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Abstract

Dimensionality reduction plays a central role in real world applications for Machine
Learning, among many fields. In particular, metric dimensionality reduction, where
data from a general metric is mapped into low dimensional space, is often used
as a first step before applying machine learning algorithms. In almost all these
applications the quality of the embedding is measured by various average case
criteria. Metric dimensionality reduction has also been studied in Math and TCS,
within the extremely fruitful and influential field of metric embedding. Yet, the
vast majority of theoretical research has been devoted to analyzing the worst case
behavior of embeddings, and therefore has little relevance to practical settings. The
goal of this paper is to bridge the gap between theory and practice view-points of
metric dimensionality reduction, laying the foundation for a theoretical study of
more practically oriented analysis.
This paper can be viewed as providing a comprehensive theoretical framework for
analyzing different distortion measurement criteria, with the lens of practical appli-
cability, and in particular for Machine Learning. The need for this line of research
was recently raised by Chennuru Vankadara and von Luxburg in (27)[NeurIPS’ 18],
who emphasized the importance of pursuing it from both theoretical and practical
perspectives.
We consider some important and vastly used average case criteria, some of which
originated within the well-known Multi-Dimensional Scaling framework. While
often studied in practice, no theoretical studies have thus far attempted at providing
rigorous analysis of these criteria. In this paper we provide the first analysis of these,
as well as the new distortion measure developed in (27) designed to posses Machine
Learning desired properties. Moreover, we show that all measures considered can
be adapted to posses similar qualities. The main consequences of our work are
nearly tight bounds on the absolute values of all distortion criteria, as well as first
approximation algorithms with provable guarantees.
All our theoretical results are backed by empirical experiments.

∗Author names are ordered alphabetically.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



1 Introduction

Metric Embedding plays an important role in a vast range of application areas such as machine
learning, computer vision, computational biology, networking, statistics, data mining, neuroscience
and mathematical psychology, to name a few. Perhaps the most significant is the application of metric
dimensionality reduction for large data sets, where the data is represented by points in a metric space.
It is desirable to efficiently embed the data into low dimensional space which would allow compact
representation, efficient use of resources, efficient access and interpretation, and enable operations to
be carried out significantly faster.

In machine learning, this task is often used as a preliminary step before applying various machine
learning algorithms, and sometimes refered to as unsupervised metric dimensionality reduction. Some
studies of dimensionality reduction within ML include (22; 23; 27; 62; 72). Moreover, there are
numerous practical studies of metric embedding and dimensioanlity reduction appearing in a plethora
of papers ranging in a wide scope of research areas including work on Internet coordinate systems,
feature extraction, similarity search, visual recognition, and computational biology applications; the
papers (41; 60; 40; 10; 37; 31; 65; 69; 74; 76; 64; 50; 25; 23; 68) are just a small sample.

In nearly all practical applications of metric embedding and dimensionality reduction methods, the
fundamental criterion for measuring the quality of the embedding is its average performance over all
pairs, where the measure of quality per pair is often the distortion, the square distortion and similar
related notions. Such experimental results often indicate that the quality of metric embeddings and
dimensionality reduction techniques behave very well in practice.

In contrast, the classic theory of metric embedding has mostly failed to address this phenomenon.
Developed over the past few decades by both mathematicians and theoretical computer scientists
(see (42; 52; 44) for surveys), it has been extremely fruitful in analyzing the worst case distortion of
embeddings. However, worst case analysis results often exhibit extremely high lower bounds. Indeed,
in most cases, the worst case bounds are growing, in terms of both distortion and dimension, as a
function of the size of the space. Such bounds are often irrelevant in practical terms.

These concerns were recently raised in the context of Machine Learning in (27) (NeurIPS’18),
stressing the desire for embeddings into constant dimension with constant distortion. (27) state the
necessity for a systematic study of different average distortion measures. Their main motivation is to
examine the relevance of these measures for machine learning. Here, the first step is made to tackle
this challenge.

The goal of this paper is to bridge between theory and practice outlook on metric embedding and
dimensionality reduction. In particular, providing the first comprehensive rigorous analysis of
the most basic practically oriented average case quality measurement criteria, using methods and
techniques developed within the classic theory of metric embedding, thereby providing new insights
for both theory and practice.

We focus on some of the most basic and commonly used average distortion measurement criteria:

Moments analysis: moments of distortion and Relative Error. The most basic average case
performance criterion is the average distortion. More generally, one could study all q-moments of
the distortion for every 1 ≤ q ≤ ∞. This notion was first studied by (3). For a non-contractive
embedding f , whose distortion for a pair of points u, v is denoted distf (u, v), they define:
Definition 1 (`q-distortion). Let (X, dX) and (Y, dY ) be any metric spaces, and f : X → Y be an
embedding. For any distribution Π over

(
X
2

)
and q ≥ 1, the `q-distortion of f with respect to Π is

defined by: `q-dist
(Π)(f) = (EΠ [(distf (u, v))

q
])

1
q , `∞-dist (Π)(f) = supΠ(u,v)6=0 {distf (u, v)}.

The most natural case is where Π is the uniform distribution (and will be omitted from the notation). In
order for this definition to extend to handle embeddings in their full generality and address important
applications such as dimensionality reduction, it turns out that one should remove the assumption
that the embedding is non-contractive.

We therefore naturally extend the above definition to deal with arbitrary embeddings by let-
ting distf (u, v) = max {expansf (u, v), contrf (u, v)}, where expansf (u, v) = dY (f(u),f(v))

dX(u,v) ,

contrf (u, v) = dX(u,v)
dY (f(u),f(v)) . In Section E we provide justification of the necessity of this definition.
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In particular, we show that there are metric space for which the optimal embedding minimizing the
`q-distortion may be arbitrarily better than any embedding minimizing for this measure which is
restricted to be just non-expansive or non-contractive.

Observe that this definition is not scale invariant2.

In many practical cases, where we may expect a near isometry for most pairs, the moments of
distortion may not be sensitive enough and more delicate measures of quality, which examine directly
the pairwise additive error, may be desired. The relative error measure (REM), commonly used
in network applications ((65; 64; 29)) is a most natural choice. It turns out that this measure can
be viewed as the moment of distortion about 1. This gives rise to the following generalization of
Definition 1:
Definition 2 (`q-distortion about c, REM). For c ≥ 0, the `q-distortion of f about c is given by:

`q-dist
(Π)
(c) (f) = (EΠ [|distf (u, v)− c|q])

1
q , REM (Π)

q (f) = `q-dist
(Π)
(1) (f).

Additive distortion measures: Stress and Energy. Multi Dimensional Scaling (see (30; 18)) is
a well-established methodology aiming at embedding a metric representing the relations between
objects into (usually Euclidean) low-dimensional space, to allow feature extraction often used for
indexing, clustering, nearest neighbor searching and visualization in many application areas, in-
cluding machine learning ((62)). The MDS methodology was created in the 1950-60’s within the
Psychometrika community in a series of influential papers by Torgerson (71), Gower (35), Shepard
(66), Kruskal (48) and others. Several average additive error criteria for the embedding’s quality have
been suggested in the context of MDS over the years. Perhaps the most popular is the stress measure
going back to (48). For duv = dX(u, v) and d̂uv = dY (f(u), f(v)), for normalized nonnegative
weights Π(u, v) (or distribution) we define the following natural generalizations, which include the
classic Kruskal stress Stress∗2(f) and normalized stress Stress2(f) measures, as well as other com-

mon variants in the literature (e.g. (39; 67; 36; 19; 73; 23)): Stress(Π)
q (f) =

(
EΠ[|d̂uv−duv|q]
EΠ[(duv)q ]

)1/q

,

and Stress∗(Π)
q (f) =

(
EΠ[|d̂uv−duv|q ]
EΠ[(d̂uv)q ]

)1/q

. Another popular and used in many fields additive er-
ror measure is energy and its special case, Sammon cost (see e.g. (63; 16; 28; 54; 55; 25)). We
define the following generalizations, which include some common variants (e.g. (60; 65; 64; 51)):

Energy(Π)
q (f) =

(
EΠ

[(
|d̂uv−duv|

duv

)q])1/q

and REM (Π)
q (f) =

(
EΠ

[(
|d̂uv−duv|q

min{d̂uv,duv}

)q])1/q

.

It immediately follows from the definitions that: Energy(Π)
q (f) ≤ REM (Π)

q (f) ≤ `q-dist (Π)(f).
Also it’s not hard to observe that Stress(Π)

q and Energy(Π′)
q (f) are equivalent via a simple

transformation of weights.

New ML motivated measure: σ-distortion. Recently, the paper by (27)[NeurIPS’ 18] studies
various existing and commonly used quality criteria in terms of their relevance in machine learn-
ing. Particularly, they suggest a new measure, σ- distortion, which is claimed to possess all the
necessary properties for machine learning applications. We present a generalized version of σ-
distortion3. Let `r-expans(f) = (

(
n
2

)−1∑
u6=v(expansf (u, v))r)1/r. For a distribution Π over

(
X
2

)
,

let Φσ,q,r
(Π)(f) =

(
EΠ

[∣∣∣ expansf (u,v)

`r-expans(f)
− 1
∣∣∣q])1/q

(for q = 2, r = 1 this is the square root of the
measure defined by (27)). We show that the tools we develop can be applied to σ-distortion to obtain
theoretical bounds on its value.

We further show, generalizing their work, that all other average distortion measures considered here
can be easily adapted to satisfy similar ML motivated properties to those defined by (27).

A basic contribution of our paper is showing deeper tight relations between these different objective
functions (Section C), and further developing properties and tools for analyzing embeddings for

2We note that if one desires scale invariability it may always be achieved by defining the scale-invariant
measure to be the minimization of the measure over all possible scaling of the embedding. For simplicity we
focus on the non-scalable version

3It is easy to verify that the general version satisfies all the properties considered in (27).

3



these measures (Section D). While these measures have been extensively studied from a practical
point of view, and many heuristics are known in the literature, almost nothing is known in terms
of rigorous analysis and absolute bounds. Moreover, many real-world misconceptions exist about
what dimension may be necessary for good embeddings. In this paper we present the first theoretical
analysis of all these measures providing absolute bounds that shed light on these questions. We
exhibit approximation algorithms for optimizing these measures, and further applications.

In this paper we focus only on analyzing objective measures that attempt to preserve metric structure.
As a result, some popular objective measures used in applied settings are beyond the scope of this
paper, this includes the widely used t-SNE heuristic (which aims at reflecting the cluster structure of
the data, and generally does not preserve metric structure), and various heuristics with local structure
objectives. When validating our theoretical findings experimentally (Section 6), we chose to compare
our results with the most common in practice heuristics PCA/classical-MDS and Isomap amongst the
various methods that appear in the literature.

Moment analysis of dimensionality reduction. A major bottleneck in processing large data sets is
the immense quantity of associated dimensions, making dimensionality reduction a most desirable
goal. Our paper proposes the following general question as fundamental basis for theoretical study:

Problem 1 ((k,q)-Dimension Reduction). Given a dimension bound k and 1 ≤ q ≤ ∞, what is
the least α(k, q) such that every finite subset of Euclidean space embeds into k dimensions with
Measureq ≤ α(k, q) ?

This question can be phrased for each Measureq of practical importance. A stronger demand would
be to require a single embedding to simultaneously achieve best possible bounds for all values of q.

We answer Problem 1 by providing upper and lower bounds on α(k, q). In particular we show
that the Johnson-Lindenstrauss dimensionality reduction achieves bounds in terms of q and k that
dramatically outperforms a widely used in practice PCA dimensionality reduction.Moreover, our
experiments show that the same holds for the Isomap and classical MDS methods.

The bounds we obtain provide some interesting conclusions regarding the expected behavior of
dimensionality reduction methods. As expected the bound for the JL method is improving as k grows,
confirming the intuition expressed in (27). Yet, countering their intuition, the bound does not increase
as a function of the original dimension d. When considering other embedding methods, the JL bound
can serve as guidance and it would make sense to treat the method as useful only when it beats the JL
bound. A phase transition, exhibited in our bounds, provides guidance on how to choose the target
dimension k.

Another consequence arises by combining our result with the embedding of (3) (by composing it
with JL): we obtain an embedding of general spaces into constant dimensional Euclidean space with
constant distortion (for all discussed measures). Here, the dimension is constant even if the original
space is not doubling, improving on the result obtained in (27).

Approximation algorithms. The bounds achieved for the Euclidean (k, q)-dimension reduction are
then applied to provide the first approximation algorithms for embedding general metric spaces into
low dimensional Euclidean space, for all the various distortion criteria. This is based on composing
convex programming with the JL-transform. It should be stressed that such a composition may not
necessarily work in general, however, we are able to show that this yields efficient approximation
algorithms for all the criteria considered in this paper.

Since these approximation algorithms achieve near optimal distortion bounds they are expected to
beat most common heuristics in terms of the relevant distortion measures. Evidence exists that there
is correlation between lower distortion measures and quality of machine learning algorithms applied
on the resulting space, such as in (27) where such correlation is shown between σ-distortion and
error bounds in classification. This evidence suggests that the improvement in distortion bounds
should be reflected in better bounds for machine learning applications.

Empirical Experiments. We validate our theoretical findings experimentally on various randomly
generated Euclidean and non-Euclidean metric spaces, in Section 6. In particular, as predicted by our
lower bounds, the phase transition is clearly seen in the JL, PCA and Isomap embeddings for all
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the measurement criteria. Moreover, in our simulations the JL based approximation algorithm (as
well as the JL itself, when applied on Euclidean metrics) has shown dramatically better performance
than the PCA and Isomap heuristics for all distortion measures, indicating that the JL-based
approximation algorithm is a preferable choice when the preservation of metric properties is desirable.

Additional Applications. Our results have further implications to improved embedding of general
metrics and distance oracles (appear in Appendix K), and to metric hyper sketching (appears in
Appendix L).

Related work. Analyzing refined notions of the distortion in metric embedding was suggested by
(47) in the context of network embedding (65). The authors of (47) noted that heuristic embeddings
into low dimensional Euclidean space had surprisingly good performance, and opted for a theoretical
explanation. They introduced the notion of partial and scaling embeddings (originally termed
slack and gracefully-degrading), and gave some preliminary results. Following, (1), (3) provided
asymptotically optimal partial and scaling embedding to `p spaces, and bounds on the moments of
distortion. These notions were further studied in various contexts, e.g., spanners (24), spanning trees
(5; 15), volume respecting (4).

Sketching and distance labeling have been intensively studied over the last two decades. Some of
the notable results are the sketching of (43) for `p, for 0 < p ≤ 2, and that for any k ≥ 1 there is
a labeling scheme for arbitrary metrics with stretch k and size Õ(n1/k) per point (45; 61; 70; 43).
There is a host of other results on distance sketching for various metric spaces, we refer the reader to
(9) and the references therein for some more background.

For Euclidean embedding, (53) showed that using SDP one can obtain arbitrarily good approximation
of the distortion. However, such a result is impossible when restricting the target dimension to k, as
(58) showed that unless P=NP, the approximation factor must be at least nΩ(1/k).

For completeness we mention a few works on the positive side of this line of research: in (20) authors
provide O

(
n1/3

)
-approximation algorithm for embedding unweighted tress into R1, and O

(
n1/2

)
-

approximation factor for unweighted graphs. In (21) authors develop an O
(
n1/3

)
approximation

algorithm for embedding ultrametrics in `22.

Of all the measures studied in this paper, the only measure that was previously theoretically studied
is Stressq. Cayton and Dasgupta (22) show that computing an embedding into R1 with optimal
Stressq is NP-hard, for any given q. To the best of our knowledge, the only approximation algorithms
known for this problem are the following: (38) gave a 2-approximation algorithm to Stress∞ for
embedding finite metrics into R1; (34) presentedO(log1/q n)-approximation algorithm to Stressq for
embedding any n-point metric into R1; (11) constructed O(1)-approximation algorithm to Stress∞
for embedding finite metric spaces into `21.

Compared to these results, the approximation algorithms presented in this paper, are far more general
in that they apply to several distortion measures, and their weighted versions, and to general values
of q and dimension k. Our result for the additive distortion measures, and in particular for Stressq,
are within O(1) factor of the optimal cost, though with an additional additive term that diminishes
as function of q/k. Our result for `q-dist provides a multiplicative approximation (with no additive
term).

2 On the limitations of classical MDS

We begin with examining the widely used and quoted heuristic, known as classical MDS or PCA(71;
35), which is often practically applied, even on non-Euclidean metric spaces. In the literature there
are many misconceptions regarding this heuristic. However, we show that it may perform extremely
poor in terms of all basic additive measures, and moreover this holds even if the input metric is
effectively low-dimensional.

