| · |EX∈uL[p(X)]| ≤ |L| ·EX∈uL[|p(X)|]

=

∫ ∞

0

|L| ·PrX∈uL[|p(X)| ≥ T ]dT

≤
∫ 3 ln(1/ε)

0

|L|dT +

∫ ∞

3 ln(1/ε)

O(|S|(exp(−T/4) + ε2/(T ln2 T )))dT

≤ O(|S|ε log(1/ε)) +O(|S|ε) +O(|S|ε2/ log log(1/ε))
= O(|S|ε log(1/ε)) ,

where we used the fact that |L| = O(ε|S|) and that the derivative of 1/ lnx is 1/x ln2 x. This672

completes the proof of Lemma A.12.673

By a similar argument, we can show that if the quadratic filter does not apply, then the remaining674

points in E contribute a small amount to the expectation of p(x).675

Lemma A.13. Suppose that for all T ≥ 6, we have PrX∈uS [|p(X)| ≥ T ] ≤ 9 exp(−T/4) +676

3ε2/(T ln2 T ). Then, we have that |E| · |EX∈uE [p(X)]| ≤ O(|S|ε log(1/ε)).677

By combining the above, we obtain the following corollary, completing the analysis of our algo-678

rithm:679

Corollary A.14. If we reach Step 10 of Algorithm 1, then there exists a T ≥ 6 such that680

PrX∈uS [|p(X)| ≥ T ] ≥ 9 exp(−T/4) + 3ε2/(T ln2 T ).681

Proof. Suppose for a contradiction that no such T exists. Using Corollary A.11, Lemmas A.12682

and A.13, we obtain that683

|S| · ‖(Σ̃− I)U‖F = |S| ·EX∈uS [p(X)] = |G| ·EX∈uG[p(X)] + |E| ·EX∈uE [p(X)]− |L| ·EX∈uL[p(X)]

= O(|S|ε log(1/ε)) .
This is a contradiction, as if this was the case, Algorithm 1 would have retuned in Step 4.684

B Robust Sparse PCA685

In this section, we prove correctness of Algorithm 2 establishing Theorem 1.3, which we restate for686

completeness:687

Theorem B.1. Let D ∼ N (0, I + ρvvT ) be a centered Gaussian distribution on R
d with spiked688

covariance Σ = I+ρvvT for an unknown k-sparse unit vector v, and 0 < ρ < O(1) a real number.689

For some ε > 0, let S be an ε-corrupted set of samples from D of size N = Ω(k4 log4(d/ε)/ε2).690

There exists an algorithm that, on input S, k, and ε, runs in polynomial time and returns w ∈ R
d

691

such that with probability at least 2/3 we have that ‖wwT − vvT ‖F = O
(

ε log(1/ε)
ρ

)
.692

We will require some additional notation. For any M ∈ R
d×d, define vec(M) ∈ R

d2

to be a693

canonical flattening of this vector, γ(x) ∈ R
d2

to be vec(xxT − I).694

As is standard with such robust statistics arguments, we will need to assume that the uncorrupted695

set of good samples G has some desired properties. In particular, we will make use of the following696

notion of a good set:697

Definition B.2. Define a set G ⊂ R
n to be (ε, k)-good for N (0, I + ρvvT ) and ρ > 0 if the698

following hold for every Q ⊂ [d]× [d]699
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1. For some sufficiently large constant C and for every i ∈ [d] and x ∈ G, |xi| ≤700

C
√
log(d|G|).701

2.
∥∥(EG[xx

T ]− I − ρvvT )Q
∥∥
F
≤ ε702

3. For all w ∈ R
k2

,703

VarG(γ(x)Q · w) = (1± ε)VarN (0,I+ρvvT )(γ(x)Q · w)

4. For C a sufficiently large constant, and for all w ∈ R
k2

satisfying ‖w‖2 = 1, and all704

T > log(1/ε)705

PrG[|γ(x)Q · w − ρvecQ(vv
T ) · w| > CT ] <

ε

T 2 log2(T )

We note that given a sufficiently large set of independent samples from X that the above conditions706

hold with high probability.707

Lemma B.3. If G is a set of N = Ck4 log4(d/ε)/ε2 samples drawn from N (0, I + ρvvT ), for C a708

sufficiently large constant. Then G is (ε, k)-good with probability at least 2/3.709

Proof. Condition 1 follows from standard gaussian concentration bounds. To see that Condition 2710

holds, we prove entrywise closeness of the matrices involved. We will use the following standard711

concentration inequality712

Lemma B.4. Any degree d polynomial f(A1, . . . , An) of independent centered Gaussian random713

variables A1, . . . , An satisfies714

Pr (|f(A)− E[f(A)]| > τ) . e
−
(

τ2

R·Var(f(A))

)1/d

where R is some universal constant.715

Entries of xxT − (I + ρvvT ) are degree 2 polynomials of Gaussians, and thus so is their mean over716

G. Hence, Lemma B.4 implies that for any (i, j) ∈ [d]× [d] that717

Pr (|EG[xixj ]− (δi,j + ρvivj)| > ε/k) . exp
(
−(Nε2/Rk2)1/2

)
.