Practitioners have developed various heuristics to cope with dimensionality reduction (see (72) for
a comprehensive overview). Most of the suggested methods are based on iterative improvement of
various objectives. All these strategies do not provide theoretical guarantees on convergence to the
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global minimum and most of them even do not necessarily converge. Furthermore, classical MDS
or PCA, one of the widely used heuristics, is usually referred to as the method that computes the
optimal solution for minimizing Stress2. We show that this is in fact false: PCA can produce an
embedding with Stressq value being far from optimum, even for the space that can be efficiently
embedded into a line.4 Consider the following subset of Rd. For any α < 1/2, for all i ∈ [1, d],
for any q ≥ 1, let si = 1/(αi)q. Let Xi ⊂ `d2 be the (multi) set of size 2si that contains si copies
of the vector αi · ei, denoted by X+

i , and si copies of the antipodal vector −αi · ei, denoted by
X−i , where ei is the standard basis vector of Rd. Define X as the union of all Xi. In Appendix
F we show that X can be embedded into a line with Stressq/Energyq(f) = O(α/d1/q), for any
q ≥ 1. Yet, for the PCA algorithm applied on X , into k ≤ β · d dimensions (β < 1), it holds that
Stressq/Energyq(F ) = Ω(1), and `q-dist /REMq(F ) =∞.

3 Euclidean dimension reduction: moment analysis of the JL transform

From a theoretical perspective, dimensionality reduction is known to be possible in Euclidean space
via the Johnson-Lindenstrauss Lemma (46), a cornerstone of Banach space analysis and metric
embedding theory, playing a central role in a plethora of applications. The lemma states that every n
point subset of Euclidean space can be embedded in O(ε−2 log n) dimensions with worst case 1 + ε
distortion. The dimension bound is shown to be tight in (49) (improving upon (8)). When applied in
a fixed dimension k, the worst case distortion becomes as bad as O(n2/k

√
log n). Moreover, (59)

proved nΩ(1/k) lower bound on the worst case distortion of any embedding in k dimensions.

However, as explained above, in many practical instances it is desirable to replace the demand for
worst case with average case guarantees. It should be noted yet that the JL transform does have good
properties, even when applied in k dimensions. The JL lemma in fact implies that in dimension k
for every pair there is some constant probability (≈ exp(−ε2k)) that a 1 + ε distortion is achieved.
While in itself an appealing property, it should be stressed that standard tail bounds arguments cannot
imply that the average (or higher moments) distortion is bounded. Indeed, we show that for certain
specialized implementations of JL transforms, such as those of (6) (e.g., using Rademacher entries
matrix),(7) (fast JL), and (32) (sparse JL), the `q-dist and REMq are unbounded.
Observation 1. Let k ≥ 1, and d > k. Let Ed = {ei}1≤i≤d ⊆ `d2 be the set of standard basis
vectors. Assume that a linear map f : `d2 → `k2 is given by a transformation matrix Pk×d, such that
for all i, j, P [i, j] ∈ U for some finite set U ⊂ R. If |U | < d

1
k then for the set Ed, for all q ≥ 1,

`q-dist(f), REMq(f) =∞.

The proof follows by volume argument. Note that for a matrix Pk×d, f(Ed) = {Pei}1≤i≤d, which
is exactly the set of columns of the matrix P . Since the entries of P belong to U , there can be at most
|U |k < d different columns in the set f(Ed). Therefore, there is at least one pair of points in Ed
that will be mapped into the same point by f , which implies the observation, as the `q-distortion and
REMq measures depend on the inverse of the embedded distance.

Yet, focusing on the Gaussian entries implementation by (45) we show that it behaves dramatically
better. Let X ⊂ `d2 be an n-point set, and k ≥ 1 be an integer. The JL transform of dimension k,
f : X → `k2 is defined by generating a random matrix T of size k × d, with i.i.d. standard normal
entries, and setting f(x) = 1√

k
Tx, for all x ∈ X .

3.1 Moments of distortion analysis

Theorem 1 (Moment Analysis of JL). Let X ⊂ `d2 be an n-point set, and let k ≥ 1. Given
any distribution Π over

(
X
2

)
, the JL transform f : X → `k2 is s.t. with probability at least 1/2,

`q-dist
(Π)(f) is bounded by:

1 ≤ q <
√
k
√
k ≤ q ≤ k

4
k
4 ≤ q / k q = k k / q ≤ ∞

1 +O
(

1√
k

)
1 +O

(
q

k−q

) (
k
k−q

)O(1/q)

(log n)
O(1/k)

nO( 1
k−

1
q )

4We note that PCA is proven to minimize
∑
u6=v∈X(d2

uv − d̂2
uv) over all projections into k dimensions (56),

but not over embeddings (not even linear maps).
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The bounds are asymptotically tight for most values of k and q when the embedding is required to
maintain all bounds simultaneously.5 For fixed q tightness holds for most values of q ≥

√
k.

The proof for a fixed value of q is in AppendixG:Theorem 45 and Theorem 51. The proof for the
simultaneous version is in AppendixG.2: Theorem 55.

Note that for large q our theorem shows that a phase transition emerges around q = k. The necessity
of this phenomenon is implied by nearly tight lower bounds given in Section 4.1.

3.2 Additive distortion and σ-distortion measures analysis

The following theorem provides tight upper bounds for all the additive distortion measures and for
σ-distortion, for 1 ≤ q ≤ k − 1. This follows from analyzing the REM (via similar approach to the
raw moments analysis) and tight relations between the measures (Appendix G.5: Theorem 59).

Theorem 2. Given a finite set X ⊂ `d2 and an integer k ≥ 2, let f : X → `k2 be the JL transform of
dimension k. For any distribution Π over

(
X
2

)
, with constant probability, for all 1 ≤ r ≤ q ≤ k − 1:

REM (Π)
q (f), Energy(Π)

q (f),Φσ,q,r
(Π)(f), Stress(Π)

q (f), Stress∗(Π)
q (f) = O

(√
q/k
)
.

The more challenging part of the analysis is figuring out how good are the JL performance bounds.
Therefore our main goal is the task of establishing lower bounds for Problem 1.

4 Partially tight lower bounds: q < k

As the stated upper bounds behave differently in different ranges of values of q, the same holds for
the lower bounds. Therefore we must provide lower bounds for each range. We show that JL is
essentially optimal when simultaneous guarantees are required (Appendix I). If that requirement
is removed, it is still the case for most of the ranges of q. Providing lower bound for each range
requires a different technique. One of the most interesting cases, is the proof of the lower bound of
1 + Ω(q/(k − q)) for the range 1 ≤ q ≤ k − 1. For q ≤

√
k, this turns out to be a consequence of

the tightness results for the additive distortion measures and σ-distortion, which are shown to be tight
for q ≥ 2. The proof is based on a delicate application of the technique of (8).

Additive distortion measures. We show that the analysis of the JL transform for the additive
measures and σ-distortion, provides tight bounds for all values of 2 ≤ q ≤ k. Due to tight relations
between the additive measures, the lower bounds for all measures follow from Energy measure
(Appendix H.1:Claim 64). Let En denote the n-point equilateral metric space.

Claim 3. For all k ≥ 2, k ≥ q ≥ 2, and n ≥ 4
(

9 · kq
)q/2

, for all f : En → `k2 it holds that

Energyq(f) = Ω(
√

q
k ).

From the proof of the above claim we derive the lower bound for 1 ≤ q < 2, in Appendix H.1:Claim
65:

Claim 4. For all k ≥ 1, 1 ≤ q < 2, and n ≥ 18k, for all f : En → `k2 , Energyq(f) = Ω
(

1
k1/q

)
.

Moments of distortions. A more involved argument shows that Claim 3 implies a lower bound on
the `q-distortion as well, proved in Appendix H.2: Corollary 7.

Corollary 1. For any k ≥ 1, let En be an equilateral metric space, for n ≥ 18k. Then, for any
embedding f : En → `k2 it holds that `q-dist(f) = 1 + Ω

(
q
k

)
, for all 1 ≤ q ≤

√
k.

The following is proven in Appendix H.2: Theorem 66, based on (49):

Theorem 5. For all k ≥ 16, for all N large enough, there is a metric space Z ⊆ `2 on N points,
such that for any F : Z → `k2 it holds that `q-dist(F ) ≥ 1 + Ω

(
q

k−q

)
, for all q = Ω

(√
k log k

)
.

5This means that no bound for q can be asymptotically improved without losing in the bounds for other
values of q.
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4.1 Phase transition: moment analysis lower bounds for q ≥ k

An important consequence of our analysis is that the q-moments of the distortion (including REMq),
exhibit am impressive phase transition phenomenon occurring around q = k. This follows from
lower bounds for q ≥ k. The case q = k (and ≈ k) is of special interest where we obtain a tight
bound of Θ((

√
log n)1/k) in Appendix H.3: Theorem 67:

Theorem 6. Any embedding f : En → `k2 has `k-dist(f) = Ω((
√

log n)
1/k
/k1/4), for any k ≥ 1.

Hence, for any q, the theorem tells that only k ≥ 1.01q may be suitable for dimensionality reduction.
This new consequence may serve an important guide for practical considerations, that seems to be
missing prior to our work.

In Appendix H.2: Claims 73, 74 we prove the following lower bounds:
Claim 7. For any embedding f : En → `k2 , for all k ≥ 1, for all q > k, `q-dist(f) =

Ω(max{n( 1
2dk/2e−

2
q ), n

1
2k−

1
2q }).

5 Approximate optimal embedding of general metrics

Perhaps the most basic goal in dimensionality reduction theory and essentially, the main problem
of MDS, is: Given an arbitrary metric space compute an embedding into k dimensional Euclidean
space which approximates the best possible embedding, in terms of minimizing a particular distortion
measure objective. 6. Except for some very special cases no such approximation algorithms were
known prior to this work. Applying our moment analysis bounds for JL we are able to obtain the first
general approximation guarantees to all the discussed measures.

The bounds are obtained via convex programming combined with the JL-transform. While the basic
idea is quite simple, it is not obvious that it can actually go through. The main obstacle is that all
q-moment measures are not associative. In fact, this is not generally the case that combining two
embeddings results in a good final embedding. However, as we show, this is indeed true specifically
for JL-type embeddings.

Let OBJ (Π)
q = {`q-dist (Π), REM (Π)

q , Energy(Π)
q ,Φ

(Π)
σ,q,2, Stress

(Π)
q , Stress∗(Π)

q } denote the

set of the objective measures. Given any Obj
(Π)
q ∈ OBJ

(Π)
q , denote OPT (n) =

inff :X→`n2

{
Obj

(Π)
q (f)

}
, and OPT = infh:X→`k2

{
Obj

(Π)
q (h)

}
. Note that OPT (n) ≤ OPT .

The first step of the approximation algorithm is to compute OPT (n) for a given Obj(Π)
q , without

constraining the target dimension.
Theorem 8. Let (X, dX) be an n-point metric space and Π be any distribution. Then for any
q ≥ 2 and for Obj(Π)

q 6= Stress∗
(Π)
q there exists a polynomial time algorithm that computes an

embedding f : X → `n2 such that Obj(Π)
q (f) approximates OPT (n) to within any level of precision.

For Obj(Π)
q = Stress∗(Π)

q there exists a polynomial time algorithm that computes an embedding
f : X → `n2 with Stress∗(Π)

q (f) = O
(
OPT (n)

)
.

The proof is based on formulating the appropriate convex optimization program, which can be solved
in polynomial time by interior-point methods. The formulation of the optimization problem follows
the approach of (53) who used an SDP optimization to compute an optimal worst case distortion
embedding. The exception is Stress∗q which is inherently non-convex. We show in Appendix J:
Claim 78 that Stress∗q can be reduced to the case of Stressq , with an additional constant factor loss.
In addition, in Appendix J: Claim 81 we show that the optimizing for Φσ,q,2 can be reduced to the
case of Energyq . The details of the proof are in Appendix J:Theorem 80.

The second step in the approximation algorithm is applying the JL to reduce the dimension to the
desired number of dimensions k. Next theorem states the approximation result (proved in Appendix
J:Theorem 82.) The proof is based on the composition results for the additive measures, presented in
Appendix D.2.

6(22) prove that finding the optimal embedding into one dimension minimizing Stressq for any fixed q is
NP-hard.
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Theorem 9. For any finite metric (X, dX), any distribution Π over
(
X
2

)
, for any k ≥ 3 and

2 ≤ q ≤ k−1, there is a randomized polynomial time algorithm that finds an embedding F : X → `k2 ,
such that with high probability: `q-dist

(Π)(F ) = (1 + O( 1√
k

+ q
k−q ))OPT ; and Obj(Π)

q (F ) =

O(OPT ) +O(
√
q/k), for Obj(Π)

q ∈ {REM (Π)
q , Energy

(Π)
q ,Φ

(Π)
σ,q,2, Stress

(Π)
q , Stress∗(Π)

q }.

6 Empirical experiments

In this section we provide experiments to demonstrate that the theoretical results are exhibited in
practical settings. We also compare in the experiments the bounds of the theoretical algorithms
(JL and the approximation algorithm based on it) to some of the most common heuristics. In all
the experiments, we use Normal distribution (with random variance) for sampling Euclidean input
spaces.7 Tests were made for a large range of parameters, averaging over at least 10 independent
tests. The results are consistent for all settings and measures.

We first recall the main theoretical results to be verified. In Theorem 1 and Theorem 2 we showed
that for q < k the `q-distortion is bounded by 1 +O(1/

√
k) +O(q/k), and all the rest measures are

bounded by O(
√
q/k). Particularly, the bounds are independent of the size n and dimension d of the

input data set. In addition, our lower bounds in Section 4.1 show that for `q-distortion and REMq

measures a phase transition must occur at q ∼ k for any dimensionality reduction method, where the
bounds dramatically increase from being bounded by a constant to grow with n as poly(n) for q < k.
Finally, in Section 5 we exhibited an approximation algorithm for all distortion measures.

The graphs in Fig.1 and Fig.2a describe the following setting: A random Euclidean space X of a
fixed size n and dimension d = n = 800 was embedded into k ∈ [4, 30] dimensions with q = 5,
by the JL/PCA/Isomap methods. We stress that we run many more experiments for a wide range
of parameter values of n ∈ [100, 3000], k ∈ [2, 100], q ∈ [1, 10], and obtained essentially identical
qualitative behavior. In Fig. 1a, the `q-distortion as a function of k of the JL embedding is shown for
q = 8, 10, 12. The phase transitions are seen at around k ∼ q as predicted. In Fig. 1b the bounds
and the phase transitions of the PCA and Isomap methods are presented for the same setting, as
predicted. In Fig. 1c, `q-distortion bounds are shown for increasing values of k > q. Note that the
`q-distortion of the JL is a small constant close to 1, as predicted, compared to values significantly
> 2 for the compared heuristics. Overall, Fig. 1 clearly shows the superiority of JL to the other
methods for all the range of values of k. The same conclusions as above hold for σ-distortion as well,

(a) Phase transition: JL. (b) Phase transition: PCA, Isomap. (c) Comparing `q-dists for k > q.

Figure 1: Validating `q-distortion behavior.

as shown in Fig. 2a. In the experiment shown in Fig. 2b, we tested the behavior of the σ-distortion
as a function of d-the dimension of the input data set, similarly to that of (27)(Fig. 2), and tests are
shown for embedding dimension k = 20 and q = 2. According to our theorems, the σ-distortion of
the JL transform is bounded above by a constant independent of d, for q < k. Our experiment shows
that the σ-distortion is growing as d increases for both PCA/Isomap, whereas it is a constant for JL.
Moreover, JL obtains significantly smaller value of σ-distortion.

In the last experiment, Fig.3, we tested the quality of our approximation algorithm on non-Euclidean
input spaces versus the classical MDS and Isomap methods (with natural implementations for non-
Euclidean input spaces). The construction of the space is as follows: first, a sampled Euclidean space
X , of size and dimension n = d = 100, is generated as above; second, the interpoint distances of

7We note that (27) used similar settings with Normal/Gamma distributions. Most of our experimental results
hold also for the Gamma distribution.
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(a) σ-distortion. (b) σ-distortion as a function of d.

Figure 2: Validating σ-dist. behavior.

Figure 3: Non-Euclidean in-
put metric: `q-distortion be-
havior.

X are distorted with a noise factor 1 + ε, with ε ∼ N(0, δ), for δ < 1. We ensure that the resulting
space is a valid non-Euclidean metric. We then embed the final space into k ∈ [10, 30] dimensions
with q = 5. Since the non-Euclidean space is 1 + ε far from being Euclidean, we expect a similar
behavior to that shown in Fig. 1c. The result clearly demonstrates the superiority of the JL-based
approximation algorithm.

7 On relevance of distortion measures for ML

In (27) the authors developed a set of properties a distortion measure has to satisfy in order to be
useful for machine learning applications. Here we show that their properties can be generalized and
show that appropriate modifications of all the measurement criteria discussed in this paper satisfy all
of them, effectively implying that (appropriate adaptations of) the most basic additive and moment of
distortion measures are valid criteria for ML applications.

For an embedding f : X → Y , let ρf (u, v) be an error function of a pair u 6= v ∈ X , which is a func-
tion of the embedded distance and original distance between u and v. Let ρ(f) = (ρf (u, v))u6=v∈X

denote the vector of ρf (u, v) for all pairs u 6= v ∈ X . LetM (Π)
q : ρ(f)→ R+ be a measure function,

for any distribution Π over
(
X
2

)
. For instance, for `q-distortion measure and REMq, ρf (u, v) :=

distf (u, v) and ρf (u, v) := distf (u, v) − 1, respectively; for Energyq, and Stressq measures,
ρf (u, v) := |expansf (u, v)− 1|; for Φσ,q,r, ρf (u, v) := |expansf (u, v)/ `r-expans(f)− 1|. 8 All
the measures are then defined by M (Π)

q (ρ(f)) := (EΠ[‖ρ(f)‖qq])1/q ( in what follows we will omit
Π from the notation).

Next, we provide generalized versions of the ML motivated properties defined in (27):

Scalability. Although a measurement criteria may not necessarily be scalable, any such criteria can be
naturally modified to a scalable version as follows. For every Mq let M̂q(ρ(f)) = minα>0Mq(ρ(α ·
f)). Note that the upper and lower bounds that hold for Mq also hold for its scalable version M̂q .

Monotonicity. We generalize this property as follows. Let f, g : X → Y be any embeddings.
For a given measure Mq, let f̂ and ĝ be embeddings minimizing Mq(ρ(α · f)) and Mq(ρ(α · g)),
respectively (over all scaling factors α > 0). If f̂ and ĝ are such that for every pair u 6= v ∈ X it
holds that ρf̂ (u, v) ≥ ρĝ(u, v), then the measure M̂q is monotone if Mq(ρ(f̂)) ≥Mq(ρ(ĝ)).

Robustness to outliers in data/in distances. The measure M̂q is said to be robust to outliers if for any
embedding fn of an n-point space, any modification f̃n where a constant number of changes occurs
in either points or distances, it hols that limn→∞Mq(ρ(fn)) = limn→∞Mq(ρ(f̃n)).

Incorporation of the probability distribution. Let h : X → Y be an embedding and let u 6= v ∈ X
and x 6= y ∈ X , such that Π(u, v) > Π(x, y) and ρh(u, v) = ρh(x, y). Assume that f : X → Y is
identical to h, except over (u, v), and assume that g is identical to h, except over (x, y), and assume
that ρf (u, v) = ρg(x, y). Now let f̂ and ĥ be defined as above and assume ρf̂ (u, v) ≥ ρĥ(u, v). Then,

the measure M̂ (Π)
q is said to incorporate the probability distribution Π if M (Π)

q (ρ(f̂)) > M
(Π)
q (ρ(ĝ)).

8The formula for ρf (u, v) for f being Stress∗ is more involved and omitted from this version.
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Robustness to noise was not formally defined in (27). Assuming the model of noise that affects the
error ρ by at most a factor of 1 + ε (alternatively an additive error of ε) for each pair, the requirement
is that the measure M̂q will be changed by at most factor of 1 +O(ε) (or additive O(ε)).

It is easy to see that all (adapted versions of) distortion criteria discussed obey all properties.

8 Discussion

This work provides a new framework for theoretical analysis of embeddings in terms of performance
measures that are of practical relevance, initiating a theoretical study of a wide range of average case
quality measurement criteria, and providing the first rigorous analysis of these criteria.

We use this framework to analyze the new distortion measure developed in (27) designed to posses
machine learning desired properties and show that all considered distortion measures can be adapted
to posses similar qualities.

We show nearly tight bounds on the absolute values of all distortion criteria, essentially showing that
the JL transform is near optimal for dimensionality reduction for most parameter regimes. When
considering other methods, the JL bound can serve as guidance and it would make sense to treat a
method useful only when it beats the JL bound. A phase transition exhibited in our bounds provides a
direction on how to choose the target dimension k, i.e. k should be greater than q by a factor > 1.
This means that the amount of outlier pairs is diminishing as k grows.

A major contribution of our paper is providing the first approximation algorithms for embedding any
finite metric (possibly non-Euclidean) into k-dimensional Euclidean space with provable approxima-
tion guarantees. Since these approximation algorithms achieve near optimal distortion bounds they are
expected to beat most common heuristics in terms of the relevant distortion measures. Evidence exists
that there is correlation between lower distortion measures and quality of machine learning algorithms
applied on the resulting space, such as in (27), where such correlation is experimentally shown
between σ-distortion and error bounds in classification. This evidence suggests that the improvement
in distortion bounds should be reflected in better bounds for machine learning applications.

Our experiments show that the conclusions above hold in practical settings as well.
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A Preliminaries and basic definitions

For metric spaces (X, dX) and (Y, dY ), an injective map f : X → Y is an embedding. The distortion
of f is defined by dist(f) = maxu 6=v∈X{expansionf (u, v)} ·maxu6=v∈X{contractionf (u, v)}.
Scalable metric space and family of scalable metric spaces. Most of our results are general in a
sense that they hold not only for a hosting space Y being a normed space, but rather for any ’scalable’
metric space.
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Definition 3. Let (Y, dY ) be an infinite metric space. We say that Y is a scalable metric space if

∀Y ′ ⊆ Y, ∀α > 0, ∃Y ′′, ∃ a bijection F : Y ′ → Y ′′

s.t. ∀u′ 6= v′ ∈ Y ′, dY (F (u′), F (v′)) = α · dY (u′, v′)

We say that Y ′′ is an α-scaled version of Y ′, and we refer it by α · Y ′.

To capture the notion of scalable finite metric space we extend the above definition as follows.
Definition 4. Let Y be a family of an n-point metric spaces. We say that Y is a scalable family of
metric spaces if

∀(Y ′, dY ′) ∈ Y, ∀α > 0, ∃(Y ′′, dY ′′ ∈ Y, ∃ a bijection F : Y ′ → Y ′′

s.t. ∀u′ 6= v′ ∈ Y ′, dY ′′(F (u′), F (v′)) = α · dY ′(u′, v′)
We say that Y ′′ is an α-scaled version of Y ′, and we refer it by α · Y ′.

For results that hold for a scalable metric space Y , we will use the following informal notation.
Notation 1. Let (X, dX) be an n-point metric space, and (Y, dY ) be a scalable metric space (or a
memeber of a scalable family of metric spaces). Let f : X → Y be an embedding, and α > 0 a
scaling parameter. Let Y ′′ be an α -scaled version of f(X), and let F be the bijection between Y ′′
and f(X). We denote by α · f : X → Y the embedding defined by

∀u ∈ X, α · f(u) = F (f(u))

Another useful notation is bellow:
Notation 2. Let (X, dX), (Y, dY ) be any metric spaces, and let X ′ ⊆ X be any subset. Given any
embedding f : X → Y we denote by f |X ′ the embedding f induced on the set X ′, i.e. for all
x ∈ X ′,f |X ′(x) = f(x), and for all x ∈ X \X ′, f |X ′(x) is undefined.

The following basic probability lemma is useful in providing an upper bound on the probability that a
weighted sum of nonnegative (dependent) random variables is small.
Lemma 10. Let X1, X2, . . . Xn be nonnegative random variables. Let w1, w2, . . . , wn be non-
negative weights normalized such that

∑
1≤i≤n wi = 1, and let Y =

∑
1≤i≤n wiXi. For all i let

pi = Pr [Xi ≤ α], for some α ≥ 0, and let z = Pr [Y ≤ βα], for some 0 < β < 1. Then

z ≤
∑

1≤i≤n wipi

1− β
.

In particular, if pi ≤ p for all i then z ≤ p
1−β .

Proof. Define S(α) = {1 ≤ i ≤ n|Xi ≤ α}. For every S ⊆ [n] let zS denote the probability that
S(α) = S. Observe that if

∑
i/∈S(α) wi ≥ β then Y =

∑
1≤i≤n wiXi > βα. Conversely, if Y ≤ βα

then
∑
i∈S(α) wi ≥ 1− β. Let B = {S ⊆ [n]|

∑
i∈S wi ≥ 1− β}. Then

z = Pr [Y ≤ βα] ≤ Pr[
∑
i∈S(α)

wi ≥ 1− β] =
∑
S∈B

zS .

As for every i we have
pi = Pr [Xi ≤ α] =

∑
S3i

zS ≥
∑

S∈B;S3i
zS

We get that ∑
1≤i≤n

wipi ≥
∑

1≤i≤n

wi
∑

S∈B;S3i
zS =

∑
S∈B

zS
∑
i∈S

wi ≥ (1− β)z.

Additive distortions. To put our results in context we make the following remark. Given any finite
metric space (X, dX), and any scalable metric space (Y, dY ), there exists an embedding f : X → Y

such that Energy(Π)
q (f), Stress(Π)

q (f) are less then 1 (or such that Stress∗(Π)
q (f) less than 1). This

is because we can embed X into some n point set of Y , and either scale it by factor δ > 0 small
enough for Energy and Stress to be less than 1, or by factor δ > 0 large enough for Stress∗ be
less than 1.
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B Gamma function: inequalities and estimations

The following was proved in Wendel (75): For all x > 0, for all 0 ≤ r ≤ 1,(
x

x+ r

)1−r

≤ Γ(x+ r)

xrΓ(x)
≤ 1. (1)

From this, we derive: For all x > 0, for all 0 ≤ r ≤ 1, such that r < x,

xrΓ(x− r)
Γ(x)

≤ x

x− r
. (2)

In (17), the following inequalities were proved:

∀ x ≥ 0,

√
2(x+ 1

2 )
x+ 1

2

ex
≤ Γ(x+ 1) <

√
2π
(
x+ 1

2

)x+ 1
2

ex+ 1
2

. (3)

∀x ≥ 1,
√

2πxx−1e−x
√
x+ 1/6 ≤ Γ(x) ≤

√
2πxx−1e−x

√
x+ (e2/2π − 1). (4)

We prove the following lemma:

Lemma 11. For all x > 0,
√

2πxx−1e−x
√
x ≤ Γ(x) ≤

√
2πxx−1e−x

√
x+ 1/2.

Proof. For x ≥ 1 the inequality is just a weaker form of the inequality 4. Thus, we focus on
0 < x < 1. To prove the right-hand side, we use the right-hand side of the Eq.3. For any x > 0:

Γ(x+ 1) = x · Γ(x) ≤
√

2π
(
x+ 1

2

)x+ 1
2

ex+ 1
2

.

Thus, it is enough to prove that for any x > 0:

(x+ 1/2)
x+1/2

√
e

≤ xx
√
x+ 1/2,

which is true since (1 + 1/2x)
x ≤
√
e. For the the left-hand side, by the same consideration, it is

enough to show for all 0 < x < 1:

√
πxx
√
x ≤ (x+ 1/2)x+1/2 ⇔

√
π ≤ (1 + 1/2x)x+1/2,

which is true since the function f(x) = (1 + 1/2x)x+1/2 is decreasing, and therefore for 0 < x < 1,
f(x) ≥ (1.5)1.5 ≥

√
π.

As a corollary, we obtain an estimation of the flowing term, which we frequently use in the paper:

Lemma 12. For any k ≥ 1, ( k2 )
k
2
−1

Γ( k2 )
≤ ek/2
√
πk

.

Another useful inequality, which involves incomplete Gamma function, is proven in (13).

Lemma 13. For all x > 0, for all 0 ≤ r ≤ 1, for all y ≥ 0 it holds

Γ(x+ r, y) ≤ xrΓ(x, y) + r · y
xxr−1

ey
.

The proof is a generalization of inequality in (75).
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C Moment analysis notions: basic properties and relations

In this section we define a basic notions of the moment analysis of metric embeddings and state their
several useful properties.
Definition 5 (`q-expans, `q-contr). Let f : X → Y be an embedding. Given any distribution Π

over
(
X
2

)
, any q ≥ 1, we define:

`q-expans
(Π)(f) =

(
EΠ

[
(expansf (u, v))

q])1/q
, `q-contr

(Π)(f) = (EΠ [(contrf (u, v))
q
])

1/q
.

We refer to `q-expans(U)(f) by `q-expans(f), and to `q-contr (U)(f) by `q-contr(f). Note that for

any embedding f it holds that max
{
`q-contr (Π)(f), `q-expans(Π)(f)

}
≤ `q-dist (Π)(f).

Lemma 14. Let (X, dX) be a finite metric, and let (Y, dY ) be a metric space. For any f : X → Y :

1. dist(f) ≤ (`∞-dist(f))
2
.

2. For any distribution Π over
(
X
2

)
, ∀1 ≤ s ≤ t ≤ ∞, `s-dist

(Π)(f) ≤ `t-dist
(Π)(f) ≤

Υ(Π)
1
s−

1
t `s-dist

(Π)(f), where Υ(Π) = maxΠ(u,v)6=0

{
(Π(u, v))

−1
}

.

Proof. The first item immediately follows from the definitions of the dist(f) and of the `∞-dist(f).
The L.H.S. of the second item immediately follows from the Jensen’s inequality. To prove the R.H.S.
is equivalent to prove the following inequity ∑

u6=v∈X

Π(u, v)Υ(Π)(distf (u, v))
t

1/t

≤

 ∑
u6=v∈X

Π(u, v)Υ(Π)(distf (u, v))
s

1/s

,

which is equivalent to showing that

∑
u6=v∈X

Π(u, v)Υ(Π)(distf (u, v))
t ≤

 ∑
u6=v∈X

Π(u, v)Υ(Π)(distf (u, v))
s

t/s

.

Note that real function p(y) = yt/s is a convex function (since t ≥ s), and also p(0)=0, therefore,
p(y) is superadditive function. Therefore, we have ∑

u 6=v∈X

Π(u, v)Υ(Π)(distf (u, v))
s

t/s

≥
∑

u 6=v∈X

(Π(u, v)Υ(Π))
t/s

(distf (u, v))
t
,

what finishes the proof, since Π(u, v)Υ(Π) ≥ 1, for all u 6= v ∈ X .

Distortion of `q-norm. When considering specific embeddings9 the following notion of distnorm is
a natural measure, which we show to be closely related to the notion of the `q-distortion.

Definition 6. Let f : X → Y be an embedding. Given any distribution Π over
(
X
2

)
, any q ≥ 1, the

distortion of `q-norm of f with respect to Π is defined by

distnorm(Π)
q (f) = max

{
EΠ[(dY (f(u), f(v)))

q
]
1/q

EΠ[(dX(u, v))
q
]
1/q

,
EΠ[(dX(u, v))

q
]
1/q

EΠ[(dY (f(u), f(v)))
q
]
1/q

}
.

For Π = U we use the notation distnorm(U)
q (f) = distnormq(f). The following claim establishes

the connections to the `q-distortion notion.

9Unlike other measures we consider, this notion generally is not valuable, when the embedding is arbitrary
and the weight function is known in advance, since in this case it can be made to equal 1. However, it is valuable
when the embedding has special properties, such as being non-expansive or non-contractive (as in (3)), or being
efficiently computable and oblivious, such as the case of the JL-transform.
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Claim 15. For any f : X → Y , any distribution Π over
(
X
2

)
, any q ≥ 1 it holds that:

distnorm(Π)
q (f) = max

{
`q-expans

(Π′)(f),
1

`q-expans
(Π′)(f)

}
≤ max

{
`q-expans

(Π′)(f), `q-contr
(Π′)(f)

}
≤ `q-dist (Π′)(f),

where the distribution Π′ over the pairs
(
X
2

)
is defined by Π′(u, v) = Π(u,v)·(dX(u,v))q

EΠ[(dX(u,v))q ] .

Proof. The equality follows by substituting the formula of Π′ into the definition of `q-expans(Π)(f).
Jensen’s inequality implies 1

`q-expans (Π′)
(f)
≤ `q-contr (Π′)(f).

Claim 16. For any f : X → Y , any distribution Π over
(
X
2

)
, and any q ≥ 1 it holds that:

distnorm(Π)
q (f) ≤ `q-dist (Π′)(f),

where the distribution Π′ over the pairs
(
X
2

)
is defined by: for all (u, v) ∈

(
X
2

)
, Π′(u, v) =

Π(u,v)·(dX(u,v))q

EΠ[(dX(u,v))q ] .

Proof. Note that Π′ is indeed a distribution. We have

(`q-dist (Π′)(f))
q

= EΠ′ [(distf (u, v))
q
] ≥ EΠ′

[(
dY (f(u), f(v))

dX(u, v)

)q]
=

1

EΠ [(dX(u, v))
q
]
·
∑

u 6=v∈X

Π(u, v)(dY (f(u), f(v)))
q

=
EΠ[(dY (f(u), f(v)))

q
]

EΠ[(dX(u, v))
q .

For the second direction we have by Jensen’s inequality

1

(`q-dist (Π′)(f))
q =

1

EΠ′ [(distf (u, v))
q
]
≤ EΠ′

[
1

(distf (u, v))]
q

]
≤

EΠ′

[(
dY (f(u), f(v))

dX(u, v)

)q]
=
EΠ[(dY (f(u), f(v)))

q
]

EΠ[(dX(u, v))]
q .

This finishes the proof of the claim.