Taking a union bound over i, j shows that with high probability EG[xx
T ] has each entry within ε/k718

of that of ρvvT + I , and this immediately implies Condition 2.719

Condition 3 holds via a similar argument. Observe that it is sufficient to consider the case ‖w‖2 = 1720

and sample enough points to satisfy721

|EG[(xixj − δi,j − ρvivj)(xkxl − δk,l − ρvkvl)]−EN (0,I+ρvvT )[(xixj − δi,j − ρvivj)(xkxl − δk,l − ρvkvl)]| ≤
ε

k2
.

Then the spectral norm of the covariance matrix of γ(x) for any Q × Q submatrix will also be722

bounded by ε. Note that this is just the probability that a degree-4 polynomial in Gaussian inputs723

deviates too much from its mean, and thus by Lemma B.4 the probability that the above fails to hold724

for any (i, j, k, l) is at most725

exp
(
−(Nε2/Rk4)1/4

)
.

Taking a union bound over (i, j, k, l) yields our result.726

Finally, for Condition 4, we note that (perhaps changing the constant C), it suffices to prove it for all727 (
d2

k

)
possible Q’s and for all w in a cover of the unit ball of Rk2

(which will have size 2O(k2) and for728

T powers of 2 less than or equal to k log(dN) (since by Condition 1 |vecQ(xxT )| = O(k log(dN))729

for all x ∈ G). Once we have fixed Q,w and T , γQ(x) · w − ρvecQ(vv
T ) · w is a mean 0, variance730
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O(1), degree-2 polynomial so by Lemma B.4, the probability that it is more than CT is at most731

e−2T . Then the probability that at least εN/(T 2 log2(T )) of our x’s have this property is at most732

(
N

εN/(T 2 log2(T ))

)
exp(−2T (εN)/(T 2 log2(T ))) ≤

(
Ne−2T

eεN/(T 2 log2(T ))

)(εN)/(T 2 log2(T ))

≤ exp(−Ω(TεN/(T 2 log2(T ))))

≤ exp(−Ω(εN/T log2(T )))

≤ exp(−Ω(k3 log(d/ε))).

Taking a union bound over Q,w, T completes the proof.733

734

We think in fact that we should be able to produce a good set with substantially fewer samples.735

Conjecture 1. There exists an N = k2polylog(d/ε)/ε2 so that if G is a set of N samples drawn736

from N (0, I + ρvvT ), then G is (ε, k)-good with probability at least 1− 1/d.737

We can now proceed with the proof of our main Theorem. In particular, our algorithm will follow738

quickly from the existence of the following subroutine:739

Proposition B.5. Let G be an (ε, k)-good set for N (0,Σ) with Σ = I + ρvvT with v a unit740

length, k-sparse vector and 0 < ρ < 1. There exists an algorithm (Algorithm 2) that given a741

matrix Σ̃ and a set S with ‖Σ̃ − Σ‖F ≤ δ and ∆(S,G) ≤ ε|G| returns either a matrix Σ′ with742

‖Σ′ − Σ‖F = O(
√
εδ + ε log(1/ε)) or a subset T ⊂ S with ∆(T,G) < ∆(S,G).743

Our main theorem follows from iteratively applying the Proposition. The error stabilizes at δ with744

δ = O(
√
εδ + ε log(1/ε)), which implies that δ = O(ε log(1/ε)). We begin by analyzing what745

happens when our algorithm returns a matrix. We first note that if we pass the filter, then µ̃Q will be746

approximately correct.747

Lemma B.6. With the notation as in Algorithm 2, we have that ‖µ̃Q − vecQ(Σ− I)‖2 = O(
√
ελ+748 √

εδ + ε log(1/ε)).749

Proof. Let ‖µ̃Q − vecQ(Σ− I)‖2 = a.750

Let S = (G\L) ∪ E. We wish to show that751

∥∥∥∥∥
∑

x∈S

(xxT − Σ)Q

∥∥∥∥∥
2

= O(
√
εδ + ε log(1/ε))|G|.