We conclude this section with the following basic fact.
Fact C.1. Let (X, dX), (Y, dY ) be n-point metric spaces. For any distribution Π over

(
n
2

)
, ∀q ≥ 1

it holds that `q-dist
(Π)(f) = `q-dist

(Π)(f−1). Particularly, for f̂ = argmin
f :X→Y

{
`q-dist

Π(f)
}

, and

ĝ = argmin
g:Y→X

{
`q-dist

(Π)(g)
}

it holds that ĝ ≡ f−1.

Additive distortion measures. Bellow we list the relations between the additive distortion measures.
Claim 17. For any f : X → Y , for any distribution Π over

(
X
2

)
, for any q ≥ 1, there is a distribution

Π′ over
(
X
2

)
such that Stress(Π)

q (f) = Energy(Π′)
q (f).

Proof. Let Π′(ij) =
Π(ij)(dij)

q∑
s 6=t

Π(st)(dst)
q , then Energy(Π′)

q (f) = Stress(Π)
q (f).

Claim 18. For all q ≥ 1 it holds that
(
Energy(Π)

q (f)
)q
≤
(
`q-expans

(Π)(f)
)q

+ 1.
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Proof.(
Energy(Π)

q (f)
)q

=
∑

1≤i<j≤n

Π(i, j)

(∣∣∣∣∣ d̂ij − dijdij

∣∣∣∣∣
)q

=
∑

1≤i<j≤n

Π(i, j)·max

{(
d̂ij
dij
− 1

)q
,

(
1− d̂ij

dij

)q}
.

Let A = {(i, j)|expansf (xi, xj) ≥ 1}, and B = {(i, j)|expansf (xi, xj) < 1}. Then, we have

(
Energy(Π)

q (f)
)q

=
∑

(i,j)∈A

Π(i, j)(expansf (xi, xj)− 1)
q
+
∑

(i,j)∈B

Π(i, j)(1− expansf (xi, xj))
q ≤

∑
(i,j)∈A

Π(i, j)(expansf (xi, xj))
q

+
∑

(i,j)∈B

Π(i, j) ≤ (`q-expans(f))
q

+ 1,

as required.

Claim 19. Let (X, dX) be any finite metric space, and (Y, dY ) be any metric space. For any
distribution Π over

(
X
2

)
, for any embedding f : X → Y , for all q ≥ 1 it holds that(

`q-dist
(Π)(f)/2

)q
− 1 ≤

(
REM (Π)

q (f)
)q
≤
(
`q-dist

(Π)(f)
)q
− 1.

Proof. (
REM (Π)

q (f)
)q

+ 1 =
(
`q-dist

(Π)
(1) (f)

)q
+ 1 = EΠ [(|distf (u, v)− 1|)q + 1].

Recalling that `q-dist (Π)(f) = EΠ [(distf (u, v))
q
], and noting that distf (u, v) ≥ 1for all u 6= v ∈

X , the claim follows from the inequality: xq + 1 ≤ (x+ 1)q ≤ 2q(xq + 1) for x ≥ 0, applied for
x = distf (u, v)− 1.

The following two claims follow simply by definitions.

Claim 20. For all q ≥ 1 it holds that Energy(Π)
q (f) ≤ REM (Π)

q (f).

Claim 21. For all q ≥ 1: Stress∗(Π)
q (f) = Stress(Π)

q (f)/`q-expans
(Π′)
q (f) =

Energy(Π′)
q (f)/`q-expans

(Π′)
q (f), where Π′ defined in Claim 15.

In the next claim we show that under some conditions, the value of σ-distortion is bounded by the
value of Energy:
Claim 22. Let f : X → Y be any embedding, and let q, r ≥ 1. If `r-contr(f) ≤ 1 + α, and
`r-expans(f) ≤ 1 + α, for some α ≥ 0, then, for any distribution Π over

(
X
2

)
:

(Π)

Φσ,q,r(f) ≤ 2(1 + α) · Energy(Π)
q (f) + 2α.

Proof. By Jensen’s inequality:

1

`r-expans(f)
≤ `r-contr(f) ≤ 1 + α.

Therefore, 1
1+α ≤ `r-expans(f) ≤ 1 + α, Thus, by the definition of σ-distortion:

(
(Π)

Φσ,q,r(f))q =
∑

u 6=v∈X

Π(u, v)

∣∣∣∣expansf (u, v)

`r-expans(f)
− 1

∣∣∣∣q.
We consider two cases. If for a pair u 6= v, expansf (u,v)

`r-expans(f)
− 1 ≥ 0, then

expansf (u, v)

`r-expans(f)
− 1 ≤ expansf (u, v)(1 + α)− 1 ≤ |expansf (u, v)− 1|+ α|expansf (u, v)|
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≤ (1 + α)|expansf (u, v)− 1|+ α.

If for a pair u 6= v, expansf (u,v)

`r-expans(f)
− 1 < 0, then

1−
expansf (u, v)

`r-expans(f)
≤ 1−

expansf (u, v)

1 + α
≤ 1− (1− α)expansf (u, v)

≤ |expansf (u, v)− 1|+ α|expansf (u, v)| ≤ (1 + α)|expansf (u, v)− 1|+ α,

implying that

(
(Π)

Φσ,q,r(f))q ≤ 2q(1 + α)q
∑

u6=v∈X

Π(u, v) |expansf (u, v)− 1|q + (2α)q,

which completes the proof.

D Advanced properties of distortion measures

We investigate key properties of the moments of distortion.

D.1 Lower/upper bound relations

We show the quantitative connections between the `q-distortion of a non-contractive (or non-
expansive) embedding and the `q-distortion of a general type embedding. Particularly, we investigate
the upper and lower bounds on `q-distortion of a general type embedding that can be derived from
corresponding bounds on a non-contractive or non-expansive embedding.

Claim 23. Let (X, dX) and (Y, dY ) be finite metric spaces, and f : X → Y be an embedding. Then,
for any distribution Π over

(
X
2

)
the following statements hold:

1. ∀q ≥ 1 : `q-dist
(Π)(f) ≤ ((`q-expans

(Π)(f))
q

+ (`q-contr
(Π)(f))

q
)
1/q

≤
`q-expans

(Π)(f) + `q-contr
(Π)(f).

2. If Y is scalable, then ∀q ≥ 1 there is f̂ : X → Y with `q-dist
(Π)(f̂) ≤

21/q

√
`q-expans

(Π)(f) ·
√
`q-contr

(Π)(f).

Proof. The first statement of the claim follows directly from the definition of the `q-distortion. For
the second statement, let α > 0 be a normalization parameter (will be chosen later). Define an
embedding f̂ by f̂ = α · f . Denote

A = {(x, y) | x 6= y ∈ X, α · dY (f(x), f(y)) ≤ dX(x, y)} ,

and
B = {(x, y) | x 6= y ∈ X, α · dY (f(x), f(y)) ≥ dX(x, y)} .

We have

(`q-dist (Π)(f̂))
q

=
∑

(x,y)∈A

Π(x, y)

(
1

α
· dX(x, y)

dY (f(x), f(y))

)q
+

∑
(x,y)∈B

Π(x, y)

(
α · dY (f(x), f(y))

dX(x, y)

)q
≤ 1

αq
· (`q-contr (Π)(f))

q
+ αq · (`q-expans(Π)(f))

q
.

Choosing the normalization factor α =

√
`q-contr (Π)

(f)

`q-expans (Π)
(f)

implies the claim.
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Corollary 2. Let (X, dX) be any finite metric space, (Y, dY ) be any scalable metric space. Let Π be
any distribution over

(
X
2

)
, and q ≥ 1. If there exists a non-contractive (non-expansive embedding)

f : X → Y with `q-dist
(Π)(f) ≤ D(q), then there exists an embedding f̂ : X → Y with

`q-dist
(Π)(f̂) ≤ 21/q

√
D(q).

For the lower bounds we have the following result. For a metric space X , denote the aspect ratio of
X by ΦX = dmax/dmin, where dmax = maxx 6=y∈X dX(x, y), and dmin = minx6=y∈X dX(x, y).

Claim 24. Let (X, dX) be an n-point metric space and let (Y, dY ) be a scalable metric space, and
let q ≥ 1. For all 1 ≤ s ≤ n, let Dq(s) be such that for every subset S ⊆ X , of size s, for any
non-expansive embedding f : S → Y it holds that `q-distS(f) ≥ Dq(s). Then for any embedding

g : X → Y it holds that `q-dist(g) = Ω

(
max

{√
Dq(n/3)

ΦX
,

Dq(n/3)

ΦX ·`1-dist (g)

})
.

Proof. We start with the first item. Let (X, dX) be an n-point metric space as in the claim. Let
g : X → Y be any embedding, and let q ≥ 1. Consider the set of images of X under g, i.e.
G = {g(x)|x ∈ X} ⊆ Y , and consider a radius R ≥ 1 (will be chosen later). We have the following
two cases.

1. If there exists a point y ∈ G s.t. the ballBG(y,R) contains at least n/3 points, then consider
the pre-image set of these points, X ′ ⊆ X - a metric space on at least n/3 points. The
embedding g on X ′ has expansion E ≤ 2R

dmin
. Note that if E ≤ 1, then we get the required

lower bound on `q-dist(g), since `q-distX(g) = Ω
(
`q-distX′(g)

)
= Ω(Dq(n/3)) (we get

even better lower bound in this case).

Otherwise, assume that E ≥ 1, and consider the embedding ĝ : X ′ → Y defined by
ĝ(x) = g(x)

E . This embedding is non-expansive, therefore `q-dist(ĝ) ≥ Dq(n/3). On the
other hand we have

`q-distX(g) = Ω
(
`q-distX′(g)

)
= Ω

(
`q-dist(ĝ)

E

)
= Ω

(
Dq(n/3)

E

)
= Ω

(
Dq(n/3) · dmin

R

)
.

(5)

2. Otherwise, for all point z ∈ G the ball BG(z,R) contains less that n/3 points, meaning
there are at least n

2

3 pairs (x, y) of X such that

distg(x, y) ≥ dY (g(x), g(y))

dX(x, y)
≥ R

dmax
.

Namely, `q-dist(g) = Ω( R
dmax

). Choosing R =
√
Dq(n/3)dmaxdmin implies the claim.

Next, we prove the second item.

Denote `1-dist(g) = α. First, note that there exists a point z ∈ X such that there are at least n/3
pairs (z, x) ∈

(
X
2

)
with distg(z, x) ≤ 3α. Since otherwise, we will get `1-dist(g) > α. Denote the

set of points of these pairs by S ⊆ X , |S| ≥ n/3. For any x 6= y ∈ S it holds that

expansg(x, y) =
dY (g(x), g(y))

dX(x, y)
≤ dY (g(x), g(z))

dX(x, y)
+
dY (g(z), g(y))

dX(x, y)
≤ 3α

(
dX(x, z)

dX(x, y)
+
dX(z, y)

dX(x, y)

)
≤ 6αΦX .

Thus, the embedding g has expansion at most 6αΦX on the set S. Therefore, defining an embedding
ĝ : S → Y by ĝ = g

αΦX
, we obtain a non-expansive embedding on S. And thus, applying the same

considerations as in Equation 5, we obtain the stated bound.

D.1.1 Lower bound due to the worst case barrier

We show that the worst case distortion poses a barrier to the moments of distortions.
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Theorem 25. Let (X, dX) be a finite metric space, and (Y, dY ) be an arbitrary metric space. Let
α > 1 such that for any embedding f : X → Y it holds that dist(f) ≥ α. Let nX = |X|, then
there exists α′ > 1, such that for all N ≥ nX there exists a metric space Z, |Z| = N such that the
following holds

∀F : Z → Y, `q-dist(F ) ≥ α′,

where α′ =

(
1 +

2(αq/2−1)
nX2

)1/q

, for a given q ≥ 1.

Let us first introduce the notion of composition of metric spaces, that was defined in (14) (we present
here a simplification of the original definition).
Definition 7. Let (S, dS), (T, dT ) be finite metric spaces. The composition of S with T , denoted
by Z = S[T ], is a metric space of size |Z| = |S| · |T | constructed as follows. Each point u ∈ S is
substituted with a copy of the metric space T , denote this copy T (u). The distances are defined as
follows. Let u, v ∈ S, and zi 6= zj ∈ Z, such that zi ∈ T (u), and zj ∈ T (v), then

dZ(zi, zj) =

{
1
γ · dT (zi, zj) u = v

dS(u, v) u 6= v,

where γ =
maxt 6=t′∈T {dT (t,t′)}
mins 6=s′∈S{dS(s,s′)} .

It is easily checked that the choice of the factor 1/γ guarantees that dZ is indeed a metric.

Proof of Theorem 25. Given any N ≥ nX let m = N/nX ≥ 1, and let T be any m-point metric
space. Define the metric space Z to be the metric composition of X with T . (We note that the choice
of T is arbitrary, which allows us to apply the theorem for specific families of spaces that are closed
under metric composition).

Let F : Z → Y be any embedding, and let B ⊆
(
Z
2

)
, B = {(zi, zj)|zi ∈ T (u), zj ∈ T (v),∀u 6= v ∈

X}. Then, |B| = m2 ·
(
nX
2

)
. We have to lower bound the `q-dist(F ), for any given q. Let q ≥ 1,

and note that by definition for any zi 6= zj ∈ Z it holds that distF (zi, zj) ≥ 1. Then it holds that

(`q-dist(F ))
q ≥ 1(

N
2

) ∑
zi 6=zj∈B

(distF (zi, zj))
q

+

(
N
2

)
−
(
nX
2

)
m2(

N
2

) = (6)

1 +

(
nX
2

)
m2(

N
2

)
 1(

nX
2

)
m2
·
∑

zi 6=zj∈B

(distF (zi, zj))
q − 1


Next we estimate the `q-distortion of the embedding F induced on the set of pairs B ⊆

(
Z
2

)
. Denote

by P the family of all possible nX -point subsets P (t) ⊂ Z, P (t) = {p(t)
u |p(t)

u ∈ T (u)}u∈X . Then
|P| = mnX , and it holds that

1

mnX

∑
P (t)∈P

(`q-distP (t)(F ))
q

=
1

mnX

∑
P (t)∈P

1(
nX
2

) ∑
p

(t)
u ,p

(t)
v ∈P (t)

(distF (p(t)
u , p(t)

v ))
q

=

1

mnX

1(
nX
2

) ∑
zi 6=zj∈B

mnX−2 · (distF (zi, zj))
q

=
1(

nX
2

)
m2
·
∑

zi 6=zj∈B

(distF (zi, zj))
q
.

Now, for all t the metric space (P (t), dZ) is an isometry of X . Recall that by assumption, any
embedding of X into Y has distortion at least α, implying `∞-distortion at least

√
α, therefore there

exists a pair of points in X with distortion at least
√
α. Therefore,

(`q-distP (t)(F ))
q ≥ 1 +

αq/2 − 1(
nX
2

) .
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Therefore,

1(
nX
2

)
m2
·
∑

zi 6=zj∈B

(distF (zi, zj))
q ≥ 1 +

αq/2 − 1(
nX
2

) .

Putting it in (6) implies

(`q-dist(F ))
q ≥ 1 +

m2(
N
2

) (αq/2 − 1
)
≥ 1 +

2
(
αq/2 − 1

)
nX2

.

D.2 Analysis if distortion measures under embedding composition

We study the behavior of the measures we have defined under composition of embeddings.

Moments of distortion measure. Applying Hölder’s inequality we obtain basic results on `q-
expansion and `q-contraction of the composition of two embeddings.

Claim 26. Let (X, dX), (Y, dY ), and (Z, dZ) be n-point metric spaces. Let f : X → Y , and
g : Y → Z be embeddings, and let Π be a distribution over

(
n
2

)
. Let q ≥ 1, s, t ≥ 1 such that

1/s+ 1/t = 1. Then

`q-expans
(Π)(g ◦ f) ≤ `q·s-expans(Π)(f) · `q·t-expans(Π)(g),

and

`q-contr
(Π)(g ◦ f) ≤ `q·s-contr (Π)(f) · `q·t-contr (Π)(g).

Proof. For all xi 6= xj ∈ X , let αij = dX(xi, xj), βi,j = dY (f(xi), f(xj)), and γi,j =
dZ(g(f(xi)), g(f(xj))). Then we have

(`q-expans(Π)(g ◦ f))
q

=
∑
i 6=j

Π(i, j)

(
γij
αij

)q
=
∑
i 6=j

(Π(i, j))
1/s

(
γij
βij

)q
· (Π(i, j))

1/t

(
βij
αij

)q
.

(7)
Applying Holder’s inequality we get that (7) is at most

∑
i 6=j

Π(i, j)

(
γij
βij

)sq1/s

·

∑
i 6=j

Π(i, j)

(
βij
αij

)tq1/t

,

implying the first part of the claim. For `q-contr (Π)(g ◦ f), exactly the same considerations imply
the second part of the claim.

The following claim follows by applying Claim 23 to the bounds in Claim 26.

Claim 27. Let (X, dX), (Y, dY ), and (Z, dZ) be n-point metric spaces. Let f : X → Y , and
g : Y → Z be embeddings, and let Π be a distribution over

(
n
2

)
. Let s1, t1, s2, t2 ≥ 1, such that

1/s1 + 1/t1 = 1, and 1/s2 + 1/t2 = 1. Then the following statements hold.

1. For all q ≥ 1:

`q-dist
(Π)(g◦f) ≤ ((`(q·s1)-expans

(Π)(f)·`(q·t1)-expans
(Π)(g))q+(`(q·s2)-contr

(Π)(f)·`(q·t2)-contr
(Π)(g))q)1/q
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≤ `(q·s1)-expans
(Π)(f) · `(q·t1)-expans

(Π)(g) + `(q·s2)-contr
(Π)(f) · `(q·t2)-contr

(Π)(g).

2. Assume Z is scalable. For any q ≥ 1, there exists an embedding h : X → Z such that:

`q-dist
(Π)(h) ≤ 21/q·

√
`(q·s1)-expans

(Π)(f) · `(q·t1)-expans
(Π)(g)·

√
`(q·s2)-contr

(Π)(f) · `(q·t2)-contr
(Π)(g).

We conclude the following corollary.
Corollary 3. Let (X, dX), (Y, dY ), (Z, dZ) be n-point metric spaces, and let f : X → Y be a
non-contractive (or even if `q-contr

(Π)(f) ≤ 1) embedding, and g : Y → Z be a non-expansive
(or even if `q-expans

(Π)(g) ≤ 1) embedding. Then, for any distribution Π over
(
n
2

)
, the following

statements hold:

1. For all q ≥ 1: `q-dist
(Π)(g ◦ f) ≤

((
`q-dist

(Π)(f)
)q

+
(
`q-dist

(Π)(g)
)q)1/q

≤

`q-dist
(Π)(f) + `q-dist

(Π)(g).

2. If Z is scalable, then ∀q ≥ 1 there exists h : X → Z such that: `q-dist
(Π)(h) ≤

21/q ·
√
`q-dist

(Π)(f) ·
√
`q-dist

(Π)(g).

The same holds also if we exchange the assumptions between f and g.

Proof. In Claim 27, for f having `q-contr (Π)(f) ≤ 1 (in particular if it’s non-contractive) and g
having `q-expans(Π)(g) ≤ 1 (in particular if it’s non-expansive) take s1 = 1, t1 =∞, and s2 =∞,
t2 = 1; if f and g obey the reverse conditions take s1 =∞, t1 = 1, and s2 = 1, t2 =∞.

Claim 28. Let (X, dX), (Y, dY ), and (Z, dZ) be n-point metric spaces. Let f : X → Y , g : Y → Z,
and let Π be a distribution over

(
n
2

)
. Let q ≥ 1, then for s, t ≥ 1 such that 1/s+ 1/t = 1 it holds

that `q-dist
(Π)(g ◦ f) ≤ `q·s-dist (Π)(f) · `q·t-dist (Π)(g).

Proof. For all xi 6= xj ∈ X , let αij = dX(xi, xj), βi,j = dY (f(xi), f(xj)), and γi,j =
dZ(g(f(xi)), g(f(xj))). Then we have

(
`q-dist (Π)(g ◦ f)

)q
=

∑
1≤i<j≤n

Π(i, j) max

{(
γij
βij
· βij
αij

)q
,

(
αij
βij
· βij
γij

)q}
≤

∑
1≤i<j≤n

Π(ij)(distf (i, j))
q · (distg(i, j))q.

The claim follows by Holder’s inequality.

We also show that in a special case of embedding g : Y → Z being a randomized embedding with a
particular property, the upper bound can be improved. We will later apply this claim on composition
of a deterministic embedding f with the randomized JL transform (which will be shown to satisfy
this property).
Claim 29. Let (X, dX) be an n-point metric space, (Y, dY ) and (Z, dZ) any metric spaces, k ≥ 1
be any integer, q ≥ 1 and Π be any distribution over

(
n
2

)
. Let f : X → Y be any deterministic

embedding, and let g : Y → Z be a randomized embedding such that for any pair (yi, yj) ∈ Y it
holds that E [(distg(yi, yj))

q
] = D.

E
[
(`q-dist

(Π)(g ◦ f))
]
≤ `q-dist (Π)(f) ·

(
E
[(
`q-dist

(Π)(g)
)q]) 1

q

.

The same inequality holds for `q-expans
(Π) and `q-contr

(Π) measures.
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Proof. For all 1 ≤ i < j ≤ n denote αij = d(xi, xj), βi,j = dY (f(xi), f(xj)), and γij =
dZ(g(f(xi)), g(f(xj))). Then we have

E
[(
`q-dist (Π)(g ◦ f)

)q]
= E

 ∑
1≤i<j≤n

Π(i, j) max

{(
γij
αij

)q
,

(
αij
γij

)q}
≤ E

 ∑
1≤i<j≤n

Π(i, j)(distf (i, j))
q · (distg(i, j))q


=

∑
1≤i<j≤n

Π(i, j)(distf (i, j))
q
E [(distg(i, j))

q
] =

(
`q-dist (Π)(f)

)q
E
[(
`q-dist (Π)(g)

)q]
,

where the lest inequality follows by the linearity of expectation. Therefore, by Jensen’s inequality we
obtain the required.

Fact D.1. Let (X, dX), (Y, dY ), and (Z, dZ) be any n-point metric spaces. Let f : X → Y , and
g : Y → Z be any embeddings. Then for any distribution Π over

(
n
2

)
, and for all q ≥ 1 it holds that

distnorm(Π)
q (g ◦ f) ≤ distnorm(Π)

q (f) · distnorm(Π)
q (g).

Additive distortion measures. We study the behavior of the additive distortion measures under
composition of embeddings. Particularly, we investigate a special case of composition of any
deterministic embedding with a randomized JL transform.
Claim 30. Let (X, dX) be an n-point metric space, (Y, dY ) and (Z, dZ) any metric spaces, k ≥ 1 an
integer, q ≥ 1 and Π be any distribution over

(
n
2

)
. Let f : X → Y be any deterministic embedding,

and let g : Y → Z be a randomized embedding such that for every pair (yi, yj) it holds that
E [|expansg(yi, yj)− 1|q] = A, and E [|contrg(yi, yj)− 1|q] = B. Then

E
[(
REM (Π)

q (g ◦ f)
)]
≤ 4

(
1 +

(
E
[(
REM (Π)

q (g)
)q]) 1

q

)(
REM (Π)

q (f)
)

+4
(
E
[(
REM (Π)

q (g)
)q]) 1

q

.

Proof. For all 1 ≤ i < j ≤ n denote αij = d(xi, xj), βi,j = dY (f(xi), f(xj)), and γij =
dZ(g(f(xi)), g(f(xj))). Then, using the inequality |x+ y|q ≤ 2q−1 (|x|q + |y|q), we get(

REM (Π)
q (g ◦ f)

)q
=

∑
1≤i<j≤n

Π(i, j) ·max

{∣∣∣∣γij − αijαij

∣∣∣∣q, ∣∣∣∣γij − αijγij

∣∣∣∣q}

≤ 2q−1
∑

1≤i<j≤n

Π(i, j) ·max

{∣∣∣∣γij − βijαij

∣∣∣∣q +

∣∣∣∣βij − αijαij

∣∣∣∣q, ∣∣∣∣γij − βijγij

∣∣∣∣q +

∣∣∣∣βij − αijγij

∣∣∣∣q}

= 2q−1
∑

1≤i<j≤n

Π(i, j)·max

{∣∣∣∣γij − βijβij

∣∣∣∣q · (βijαij
)q

+

∣∣∣∣βij − αijαij

∣∣∣∣q, ∣∣∣∣βij − γijγij

∣∣∣∣q +

∣∣∣∣αij − βijβij

∣∣∣∣q · (βijγij
)q}

.

Using the inequality max{a, b} ≤ a + b, for all a, b ≥ 0, and the assumption

E [|expansg(yi, yj)− 1|q] = A = E
[(
`q-expans

(Π)
(1) (g)

)q]
, andE [|contrg(yi, yj)− 1|q] = B =

E
[(
`q-contr

(Π)
(1) (g)

)q]
, together with linearity of expectation, we obtain that

E
[(
REM (Π)(g ◦ f)

)q]
≤ 2q−1E

[(
`q-expans

(Π)
(1) (g)

)q]
·
∑

1≤i<j≤n

Π(i, j)

(
βij
αij

)q
+2q−1

(
`q-expans

(Π)
(1) (f)

)q
+2q−1E

[(
`q-contr

(Π)
(1) (g)

)q]
+ 2q−1

(
`q-contr

(Π)
(1) (f)

)q
·
∑

1≤i<j≤n

Π(i, j)E

[(
βij
γij

)q]
.

Presenting βij
αij

= 1+
(
βij
αij
− 1
)

, and βij
γij

= 1+
(
βij
γij
− 1
)

, and using |x+ y|q ≤ 2q−1 (|x|q + |y|q)
again we get ∑

1≤i<j≤n

Π(i, j)

(
βij
αij

)q
≤ 2q−1

(
1 +

(
`q-expans

(Π)
(1) (f)

)q)
,
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and ∑
1≤i<j≤n

Π(i, j)E

[(
βij
γij

)q]
≤ 2q−1

(
1 + E

[
(`q-contr

(Π)
(1) (g))

q])
,

putting it back into the inequalities, and observing that for any h: `q-contr
(Π)
(1) (h), `q-expans

(Π)
(1) (h) ≤

REM (Π)
q (h), immediately results the stated bound.

Claim 31. Let (X, dX) be an n-point metric space, (Y, dY ) and (Z, dZ) any metric spaces, k ≥ 1 an
integer, q ≥ 1 and Π be any distribution over

(
n
2

)
. Let f : X → Y be any deterministic embedding,

and let g : Y → Z be a randomized embedding such that for every pair (yi, yj) it holds that
E [|expansg(yi, yj)− 1|q] = A, and E [|contrg(yi, yj)− 1|q] = B. Then

E
[
Energy(Π)

q (g ◦ f)
]
≤ 4Energy(Π)

q (f) ·E
[(
Energy(Π)

q (g)
)q] 1

q

+4E
[(
Energy(Π)

q (g)
)q] 1

q

.

For Stressq and Stress∗q measures we obtain similar bounds on the composition of two general
embeddings.

Claim 32. Let (X, dX), (Y, dY ), and (Z, dZ) be any n-point metric spaces. Let f : X → Y , and
g : Y → Z be any embeddings. Then for any distribution Π over

(
n
2

)
, and for all q ≥ 1 it holds that

Stress(Π)
q (g ◦ f) ≤ 2Stress(Π)

q (f) + 4Stress(Π)
q (g) · Stress(Π)

q (f) + 4Stress(Π)
q (g).

Claim 33. Let (X, dX), (Y, dY ), and (Z, dZ) be any n-point metric spaces. Let f : X → Y , and
g : Y → Z be any embeddings. Then for any distribution Π over

(
n
2

)
, and for all q ≥ 1 it holds that

Stress∗(Π)
q (g ◦ f) ≤ 4Stress∗(Π)

q (f) + 4Stress∗(Π)
q (f) · Stress∗(Π)

q (g) + 2Stress∗(Π)
q (g).

E On the advantage of being both contractive and expansive

In this section we show that in order to achieve the best `q-distortion we must allow embeddings that
are both contractive and expansive (for different pairs of points). The first example is a family of
constant degree expander graphs.

Theorem 34. Let (G, dG) be the metric of a constant degree expander graph G (of constant ex-
pansion) on n vertices. Let k ≥ 2 and let f : G → `k2 be an embedding. If f is non-contractive,
then `1-dist(f) = Ω(n1/k/ log n), and if f is non-expansive, then `1-dist(f) = Ω(log n). Yet, there
exists f with `1-dist(f) = O(1).

The proof immediately follows from the following lemmas and claims.

Lemma 35. Let En be an n-point equilateral metric space. For all k ≥ 1 and q ≥ 1, any non-
contractive embedding f : En → `k2 has `q-dist(f) = Ω

(
n1/k

)
.

Proof. Since `q-distortion is increasing function of q, it is enough to show the lower bound on
`1-distortion. The proof is based on the well known lower bound, that states that there exists a
universal constant C ≥ 1 (independent of n and k), such that any embedding f : En → `k2 has
distortion dist(f) ≥ Cn1/k.

Let f : En → `k2 be a non-contractive embedding. Assume by contradiction that `1-dist(f) <
C

132 ·
(

3
4

)1/k
n1/k. Denote B ⊂ X the set of points with ‘many bad’ neighbors:

B =

{
x ∈ En

∣∣∣∃ Y ⊂ En, |Y | > n

4
, s.t. ∀y ∈ Y, distf (x, y) >

C

4
·
(

3

4

)1/k

n1/k

}
.

Then, |B| ≤ n
4 , since otherwise we have `1-dist(f) > C

128 ·
(

3
4

)1/k
n1/k, a contradiction.
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Consider the equilateral metric space E′ = En \ B, |E′| ≥ 3
4n. For all x ∈ E′ there are at

least n/2 points y ∈ E′ such that distf (x, y) ≤ C
4 ·
(

3
4

)1/k
n1/k, implying that for any pair

x 6= y ∈ E′ there exists z ∈ E′, z 6= x, z 6= y, such that distf (x, z) ≤ C
4 ·
(

3
4

)1/k
n1/k and

distf (y, z) ≤ C
4 ·
(

3
4

)1/k
n1/k. Therefore, since f is non-contractive, it holds that for any two points

x 6= y ∈ E′, distf (x, y) ≤ C
2 ·
(

3
4

)1/k
n1/k. Therefore, we have an embedding f : E′ → `k2 with

dist(f) ≤ C
2 ·
(

3
4

)1/k
n1/k. Since |E′| ≥ 3

4n it holds that any embedding of E′ into `k2 should have

distortion at least C ·
(

3
4

)1/k
n1/k, contradiction.

Remark 36. The above claim is true for embedding into any k-dimensional normed space, since the
lower bound we used is true for any k-dimensional normed space.

Let us conclude that embedding an expander into `k2 via non-contractive embedding results in a bad
average distortion.
Claim 37. Let (G, dG) be a constant degree expander graph G (of constant expansion) on n
vertices, for n big enough, where dG is a shortest path metric. Then any non-contractive embedding
f : G→ `k2 has `1-dist(f) = Ω(n1/k/ log n), for any given k ≥ 1.

Proof. First, note that diam(G) = O(log n). Assume by contradiction that there is a non-contractive
f : G → `k2 with `1-dist(f) = o(n1/k/ log n). Then, we can build a non-contractive embedding
of an n-point equilateral space g : En → `k2 in the following way: First, embed En with a non-
contractive embedding into G with (worst case) distortion of O(log n); Next, embed G with f into
`k2 . The `1-distortion of such embedding is o

(
n1/k

)
, which is a contradiction to Lemma 35.

Remark 38. The above claim is true for embedding any metric space with bounded aspect ratio into
any k-dimensional normed space (replacing log n by the aspect ratio).

Next, we prove that embedding an expander into `2 with a non-expansive embedding also results in a
bad average distortion. Actually, we present a more general result of non-embedability into `p, for
any p ≥ 1.
Claim 39. Let (G, dG) be a constant degree expander graph G (of constant expansion) on n vertices,
for n big enough, where dG is a shortest path metric. Then for all non-expansive embedding
f : G→ `p it holds that `1-dist(f) = Ω(log n), for any given p ≥ 1.

Proof. We use the Poincare inequity for expander graphs that was proved by Matousek (57): for all
constant degree expander graph G = (V,E) on n nodes it holds that for any embedding f : G→ `p∑

u 6=v∈V
‖f(u)− f(v)‖pp∑

(u,v)∈E
‖f(u)− f(v)‖pp

≤ cp · n

for a constant cp (dependent on p).

In addition, for all constant degree graph G = (V,E) on n nodes it holds that |E| = Θ(n), and there
are at least cn2 pairs u 6= v ∈ V with dG(u, v) ≥ c′ log n, for a constants c, c′ > 0 - denote this set
of pairs X ⊆

(
V
2

)
. Therefore, ∑

u 6=v∈V
(dG(u, v))

p

∑
(u,v)∈E

(dG(u, v))
p ≥ Ω(n logp n)

Let f : G→ `p be any non-expansive embedding of a constant degree expander graph on n nodes.
For all u 6= v ∈ V we have

1

(contrf (u, v))
p · (dG(u, v))

p
= ‖f(u)− f(v)‖pp ≤ (dG(u, v))

p
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Therefore,

∑
u6=v∈V

‖f(u)− f(v)‖pp∑
(u,v)∈E

‖f(u)− f(v)‖pp
≥

∑
u 6=v∈V

1
(contrf (u,v))p · (dG(u, v))

p

∑
(u,v)∈E

(dG(u, v))
p ≥ Ω

 logp n
∑

u 6=v∈X

1
contrf (u,v)p∑

(u,v)∈E
(dG(u, v))

p

 ≥

≥ Ω

 n2 logp n∑
(u,v)∈E

(dG(u, v))
p ·

∑
u6=v∈X

1
contrf (u,v)p

|X|

 ≥ Ω

n logp n ·

∑
u6=v∈X

1
contrf (u,v)p

|X|


Therefore, we have ∑

u 6=v∈X

1
contrf (u,v)p

|X|
≤ O

(
1

logp n

)
Namely, there are at least Θ(n2) pairs (u, v) ∈ X such that 1

contrf (u,v)p ≤ O
(

1
logp n

)
, what finishes

the proof.