We note that the left hand side above is at most752

∥∥∥∥∥
∑

x∈G

(xxT − Σ)Q

∥∥∥∥∥
2

+

∥∥∥∥∥
∑

x∈L

(xxT − Σ)Q

∥∥∥∥∥
2

+

∥∥∥∥∥
∑

x∈E

(xxT − Σ)Q

∥∥∥∥∥
2

.

Since G is a good set, by Condition 2, we have that the first term is O(ε|G|). The second term is at753

most the supremum over unit vectors w ∈ R
k2

of754

∑

x∈L

(w · γQ(x)− ρw · vecQ(vvT ))

This is at most755

∫ ∞

0

∣∣{x ∈ L : |(w · γQ(x)− ρw · vecQ(vvT )| > t}
∣∣ dt.

When U = L, this is at most756

∫ C log(1/ε)

0

ε|G|+
∫ ∞

C log(1/ε)

ε/((t/C)2 log2(t/C))|G|dt = O(ε log(1/ε)|G|),
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where the bound on the second term above is by Condition 4.757

We can bound the final term by Cauchy-Schwartz as758

(ε|G|)1/2
(
∑

x∈E

(w · (xxT − Σ)Q)
2

)1/2

.

To bound this we note that759

∑

x∈S

(w · (xxT − Σ)Q)
2 ≤ |S|(VarS(w · γQ(x)) + a2).

Now we know that760

VarG(w · γQ(x)) = VarN (0,ρvvT+I)(w · γQ(x)) +O(ε) = VarN (0,Σ̃)(w · γQ(x)) +O(ε+ δ).

Thus,761

∑

x∈G

((w · (xxT − Σ)Q)
2 −VarN (0,Σ̃)(w · γQ(x))) = O(ε+ δ)|G|.

However, since v∗ is a maximum eigenvalue, we also have that762

VarS(w · γQ(x))−VarN (0,Σ̃)(w · γQ(x)) ≤ λ+ a2.

Combining with the above, we have that763

∑

x∈E

((w · (xxT − Σ)Q)
2 −VarN (0,Σ̃)(w · γQ(x))) ≤

∑

x∈L

((w · (xxT − Σ)Q)
2 −VarN (0,Σ̃)(w · γQ(x)))

+ |G|O(ε+ δ + λ+ a2).

However, we can bound764

∑

x∈L

((w · (xxT − Σ)Q)
2 −VarN (0,Σ̃)(w · γQ(x)))

by765

O(1) +

∫ ∞

0

∣∣{x ∈ L : |(w · γQ(x)− ρw · vecQ(vvT )| > t}
∣∣ 2tdt.

As before, this is at most766

∫ C log(1/ε)

0

2tε|G|dt+
∫ ∞

C log(1/ε)

ε/((t/C)2 log2(t/C))|G|2tdt = O(ε log2(1/ε)|G|).

Thus, the final term in our sum is at most767

(ε|G|)1/2O(ε log2(1/ε)|G|+ (a2 + ε+ δ + λ)|G|)1/2

Therefore, we have that768

a = O(a
√
ε+

√
ελ+

√
εδ + ε log(1/ε)),

from which we conclude our result.769

770

Given this, we would like to show that Σ′ is close to Σ. In particular, we have:771

Lemma B.7. Suppose that A = Ex∈uS [xx
T − I] and Q the set of its k2 largest entries. If ‖(A −772

ρvvT )Q‖F = η then for w a normalized, principle eigenvector of AQ we have that ρw is within773

O(η + ε log(1/ε)) of either ρv or −ρv.774

Before we begin with the proof, we make an important observation:775
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Lemma B.8. In the notation above, for any set of entries R defining a k2×k2 submatrix, (A+I)R ≥776

((ρvvT + I)−O(ε log(1/ε))I)R, as self-adjoint operators.777

Proof. Note that A + I = Ex∈uS [xx
T ] ≥ (1 − ε)Ex∈uG\L[xxT ]. By Property 2 of what it means778

to be a good set, Ex∈uG[xx
T ] = ρvvT + I +O(ε). Thus, it suffices to show that for any unit vector779

u with support of size at most k2 that |L|/|G|Ex∈uL[(x · u)2] = O(ε log(1/ε)). This follows easily780

from Property 4.781

We are now ready to prove Lemma B.7.782

Proof. Let R be the support of vvT . Note that A has larger total L2 mass on Q than it does on R.783

Therefore,784

‖AR\Q‖F ≤ ‖AQ\R‖F ≤ ‖(A− ρvvT )Q‖F = η.