Finally, we contrast these lower bounds by noting that for general embeddings, that are not restricted
to be either contractive or expansive, we can get constant `1-distortion into `22, as follows from
Corollary 9. This complete the proof of Theorem 34.

The above result rises the following question: are there metric spaces (X, dX) and (Y, dY ) such that
any non-expansive or non-contractive embedding f : X → Y has `q-dist(f) = nΩ(α(q)), while there
exists a general type embedding g : X → Y with `q-dist(g) = O(1)?10

Theorem 40. Given any q ≥ 1, there exist an n-point metric space (P, dP ) and a scalable family of
an n-point metric spaces Q such that the following holds: any non-expansive embedding f : P → Q
has `q-dist(f) = Ω

(
n2/q

)
; any non-contractive embedding f : P → Q has `q-dist(f) = Ω

(
n2/q

)
;

there exists an embedding f : P → Q with `q-dist(f) = O(1).

Following is the definition of composition of metric spaces we will use in this section.
Definition 8. Let (X, dX) and (Y, dY ) be any metric spaces. The composition of X with Y is a
metric space (Z, dZ) = comp∗(X,Y ), defined by substituting an arbitrary point x0 ∈ X with a
copy of Y , i.e. Z = X \ {x0} ∪ Y . The metric on Z is defined as follows: for all x 6= y 6= x0 ∈ X ,
dZ(x, y) = dX(x, y); for all x 6= y ∈ Y , dZ(x, y) = dY (x, y); for all x 6= x0 ∈ X, y ∈ Y ,
dZ(x, y) = dX(x, x0).

Proof of Theorem 40. Let (X, dX) be an (n/2)-point equilateral metric space, and let (Y, dY ) be
an (n/2)-point almost equilateral metric space: all the pairs except one have distance 1, and the
remaining pair has distance 1

n2/q . We call the pair of Y with distance 1
n2/q a special pair of Y .

Let ε = 1/n4. Define (P, dP ) = comp∗(X, ε ·Y ), and define the familyQ = {α ·Q|α > 0, α ∈ R},
where Q = comp∗(Y, ε ·X).

Let us first prove item (3) of the claim. Choose α = 1, and let F : P → Q be defined as an arbitrary
bijection between the points of X ⊆ P to Y ⊆ Q, and between the points of ε · Y ⊆ P to ε ·X ⊆ Q.
It can be seen that only the special pair suffers distortion n2/q in this embedding, while other pairs
have distortion 1, thus

`q-dist(F ) ≤
((

n

2

)
· 1q + 2

(
n2/q

)q)1/q

.

10We observe that by normalizing the embeddings of ABN and the JL to be non-expansive, we obtain that any
n-point metric space (X, dX) can be embedded with non-expansive embedding f into `k2 with `q-dist(f) =
O(logn

√
logn), for any 2 ≤ k and q < k.
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To prove item (1), let f : P → Q be any non-expansive embedding. Denote (u, v) ∈ P the special
pair of the subspace ε ·Y , i.e. the only pair of ε ·Y of distance ε

n2/q . We consider the following cases:

1. Both f(u), f(v) ∈ ε ·X ⊂ α ·Q, for some α > 0. Then, since f is non-expansive, it should
be that α · ε ≤ ε

n2/q , meaning α ≤ 1
n2/q . In such case, again since f is non-expansive, all

points of ε · Y ⊂ P embed to ε ·X ⊂ α ·Q, implying `q-dist(f) ≥
(
ε
α·ε
)
≥ Ω(n2/q).

2. The other case is when the distance between f(u), f(v) is a distance of α · Y . . Then,
since f is non-expansive, it should be that either α

n2/q ≤ ε
n2/q , in case (u, v) embeds to the

special pair of the subspace Y ⊂ α · Q. Otherwise, it must be α ≤ ε
n2/q . In both cases

α ≤ ε. Therefore, any pair x, y ∈ X ⊂ P will suffer distortion distf (x, y) = 1
α ≥

1
ε = n4.

The distortion can only be larger if x, y embed to α · ε · XIn both cases, it holds that
`q-dist(f) ≥ Ω(n2) = Ω(n2/q).

The proof of item (2) follows by symmetric considerations.

F On the limitations of classical MDS

PCA Algorithm. The input set of n points in Rd is given explicitly as rows of an n× d matrix X
(it is also possible to define given distance matrix). Center the rows of X , i.e. subtract from each
row the row’s mean, to get matrix X̃ . Consider G = X̃X̃t and let G = QΛQt be its eigenvalue
decomposition: Λ is a diagonal n × n matrix with eigenvalues of G ordered in decreasing order;
Q is the matrix of the corresponding eigenvectors at its columns (chosen to form an orthonormal
basis). The embedding to k dimensions is given by Qk

√
Λk, where Qk is an n× k matrix of the first

k columns of Q and
√

Λk is a k × k diagonal matrix with the square roots of the largest eigenvalues
of G.

Lemma 41. There is an embedding f : X → R with Stressq/Energyq(f) = O(α/d1/q), for any
q ≥ 1.

Proof. Consider the following embedding of X: For all i ∈ [1, d], all the points of X+
i are embed-

ded into the point αi, and all the points of X−i are embedded into the point (−αi). We estimate
Stressq value of this embedding. We note that the bound on Energyq is obtained for the embed-
ding applied on the metric space defined by taking each si = 1, by a similar calculations. For
all u 6= v ∈ X , let duv = ‖u− v‖2, and let d̂uv = ‖f(u)− f(v)‖2. Then,

∑
u6=v(duv)

q ≥
4
∑

1≤i≤j≤d sisj(
√
α2i + α2j)q ≥ 4

∑
1≤i≤j≤d sjsi(α

i)q ≥ 4d · sd. The sum of additive er-

rors is bounded by
∑

1≤i<j≤d 4sisj

∣∣∣√α2i + α2j − (αi − αj)
∣∣∣q ≤ 4

∑
1≤i<j≤d 2qsisj(α

j)q ≤
16 · 2qsd−1 (the details are deferred to the full version). Therefore, Stressq(f) = O(α/d1/q).

Lemma 42. Let F : X → Rk be an embedding produced by applying PCA algorithm on X , for k ≤
β · d, for a constant β < 1. Then, Stressq/Energyq(F ) = Ω(1), and `q-dist /REMq(F ) =∞.

Proof. We show that PCA will actually project the points of X into the first k dimensions. Note
that the associated n × d matrix X is already row centered, where n = |X|. Thus, we compute
G = X · Xt. The matrix G is a block-diagonal matrix, having block matrices {Bi}i∈[1,d] as its
diagonal. Each Bi is an 2si × 2si matrix of the form Bi = α2i · wwt, for a 2si dimensional
column vector w = (1, 1, . . . , 1,−1,−1, . . .− 1). The eigenvalues of each Bi are {0, 2αisi}. The
eigenvector of the eigenvalue 2αisi is the vector w. Normalizing these vectors by 1/

√
2si we obtain

a matrix Qk, for any k < d. Eventually, we multiply Qk ·
√

Λ and obtain the resulting embedding,
which is just the orthogonal projection to the first k dimensions.

Since |X| > 2d, for k < d there are points that c-MDS maps to 0, resulting in `q-dist /REMq =∞.
As for the Stressq, we estimate

∑
u6=v(duv)

q ≤ 8d
∑d
j=1 sj ≤ 16d · sd, and

∑
u 6=v∈X |duv −
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d̂uv|q ≥
∑
k<i≤j≤d sisj

∣∣∣√α2i + α2j
∣∣∣q ≥∑k<i≤j≤d sj ≥ sd · (d−k), implying Stressq = Ω(1),

for k ≤ βd.

G Euclidean dimension reduction: moment analysis of the JL transform

G.1 Moments of distortion analysis

In this appendix we complete the proofs of the statements that we left unproven in Section 3. In
addition, we provide more precise (in terms of constants) analysis of the JL transform.

G.1.1 Moment analysis for small q

We start with the full versions of lemmas that analyze the `q-contraction ad `q-expansion of the JL
transform.
Lemma 43. Given a finite set X ⊂ `d2 and integer k ≥ 2, let f : X → `k2 be the JL transform of
dimension k. For any distribution Π and for any 1 ≤ q < k:

1. For 1 ≤ q < 2, E
[(
`q-contr

(Π)(f)
)q]
≤ 1 + q

k−q .

2. For q ≥ 2, E
[(
`q-contr

(Π)(f)
)q]
≤
(

1 + q
k−q

)b q2 c · (1 +
2( q2−b

q
2 c)

k−2( q2−b
q
2 c)

)
.

3. For q ≥ 2, E
[(
`q-contr

(Π)(f)
)q]
≤
(

1 + q
k−q

)
· eq/2.

Proof. By the definition we have

E
[(
`q-contr (Π) (f)

)q]
=

∫ ∞
0

(
k

x

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx.

Denote q/2 = l + r, where l = bq/2c, and 0 ≤ r < 1. Note that using this notation the term(
q
2 − b

q
2c
)

just expresses r. Next, we estimate the integral for various values of q.

∫ ∞
0

(
k

x

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx =

(
k
2

) q
2 Γ
(
k
2 −

q
2

)
Γ
(
k
2

) (8)

=

(
k
2

)l(k
2

)r
Γ
((
k
2 − r

)
− l
)

Γ
(
k
2

) .

For 1 ≤ q < 2, l = 0 and r = q/2. Therefore, by Eq. 2, we obtain(
k
2

)r
Γ
(
k
2 − r

)
Γ
(
k
2

) ≤ k/2

k/2− r
= 1 +

q

k − q
.

For q ≥ 2, applying the rule Γ(x) = (x− 1)Γ(x− 1), l times we get(
k
2

)l(k
2

)r
Γ
((
k
2 − r

)
− l
)

Γ
(
k
2

) =

(
k
2

)l∏l−1
i=0

(
k
2 −

q
2 + i

) ·(k2 )rΓ (k2 − r)
Γ
(
k
2

) ≤
(
k
2

)l∏l−1
i=0

(
k
2 −

q
2 + i

) ·(1 +
2r

k − 2r

)
.

Denote Ψ(q, k) :=
( k2 )

l∏l−1
i=0 ( k2−

q
2 +i)

·
(

1 + 2r
k−2r

)
. Since for all 0 ≤ i ≤ l − 1 it holds that(

k
2 −

q
2 + i

)
≥
(
k
2 −

q
2

)
, we have

Ψ(k, q) ≤
(

1 +
q

k − q

)b q2c
·
(

1 +
2r

k − 2r

)
,
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which completes the proof of the second item of the lemma. To prove the third item of the lemma,
we write (

k
2

) q
2 Γ
(
k
2 −

q
2

)
Γ
(
k
2

) =
k/2

k/2− q/2
·
(
k
2

)q/2−1
Γ
(
k
2 −

q
2 + 1

)
Γ
(
k
2

) .

Using the estimations of Lemma 11 we get that the above is upper bounded by

(
1 +

q

k − q

)
·

(
k
2

) q
2−1 ·

(
k
2 −

q
2

) k
2−

q
2 ·
√

k
2 −

q
2 + 1

2 · e
k
2

e
k
2−

q
2 ·
√

k
2 ·
(
k
2

) k
2−1

≤
(

1 +
q

k − q

)
· e

q
2 ,

which completes the proof of the third item of the lemma.

Lemma 44. Given a finite set X ⊂ `d2 and integer k ≥ 1, let f : X → `k2 the JL transform of
dimension k. For any distribution Π and for any q ≥ 1:

E
[(
`q-expans

(Π)(f)
)q]
≤
(

1 +
q

k

)b q2 c
.

Proof. By the definition we have

E[(`q-expans(Π)(f))
q
] =

∫ ∞
0

(x
k

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx =
Γ
(
k
2 + q

2

)(
k
2

) q
2 Γ
(
k
2

) .
Denote q

2 = l + r, where l = b q2c ≥ 0, and 0 ≤ r < 1. Therefore

Γ
(
k
2 + q

2

)(
k
2

) q
2 Γ
(
k
2

) =
Γ
((
k
2 + r

)
+ l
)(

k
2

)l(k
2

)r
Γ
(
k
2

) .
If l = 0 we have

Γ
((
k
2 + r

)
+ l
)(

k
2

)l(k
2

)r
Γ
(
k
2

) =
Γ
(
k
2 + r

)(
k
2

)r
Γ
(
k
2

) ≤ 1,

as required. For all q ≥ 2, we have

Γ
((
k
2 + r

)
+ l
)(

k
2

)l(k
2

)r
Γ(k2 )

=

∏
0≤i≤l−1

(
k
2 + r + i

)
(
k
2

)l ·
Γ
(
k
2 + r

)(
k
2

)r
Γ
(
k
2

) ≤
∏

0≤i≤l−1

(
1 +

r + i
k
2

)
≤
(

1 +
q

k

)b q2 c
.

By Jensen’s inequality the following corollary is (in almost all cases) immediate:
Corollary 4. Given a finite set X ⊂ `d2 and integer k ≥ 1, for the JL projection of dimension k,
f : X → `k2 the following assertions hold:

1. For all k ≥ 2 and all 1 ≤ q < k:

E
[
`q-contr

(Π)(f)
]
≤
(
E
[(
`q-contr

(Π)(f)
)q]) 1

q

≤ 1 +
max{1, q/2}

(k − q)
.

2. For all k ≥ 2 and all 1 ≤ q < k:

E
[
`q-contr

(Π)(f)
]
≤
(
E
[(
`q-contr

(Π)(f)
)q]) 1

q

≤
√
e ·
(

1 +
q

k − q

)1/q

.
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3. For all k, q ≥ 1 it holds that

E
[
`q-expans

(Π)(f)
]
≤
(
E
[(
`q-expans

(Π)(f)
)q]) 1

q

≤ 1 +
q

2k
.

Proof. The last two items are trivial. Thus we focus on proving the first item, for which some algebra
should be done. For 1 ≤ q < 2, from the first item of Lemma 43 we have

E
[
`q-contr (Π)(f)

]
≤
(
E
[(
`q-contr (Π)(f)

)q]) 1
q

≤
(

1 +
q

k − q

)1/q

≤ 1 +
1

k − q
,

as required. For q ≥ 2, denote q/2 = l + r, where l = b q2c. Then, from the second item of Lemma
43 we have

E
[
`q-contr (Π)(f)

]
≤
(
E
[(
`q-contr (Π)(f)

)q]) 1
q

≤
(

1 +
2r

k − 2r

) 1
q

·
(

1 +
q

k − q

)b q2 c· 1q
≤
(

1 +
2r

q(k − 2r)

)
·
(

1 +
b q2c
k − q

)
=

(
qk − 2qr + 2r

q(k − 2r)

)
·
(
k − q

2 − r
k − q

)
,

we have to show that the above is upper bounded by k− q2
k−q , which is equivalent to showing that

−qkr+2qr2+2kr−qr−2r2 ≤ 0⇔ 2(q−1)r−q ≤ k(q−2)⇔ 2(q−1)−q ≤ k(q−2)⇔ k ≥ 1,

which completes the proof.

Theorem 45. For a finite set X ⊂ `d2 and an integer k ≥ 2, let f : X → `k2 be the JL transform
of dimension k. For any 1 ≤ q < k, and any distribution Π over

(
X
2

)
, with positive probability,11

`q-dist
(Π)(f) ≤

(
1 +

max{1, q2 }
(k−q)

)(
1 + min

{
1√
πk
, 1
q

})
.

Proof. By Claim 23, E[(`q-dist (Π)(f))q] ≤ E[(`q-contr (Π)(f))q] + E[(`q-expans(Π)(f))q]. By
the second item of Lemma 43,

E[(`q-contr (Π)(f))q] ≤
(

1 +
q

k − q

)b q2 c
·

(
1 +

2
(
q
2 − b

q
2c
)

k − 2
(
q
2 − b

q
2c
)) .

In addition, by Lemma 44, it holds that

E[(`q-expans(Π)(f))q] ≤
(

1 +
q

k

)b q2 c
.

Note that the bound on E[(`q-expans(Π)(f))q is bounded above by the bound of
E[(`q-contr (Π)(f))q . Thus, by Jensen’s inequality:

E[`q-dist (Π)(f)] ≤ 21/q·
(

1 +
q

k − q

)b q2c· 1q
·

(
1 +

2
(
q
2 − b

q
2c
)

k − 2
(
q
2 − b

q
2c
)) 1

q

≤
(

1 +
1

q

)(
1 +

max{1, q2}
(k − q)

)
,

where the last inequality follows from technical estimations appearing in Appendix G: Corollary 4.
Note that for q ≥

√
π
√
k this already proves the theorem. Also note that a slightly weaker bound

(in terms of constants) follows by monotonicity for all 1 ≤ q <
√
π
√
k. To get the precise bound as

stated in the theorem, we perform a more technically involved analysis. The full details of the proof
appear in Theorem 50.

11By Markov’s inequality, we can obtain that with probability at least 1 − δ: `q-dist(Π)(f) ≤ 1 + 1
δ
·

( max{2,q}
k−q + 1√

π
√
k

).
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For values of q that are very close to k we can improve the estimations of the `q-dist(f).

Remark 46. We note that the estimations we present next are correct for all 1 ≤ q < k, and the
value of q for which the bounds are better is obtained by comparing to the bounds of Theorem 45.
Particularly, for q > c̃k, where c̃ = (e − 1)/e, the following estimations are better that the ones
presented in Theorem 45.

Theorem 47. For a finite set X ⊂ `d2 and integer k ≥ 2, let f : X → `k2 be the JL transform of
dimension k. For any distribution Π over

(
X
2

)
and any 1 ≤ q < k, with positive probability:

`q-dist
(Π)(f) ≤ 2

√
e

(
k

k − q

) 1
q

.

Proof. The proof follows the analysis presented in Theorem 45, and uses the third item of Lemma
43:

E
[
`q-dist (Π)(f)

]
≤
(
E
[(
`q-dist (Π)(f)

)q]) 1
q

≤ 21/q
√
e

(
1 +

q

k − q

)1/q

,

which completes the proof.

Theorem 48. Given a finite X ⊂ `d2and an integer k ≥ 1, let f :→ `k2 be the JL transform into k
dimensions. For any distribution Π over

(
X
2

)
and any 1 ≤ q < k, there exists α > 0 such that with

positive probability:

`q-dist
(Π)(α · f) ≤ 4

(
k

k − q

) 1
2q

.

Proof. By Corollary 4(items 2 and 3), with positive probability f is such that for a given 1 ≤ q < k

both `q-contr (Π)(f) ≤
√
e
(

k
k−q

)1/q

and `q-expans(Π)(f) ≤
(
1 + q

k

)1/2
. Therefore, by the second

item of Claim 23, there exists a normalization factor α, such that for the embedding α · f :

`q-dist (Π)(α · f) ≤ 21/qe1/4 ·
(

1 +
q

k − q

) 1
2q

·
(

1 +
q

k

) 1
4 ≤ 4

(
k

k − q

) 1
2q

,

which completes the proof.

Corollary 5. Given a finite set X ⊂ `d2, 1 ≤ q < k and 0 < δ < 1, an embedding f : X → `k2
can be computed in time O(dk log(1/δ)), so that for any distribution Π over

(
X
2

)
, with probability

at least 1 − δ: if q ≤ c̃k then `q-dist
(Π)(f) ≤ 1 + 1

δ ·
(

max{2,q}
k−q + 1√

π
√
k

)
; if q > c̃k then

`q-dist
(Π)(f) ≤ 1

δ · 8
(

1
k−q

) 1
2q

.

Proof. In the proof of Theorem 45, we estimated the expected value of the random variable
`q-dist (Π)(f). Namely, the bounds stated in the theorem are upper bounds on the E

[
`q-dist (Π)(f)

]
.

For q ≤ c̃k, we have the following estimation

E
[
`q-dist (Π)(f)− 1

]
≤ max{2, q}

k − q
+

1
√
π
√
k
.

Therefore, the first part of the claim follows from Markov’s inequality. For q > c̃k, we have the
estimation

E
[
`q-dist (Π)(f)

]
≤ 8/(k − q)

1
2q ,

the bound follows from Markov’s inequality.
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Remark 49. We note that all the bounds on the `q-distortion we have presented grow to infinity
when q tends to k what is, obviously, an overestimation. For Π being a uniform distribution12, let
k− =

(
1− 1

logn+1

)
· k (for any 0 < c̃ < 1 there exists n big enough such that that k− > c̃k). Then,

`k− -dist (Π)(f) = O
((√

log n
) 1
k

)
, and in addition by Fact 14, for all q ≥ k−, `q-dist

(Π)(f) =

O
(
n

2

k−
− 2
q · (
√

log n)
1
k

)
, i.e. for all k− ≤ q < k, `q-dist

(Π)(f) = O
((√

log n
)1/k)

.

G.1.2 Precise analysis of moments of distortions of the JL transform

We prove the following theorem:
Theorem 50 (Precise analysis of the JL for small q). Given a finite set X ⊂ `d2 and integer k ≥ 2,
let f : X → `k2 be the JL transform of dimension k. For any 1 ≤ q < k, and any distribution Π over(
X
2

)
, with positive probability

`q-dist
(Π)(f) ≤

(
1 +

max{1, q2}
(k − q)

)
·
(

1 +
1

√
π
√
k

)
.

Proof. By the definition we have

E
[(
`q-dist (Π) (f)

)q]
=

∫ k

0

(
k

x

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx+

∫ ∞
k

(x
k

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx =

∫ ∞
0

(
k

x

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx + (9)

∫ ∞
k

(x
k

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx−
∫ ∞
k

(
k

x

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx. (10)

Denote q
2 = l + r where l = b q2c, and 0 ≤ r < 1. Note that l ≥ 0. The integral in Eq. 9 is

E
[(
`q-contr (Π)(f)

)q]
≤ Ψ(q, k), as shown in Lemma 43.

Next we estimate the integrals in equation 10.∫ ∞
k

(x
k

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx−
∫ ∞
k

(
k

x

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx =
Γ
(
k
2 + q

2 ,
k
2

)(
k
2

) q
2 Γ
(
k
2

) −(k2 )
q
2 Γ
(
k
2 −

q
2 ,

k
2

)
Γ
(
k
2

) =

Γ
((
k
2 + r

)
+ l, k

2

)(
k
2

)l(k
2

)r
Γ
(
k
2

) −
Γ
((
k
2 − r

)
− l, k

2

) (
k
2

)l(k
2

)r
Γ
(
k
2

) .

Each summand is treated separately in a sequel. Applying the rule Γ(s, x) = (s− 1)Γ(s− 1, x) +
xs−1e−x, l times we obtain

Γ
((
k
2 + r

)
+ l, k

2

)(
k
2

)l(k
2

)r
Γ
(
k
2

) =

∏l
i=1

(
k
2 + q

2 − i
)(

k
2

)l ·
Γ
(
k
2 + r, k2

)(
k
2

)r
Γ
(
k
2

) + S1(q, k),

where

S1(q, k) =

∑l−2
i=0 (

∏l−1
j=i+1

k
2 − r + j)(k2 )

k
2 +i

+ (k2 )
k
2 +(l−1)(

k
2

)l
e
k
2 Γ
(
k
2

) ,

and
12For the non-uniform Π, the value of k− depends on Φ(Π).
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Γ
((
k
2 − r

)
− l, k

2

) (
k
2

)l(k
2

)r
Γ
(
k
2

) =

(
k
2

)l∏l−1
i=0

(
k
2 −

q
2 + i

) · Γ
(
k
2 − r,

k
2

) (
k
2

)r
Γ
(
k
2

) − S2(q, k),

where

S2(q, k) =

l∑
i=1

(
k
2

) k
2−i(k

2

)l
e
k
2 Γ
(
k
2

)∏l
j=i

((
k
2 + r

)
− j
) .

Let T1 :=
∏l
i=1 ( k2 + q

2−i)
( k2 )

l , and T2 :=
( k2 )

l∏l−1
i=0 ( k2−

q
2 +i)

. Note that T1 ≤ T2 ≤ Ψ(q, k), and T2 =

Ψ(q, k) · k/2
k/2−r . Therefore, Equation 10 is upper bounded by

T2 ·

(
Γ
(
k
2 + r, k2

)(
k
2

)r
Γ
(
k
2

) − Γ
(
k
2 − r,

k
2

) (
k
2

)r
Γ
(
k
2

) )
+ S1(q, k) + S2(q, k).

Next we estimate the difference of the first two terms. Using the estimation of Lemma 13 we get:

Γ
(
k
2 + r, k2

)(
k
2

)r
Γ
(
k
2

) ≤ Γ
(
k
2 ,

k
2

)
Γ
(
k
2

) + r ·
(
k
2

) k
2−1

e
k
2 Γ
(
k
2

) ,
and

Γ
(
k
2 − r,

k
2

) (
k
2

)r
Γ
(
k
2

) ≥
Γ
(
k
2 ,

k
2

)
Γ
(
k
2

) ·( k
2

k
2 − r

)r
− r ·

(
k
2

k
2 − r

)
·
(
k
2

) k
2−1

e
k
2 Γ
(
k
2

) .
Therefore,

T2 ·

(
Γ
(
k
2 + r, k2

)(
k
2

)r
Γ
(
k
2

) − Γ
(
k
2 − r,

k
2

) (
k
2

)r
Γ
(
k
2

) )
≤ T2 · r ·

(
k
2

) k
2−1

e
k
2 Γ
(
k
2

) + T2 ·

(
k
2

k
2 − r

)
· r ·

(
k
2

) k
2−1

e
k
2 Γ
(
k
2

)
≤ 2r ·Ψ(q, k) ·

(
k
2

) k
2−1

e
k
2 Γ
(
k
2

) .
Next we estimate

S1(q, k)+S2(q, k) ≤
∑l−2
i=0 (

∏l−1
j=i+1

k
2 − r + j)(k2 )

k
2 +i

+ (k2 )
k
2 +(l−1)(

k
2

)l
e
k
2 Γ
(
k
2

) +

l∑
i=1

(
k
2

) k
2−i(k

2

)l
e
k
2 Γ
(
k
2

)∏l
j=i

((
k
2 + r

)
− j
)

≤ l ·
((
k
2 + q

2

)
− 1
) ((

k
2 + q

2

)
− 2
)
. . .
((
k
2 + q

2

)
− (l − 1)

) (
k
2

) k
2(

k
2

)l
e
k
2 Γ
(
k
2

)
+l ·

(
k
2

)l−1(k
2

) k
2(

k
2 −

q
2

) ((
k
2 −

q
2

)
+ 1
)
. . .
((
k
2 −

q
2

)
+ (l − 1)

)
e
k
2 Γ
(
k
2

)

=
l
(
k
2

) k
2−1

e
k
2 Γ
(
k
2

) ·(((k2 + q
2

)
− 1
)
. . .
((
k
2 + q

2

)
− (l − 1)

)
k
2(

k
2

)l +

(
k
2

)l(
k
2 −

q
2

)
. . .
((
k
2 −

q
2

)
+ (l − 1)

)) ≤

2l ·Ψ(q, k) ·
(
k
2

) k
2−1

e
k
2 Γ
(
k
2

) .
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Summarizing, we conclude that ∀ 1 ≤ q < k it holds

E
[(
`q-dist (Π) (f)

)q]
≤ Ψ(q, k) + q ·Ψ(q, k) ·

(
k
2

) k
2−1

e
k
2 Γ
(
k
2

) = Ψ(q, k)

1 +
q ·
(
k
2

) k
2−1

e
k
2 Γ
(
k
2

)
 ≤ Ψ(q, k)·

(
1 +

q
√
π
√
k

)
,

where the last inequality is due to Lemma 12. Now, by Jensen’s inequality we have

E
[
`q-dist (Π)(f)

]
≤
(
E
[(
`q-dist (Π)(f)

)q]) 1
q

≤ (Ψ(q, k))
1
q ·
(

1 +
q

√
π
√
k

) 1
q

≤
(

1 +
max{1, q2}

(k − q)

)
·
(

1 +
1

√
π
√
k

)
,

by the estimations of the first item of Corollary 4. This completes the proof of the theorem.

G.1.3 Moment analysis for large q

Next we present moment analysis of the JL transform for large values of q.
Theorem 51. For any n-point X ⊂ `d2 and any integer k ≥ 1, let f : X → `k2 be the JL transform
of dimension k. For any q ≥ k and any distribution Π over

(
X
2

)
, there is a constant α > 0 such that

with constant probability:13

(A) For q = k: `k-dist (Π)(α · f) = O
((√

log n
) 1
k

)
.

(B) For q > k: `q-dist
(Π)(α · f) = O

(
n

1
k
− 1
q

(q−k)1/(2q) ·
(
q
k

) 1
4

)
.

We first prove the following lemma.

Lemma 52. For any C ≥ 1, let AC denote the event AC :=
‖f(x)−f(y)‖22
‖x−y‖22

≥ 1
C ,∀x 6= y ∈ X . Then

for C ≥ 2en
4
k it holds that Pr [AC ] ≥ 1

2 .

Proof. Recall that ∀ x ∈ Rd, s.t ‖x‖2 = 1, the variable ‖f(x)‖22 ∼ χ2
k/k. Therefore, for any such

x and for any C ≥ 1 it holds that

Pr

[
‖f(x)‖22 <

1

C

]
= Pr

[
χ2
k <

k

C

]
=

∫ k
C

0

x
k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx ≤
(
k
2

) k
2−1

Γ
(
k
2

) · 1

(C)
k
2

.

For k ≥ 1, using the estimation of Lemma12, we get ( k2 )
k
2
−1

Γ( k2 )
≤ e k2 . Therefore, choosing C ≥ 2en

4
k

we obtain

Pr

[
‖f(x)‖22 <

1

C

]
≤ 1

n2
.

Applying the union bound we conclude the lemma.

The proof of Theorem 51 essentially follows from the following lemma.
Lemma 53 (Higher Moments Analysis.). Given any integer k ≥ 1, any q > k, and any distribution
Π over

(
X
2

)
, the JL transform f : X → `k2 satisfies the following:

(A) E

[(
`k-contr (Π)(f)

)k ∣∣∣AC] = O(log n), and E
[(
`k-expans(Π)(f)

)k]
≤ 2

k
2 .

(B) E
[(
`q-contr

(Π)(f)
)q∣∣∣AC] = O

(
(2e)q/2·

√
k·n2( qk−1)

(q−k)

)
, and E

[(
`q-expans

(Π)(f)
)q]

≤(
2 ·
(
q
k

)) q
2 .

13We note that n can be substituted by
√
support(Π).
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Proof. First we note that for all q ≥ k ≥ 1, by Lemma 44 it holds that

E
[(
`q-expans(Π)(f)

)q]
≤
(

1 +
q

k

) q
2

,

which proves the second estimations in both A and B. Thus, it remains to prove the first estimations
in A and B. For A we have

E

[(
`k-contr (Π)(f)

)k∣∣∣AC] ≤ 2

∫ ∞
k
C

(
k

x

) k
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx ≤

2
(
k
2

) k
2

Γ
(
k
2

) ∫ k

k
C

1

x
dx+

2
(
k
2

) k
2

Γ
(
k
2

) ∫ ∞
k

1

e
x
2
dx,

where the first integral is bounded by ignoring e−
x
2 , and the second integral is bounded by ignoring

1
x . Computing the first integral and using the estimation of Lemma 12, we obtain

2
(
k
2

) k
2

Γ
(
k
2

) ∫ k

k
C

1

x
dx = O

(
ek/2 log n

)
.

The second integral is bounded by O
(

1√
k

)
. Therefore, we obtain the first part of A. For the part B

we have

E
[(
`q-contr (Π)(f)

)q∣∣∣AC] ≤ 2

∫ ∞
k
C

(
k

x

) q
2 x

k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx ≤ 2k
q
2

2
k
2 Γ
(
k
2

) ∫ ∞
k
C

x( k−q2 −1) dx.

Therefore, computing the value of the integral we obtain∫ ∞
k
C

x
k−q

2 −1 dx =
x(k/2−q/2)

k/2− q/2

∣∣∣∞
k
C

≤ (C/k)
q/2−k/2

(q − k)/2
.

Substituting C with its value, we conclude that E
[(
`q-contr (Π)(f)

)q∣∣∣AC] =

O
(

(2e)q/2
√
k

q−k · n2( qk−1)
)

, which concludes the first part of B. This completes the proof.

Now we are ready to prove the theorem.

Proof of Theorem 51. The proof simply follows from Jensen’s and Markov’s inequalities applied to
Lemma 53, and invoking second part of Claim 23.

Remark 54. Note that the estimation in item (B) grows to infinity when q gets closer to k. Us-

ing similar consideration to Remark 49, let k+ =
(

1 + 1
logn+1

)
· k, then for all k < q ≤ k+,

`q-dist
(Π)(f) ≤ `k+ -dist (Π)(f) = O

(
(
√

log n)
1/k
)

.