Let B = (ρvvT )R\Q. We note that with respect to Frobenius norm:785

AQ = AQ∩R +O(η) = (ρvvT )Q∩R +O(η) = (ρvvT −B) +O(η).

We also note that this is AQ∩R + O(η) = AR + O(η). Combining this with the above lemma, we786

have that787

(ρvvT −B + I) +O(η) ≥ (ρvvT + I)−O(ε log(1/ε))I.

Rearranging, we find that B ≤ O(η + ε log(1/ε))I . But we note that the sign of the i, j entry of788

B is the same as the sign of vivj or 0. This means that B is similar to a matrix with non-negative789

entries, and thus by The Perron–Frobenius Theorem, the largest eigenvalue of B is positive, and790

hence ‖B‖2 = O(η + ε log(1/ε)). Therefore, we have that791

‖AQ − ρvvT ‖2 ≤ ‖AQ − (ρvvT −B)‖2 + ‖B‖2 = O(η + ε log(1/ε)).

Note that unless ε and η are sufficiently small, there is nothing to prove. Otherwise, we have that792

v ·AQv ≥ ρ−O(η+ε log(1/ε)), so w will be an eigenvector with some eigenvalue λ > ρ/2. Since793

‖AQ − ρvvT ‖2 < ρ/2, this means that w must have a non-trivial component in the v-direction.794

Assume that w is proportional to v + u with u orthogonal to v. Then we have that795

λ(v + u) = λw = AQw = AQ(v + u) = ρv +O(η + ε log(1/ε)).

Taking the perpendicular to v component above, we have that ‖u‖2 = O(η + ε log(1/ε)), and this796

completes our proof.797

Finally, note that798

‖vvT − wwT ‖2F = ‖vvT ‖2F + ‖wwT ‖2F − 2tr(vvTwwT )

= 2− 2(v · w)2 ≪ 2− 2|v · w| = ‖v ± w‖22

=
‖ρv ± ρw‖22

ρ2
≤ O

((
η + ε log(1/ε)

ρ

)2
)

Thus, plugging in η = O(
√
ελ +

√
εδ + ε log(1/ε)) above, we find that ‖vvT − wwT ‖F =799

O(
√
εδ+ε log(1/ε)

ρ ).800
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We have left to analyze what happens when our algorithm returns a set S′. It is easy to see by801

Conditions 2 and 3 that only 1/3 of the elements of G have (γ(x)Q − ρvecQ(vv
T )) · v∗ > 3.802

Therefore, we have that µ̂ is within 3 of ρv∗ · (vecQ(vvT )). From this and Condition 4 it is easy to803

see that if C is sufficiently large (even compared to the C in Condition 4), that less than half of the804

elements of S with |vec(xxT ) · v∗| > CT + 3 will be in G, and thus ∆(S′, G) < ∆(S,G).805

All that remains is to show that such a threshold T exists. To do this consider806

VarS(v
∗ · vecQ(xxT ))−VarN (0,Σ)(v

∗ · vecQ(xxT )).

This is O(δ) + λ. On the other hand807

VarS(v
∗ · vecQ(xxT )) = ES [(v

∗ · vecQ(xxT − ρvvT ))2]−ES [v
∗ · vecQ(xxT − ρvvT )]2

= ES [(v
∗ · vecQ(xxT − ρvvT ))2] +O(ελ+ εδ + ε2 log2(1/ε))

by Lemma B.6. Thus,808

ES [(v
∗ · vecQ(xxT − ρvvT ))2] ≥ VarN (0,Σ)(v

∗ · vecQ(xxT )) + λ/2.

Now by Conditions 2 and 3 we have that809

∑

x∈G

((v∗ · vecQ(xxT − ρvvT ))2 −VarN (0,Σ)(v
∗ · vecQ(xxT ))) = O(|G|ε).

By arguments from the proof of Lemma B.6, we also have that810

∑

x∈L

((v∗ · vecQ(xxT − ρvvT ))2 −VarN (0,Σ)(v
∗ · vecQ(xxT ))) = O(|G|ε log2(1/ε)).

Thus, we must have811

∑

x∈E

(v∗ · vecQ(xxT − ρvvT ))2 ≫ |G|λ.

However, this is at most812

O

(
|E|+

∫ ∞

0

∣∣{x ∈ E : |v∗ · vecQ(xxT )− µ̂ > CT + 3}
∣∣ tdt

)
.

If there is no such threshold, this is at most813

O

(
|E|+

∫ log(1/ε)

0

|E|tdt+
∫ ∞

log(1/ε)

ε/(t2 log2(t))tdt

)
= O(ε log2(1/ε)|G|),

which is a contradiction. This completes our proof.814
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