G.2 All q Simultaneously

Theorem 55. Given an n-point setX ⊂ `d2 and an integer k ≥ 1, let f : X → `k2 be the JL transform
of dimension k. For any distribution Π over

(
X
2

)
, with probability at least 1/2, `q-dist

(Π)(f) is
bounded above by

1 ≤ q ≤
√
k
√
k ≤ q ≤ k

4
k
4 ≤ q ≤ k

− k− ≤ q ≤ k+ k+ ≤ q ≤ log n

1 +O
(

1√
k

)
1 +O

(
q

k−q

)
O

((
k
k−q

)1/q(
log
(

k
k−q

))2/q
)

O
(

(log n)
1/k
)

O
(
n

2
k−

2
q ·W

)
, where W =

min

{
(log n)

1/k
,
(

logn
q−k

)1/q
}
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Proof. For any q ≥ 1 denote byD(q) the estimation onE [`q-dist(f)
q
]
1
q , where f is the JL transform

of dimension k. We divide into cases according to the intervals of the theorem. In (almost) each
interval we implement the same paradigm. We make use of the following fact:

Fact G.1. For anytq ≥ 1 it holds that Pr[`q-dist
(Π)(f) > tq(E[(`q-dist

(Π)(f))q]
1
q )] ≤ 1

(tq)
q .

Given an interval I , we define the finite set of discrete values Q = {qj} ⊂ I , the real function
t : R→ R such that the following two properties hold:

Property 1: For all qj ∈ Q,
∑
j

1
(t(qj))

qj ≤ 1/10.

Property 2: For all qj−1 < q < qj ,
t(qj)D(qj)
t(q)D(q) ≤ O(1).

From the first property, Fact G.1 and the union bound it follows that with probability at least 9/10,
for all qj ∈ Q it holds that

`qj -dist(f) ≤ t(qj)D(qj).

From the second property, and from monotonicity of the `q-distortion, it follows that for all qj < q <
qj+1,

`q-dist(f) ≤ O(1)t(q)D(q).

Putting all together, we conclude that with probability at least 9/10 the embedding f has bounded `q-
distortion with loss of factor t(q) (with respect to the upper boundD(q)), for all q ∈ I simultaneously.
Since we have 5 ranges to treat, we conclude that with probability at least 1/2 the embedding f has
bounded `q-distortion for all q simultaneously.

1. In this range it holds that D(q) = 1 + Θ
(

1√
k

)
, for all q. We define Q = {

√
k}, and

t(q) = 101/
√
k, for all q. Therefore, t(

√
k) = 101/

√
k = 1 + Θ

(
1√
k

)
. Therefore, with

probability at least 9/10, for q =
√
k it holds that `q-dist(f) ≤ 1 + O

(
1√
k

)
. Since

`q-distortion is monotonic, we have that for all 1 ≤ q ≤
√
k, `q-dist(f) ≤ 1 + O

(
1√
k

)
,

with probability at least 9/10.

2. In this range it holds that D(q) = 1 + Θ
(

q
k−q

)
. For 1 ≤ j ≤ logn

2 − 1, define qj =
√
k2j .

For all q ≥ 1, define t(q) = 1 + q
k−q . Then,

∑
j

1

(t(qj))
qj =

∑
j

(
1− 2j√

k

)√k2j

≤
∑
j

e−4j ≤ 1/10.

Since this range treats small distortions, we would like to refine the requirement of Property
2. Given any qj−1 < q < qj

t(qj)D(qj)− 1

t(q)D(q)− 1
= O

(
qj(k − q)
q(k − qj)

)
= O(1).

This finishes the proof of this case.

3. In this range it holds that D(q) = Θ

((
k
k−q

)1/q
)

. We make the following choice. Let

q0 = k/4, and for 1 ≤ j ≤ log logn
k let qj = k

(
1− 1

2jk

)
. Let the function t be such that on

the points qj it satisfies t(qj) = (20j2)
1/qj . Namely, for all q ≥ 1, the function is defined

by t(q) =

(
20 log( k

k−q )
k

)2/q

. For the first property, we estimate∑
j

1

(t(qj))
qj =

∑
j

1

20j2
≤ 1/10,
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as required.

For the second property we have for all qj−1 < q < qj ,

D(qj) = Θ

((
k

k − qj

)1/qj
)

= Θ
((

2jk
)1/qj)

,

since qj ≥ k/2, for all j ≥ 1, we obtain D(qj) = Θ(4j). Since D(q) is monotonically
increasing on q, we have that D(q) ≥ D(qj−1), therefore D(qj)

D(q) = O(1), as required. In

addition, since for all j, t(qj) = Θ
(

(log (D(qj)
qj ))

2/qj
)

it holds that t(qj)t(q) = O(1), as
required to satisfy the second property.

4. In this range it holds that D(q) = Θ
(

(log n)
1/k
)

. In this case we do not follow the general
paradigm, but rather use the basic `q-distortion relations. Particularly, the JL transform f is

such that with probability at least 9/10, `k-dist(f) = Θ
(

(log n)
1/k
)

. Therefore, for any

k− ≤ q ≤ k+ it holds that `q-dist(f) = O(`k-dist(f)).

5. In this range it holds that D(q) = Θ

(
n

2
k
− 2
q

(q−k)1/q +
√
q/k

)
. It can easily be verified that√

q/k term (which is basically an `q-expans(f)) is negligible compared to the `q-contr(f)
(the first term). We divide this case into the two following sub-cases.

Range k+ ≤ q ≤ k++. Let k++ = k
(

1 + 1
log logn

)
. In this range we do not sample on

new points. We note that for q in the range, by the standard norm relations, it holds that
`q-dist(f) ≤ n

2
k−

2
q `k-dist(f) = O

(
n

2
k−

2
q (log n)

1/k
)

. Thus, for this range we lose a

factor of
(

(log n)
1/k

(q − k)
1/q
)

in distortion (with respect to the upper bound for a given
q, D(q)).

Range k + k2

log logn ≤ q ≤ log n. For this range we define the following set Q: q1 =

k
(

1 + k
log logn

)
, for all j ≥ 1, q(j+1) = qj

(
1 +

qj
logn

)
. Note that for this range we have

that j ≤ 2 log n. The function t is defined by t(q) = (20 log n)
1/q, for all q ≥ 1. For the

first property we estimate∑
1≤j≤2 logn

1

(t(qj))qj
=

∑
1≤j≤2 logn

1

20 log n
= 1/10,

as required. For the second property, we have for all qj−1 ≤ q ≤ qj that

2

q
− 2

qj
=

2(qj − q)
qqj

≤
qj − q(j−1)

q(j−1)
2
≤ 2

log n
.

Therefore,

D(qj)

D(q)
= n

2
q−

2
qj

(q − k)
1/q

(qj − k)
1/qj

= Θ

(
(q − k)

1/q

(qj − k)
1/qj

)
=

Θ

((
q − k
qj − k

)1/qj

(q − k)
1
q−

1
qj

)
= Θ(1),

as required.
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G.3 Tightness of the analysis for small q

In this section we show that the computations we made in the analysis of the moments of the JL
transform are tight (for q < c̃k). In fact, we show a stronger result: the normalization (by any positive
factor) of the JL transform does not help to improve the upper bounds. Also, it is not hard to see that
for the equilateral space, the `q-distortion is highly concentrated around its expected value.

Claim 56. Given any n-point X ⊂ `d2 and any integer k ≥ 2, let f : X → `k2 be the JL transform
into dimension k. For any α > 0: E [(`1-dist(α · f))] ≥ 1 + c′√

k
, for a positive constant c′.

Proof. We present a sketch of the proof. Following the lines of the moment analysis for q < k, we
have

E [(`1-dist(α · f))] =

(
1 +

1

k − 1

)
Γ
(
k
2 + 1

2

)(
k
2

)
Γ
(
k
2

) 1
2

· 1√
α

+
√
α·

Γ
(
k
2 + 1

2 ,
k

2α

)(
k
2

) 1
2 Γ
(
k
2

) − 1√
α
·
Γ
(
k
2 −

1
2 ,

k
2α

) (
k
2

) 1
2

Γ
(
k
2

) .

Using the lower bound of (75), and applying the recursive rule of the incomplete gamma function,
we obtain that the expected value is bounded from below by(

1− 1

k

)
·
(

1− 1

k + 1

) 1
2

· 1√
α

+
Γ
(
k
2 −

1
2 ,

k
2α

)
Γ
(
k
2

) ·
(
k

2
− 1

2

) 1
2

·

((
k − 1

k
α

) 1
2

−
(

k

k − 1

1

α

) 1
2

)
+

(
k
2

) k
2−1

α
k
2−1e

k
2αΓ

(
k
2

) .
Applying the inequality 3, and the inequality Γ(y) ≤

(
y − 1

2

) 1
2 Γ
(
y − 1

2

)
, for all y ≥ 1, which

follows from estimation developed in (75), we obtain

E [(`1-dist(α · f))] ≥
(

1− 1

k

)
·
(

1− 1

k + 1

) 1
2

· 1√
α

+
Γ
(
k
2 −

1
2 ,

k
2α

)
Γ
(
k
2

) ·

((
(k − 1)α

k

) 1
2

−
(

k

(k − 1)α

) 1
2

)
+e

k
2 (1− 1

α+ln( 1
α ))· 1√

k
.

Denote β =
(
k−1
k · α

) 1
2 . Then, the lower bound is

(
1− 1

k

)
· 1

β
+

Γ
(
k−1

2 , k−1
2 ·

1
β2

)
Γ
(
k−1

2

) ·
(
β − 1

β

)
+ e

k
2

(
1−( k−1

k )· 1
β2 +ln

(
k−1
k ·

1
β2

))
· 1√

k
. (11)

Denote 1
β = 1 + t√

k
, where values of t are divided into two cases: 0 ≤ t <∞, which is equivalent to

0 < β ≤ 1, and−
√
k < t ≤ 0, which is equivalent to 1 ≤ β <∞. In what follows we denote by β(t)

the value of β for a chosen value of t (which is indeed a function of t). Denote G(k, t) =
(
1− 1

k

)
·

1
β(t) +

Γ
(
k−1

2 , k−1
2 ·

1
(β(t))2

)
Γ( k−1

2 )
·
(
β(t)− 1

β(t)

)
, and F (k, t) = e

k
2

(
1−( k−1

k )· 1
(β(t))2

+ln
(
k−1
k ·

1
(β(t))2

))
· 1√

k
.

The idea is to show that there exists a value −
√
k < t0 <∞ such that the following two statements

hold.

1. For all −t0 ≤ t ≤ t0 it holds that F (k, t) ≥ c′√
k

, for a positive c′, and it holds that

G(k, t) ≥ 1− c′′

k , for a positive c′′.

2. For all t ≥ t0, and t ≤ −t0 it holds that G(k, t) ≥ 1 + ĉ√
k

, for a positive ĉ.

We start with the proving the first item. Substituting 1 + t√
k

in place of 1
β , and using the following

standard inequality ln(1 +x) ≥ x−x2/2, for x ∈ (−1, 1] (i.e. assuming−
√
k < t ≤

√
k) we arrive

at

F (k, t) ≥ e−3k
(

t√
k

)2

· 1√
k

= e−3t2 1√
k
.
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Therefore, choosing any constant −
√
k ≤ t0 ≤

√
k implies F (k, t) ≥ e−3t20 1√

k
, for all −t0 ≤ t ≤

t0.

It remains to show that there exists t0 such that for all −t0 ≤ t ≤ t0 it holds that G(k, t) ≥ 1− c′′

k ,
for a positive c′′. For all −t0 ≤ t ≤ t0 it holds that

G(k, t) ≥
(

1− 1

k

)
·
(

1 +
t√
k

)
− 2t√

k
·
Γ
(
k−1

2 , k−1
2

)
Γ
(
k−1

2

) =

(
1− 1

k

)
+

t√
k

(
1− 1

k
− 2

Γ
(
k−1

2 , k−1
2

)
Γ
(
k−1

2

) )
.

We divide our estimations into the following two cases. For −t0 ≤ t ≤ 0, it is enough to show that
Γ( k−1

2 , k−1
2 )

Γ( k−1
2 )

≥ 1/2− c̃√
k

, for some positive constant c̃, from what will follow thatG(k, t) ≥ 1−c∗/k,

for some positive c∗. For 0 ≤ t ≤ t0, it is enough to show that
Γ( k−1

2 , k−1
2 )

Γ( k−1
2 )

≤ 1
2 + ĉ√

k
, from what

will follow that there exists a constant c′′ such that G(k, t) ≥ 1− c′′

k . Thus, we have to show that
1
2 −

c̃√
k
≤ Γ( k−1

2 , k−1
2 )

Γ( k−1
2 )

≤ 1
2 + ĉ√

k
. In (13) it is shown that for all x ≥ 1 (recall that k ≥ 2) it holds

that
1

2
− 1

2
√
x
≤ Γ(x, x)

Γ(x)
≤ 1

2
+

1√
x
.

For the second item, we have for all t ≥ 0, it holds that

G(k, t) ≥
(

1− 1

k

)
·
(

1 +
t√
k

)
− 2t√

k
·

Γ
(
k−1

2 , k−1
2 + 2t

√
k − 1

)
Γ
(
k−1

2

) .

For all t ≤ 0, it holds that

G(k, t) ≥
(

1− 1

k

)
·
(

1− t√
k

)
+

2t√
k
·

Γ
(
k−1

2 , k−1
2 −

t
4

√
k − 1

)
Γ
(
k−1

2

) .

Therefore, to finish the proof we prove the following two estimations. The first states that

∀ t ≥ 0,
Γ
(
k−1

2 , k−1
2 + 2t

√
k − 1

)
Γ
(
k−1

2

) ≤ 1

e
t2

16

. (12)

Again, note that this formula describes Pr
[
X ≥ k − 1 + 4t

√
k − 1

]
, for X ∼ χ2

k−1, therefore,
using the bounds developed in (33), we obtain the stated inequality.

The second bound states that

∀ −
√
k ≤ t ≤ 0,

Γ
(
k−1

2 , k−1
2 −

t
4

√
k − 1

)
Γ
(
k−1

2

) ≥ 0.65. (13)

Note that this formula exactly describes Pr
[
X ≥ k − 1− t

2

√
k − 1

]
, for X ∼ χ2

k−1 therefore, it is
enough to bound from above the Pr

[
X ≤ k − 1− t

2

√
k − 1

]
. Using the estimations of (33) we get

that this probability is bounded from above by 1
et2/32

. Therefore, choosing t0 = 10 we get that the
equation (13) is bounded from below by 0.8. Note that the estimations of the first item are correct for
such t0, what finishes the proof of the claim.

G.4 `q-norm analysis of the JL transform

In this section we derive bounds on distortion of `q-Norm of JL transform.

Theorem 57. Given any n-point set X ⊂ `d2, any integer k ≥ 1, any q < k and any distribution Π

over
(
X
2

)
, with constant probability the JL transform f : X → `k2 is such that distnorm(Π)

q (f) =

1 +O
(

1√
k

+ q
k−q

)
, for q < c̃k, and distnorm(Π)

q (f) = O
(√

q
k

)
, for q ≥ c̃k.
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Proof. For q ≤ c̃k the proof follows as a corollary of Claim 15 (the last inequality) and of Corollary
5. For q ≥ c̃k we use the equality part of Claim 15. The idea is to show that with constant probability
it holds that both `q-expans(Π′)(f) = O

(√
q
k

)
, and `q-expans(Π′)(f) ≥ const, for some positive

const. The upper bound follows from Lemma 44, while the lower bound is analyzed in the following
lemma. The proof of the theorem then follows by Markov’s inequality applied on the upper and lower
bounds.

Lemma 58. Given any n-point X ⊂ `d2, any integer k ≥ 1, any q ≥ 1, and Π, the JL transform of
dimension k, f : X → `k2 , is such that with probability at least 1/2, `q-expans

(Π)(f) ≥ 1/16.

Proof. The proof follows from Lemma 10: the random variables Xi in the lemma are random

variables (expansf (i, j))
q, the random variable Y =

(
`q-expans(Π′)(f)

)q
. From Lemma 52 we

derive that for all i 6= j,

pij = Pr

[
(expansf (i, j))

q ≤ 1

Cq/2

]
≤
( e
C

)k/2
≤ 1

4k
,

for taking C = 16e. Therefore, taking β = 1/2, by Lemma 10 we obtain that with probability at least

1− 1
2(2k−1) it holds that

(
`q-expans(Π′)(f)

)q
≥ 1

2(16e)q/2
, implying `q-expans(Π′)(f) ≥ 1/16.

G.5 Additive distortion measures analysis of the JL transform

Theorem 59. For a finite X ⊂ `d2 and integer k ≥ 2, let f : X → `k2 be the JL transform of
dimension k. For a distribution Π over

(
X
2

)
, with constant probability, for all 1 ≤ r ≤ q ≤ k − 1:

REM (Π)
q (f), Energy(Π)

q (f),Φσ,q,r
(Π)(f), Stress(Π)

q (f), Stress∗(Π)
q (f) = O

(√
q/k
)
.

Proof. We first show the bound for the REMq, which immediately implies the upper bounds on
Energyq and Stressq . The bounds on Stress∗q , for all q, follow by Claim 21 and Lemma 58. After
that, we show the bound on σ-distortion.

We first prove the theorem holds in expectation for any given value of q ≤ k − 1, and then show how

to conclude the simultaneous guarantees. We analyze the expected value of
(
REM (Π)

q (f)
)q

, for a
given 1 ≤ q ≤ k − 1. Following the lines of considerations of the proof we have

E
[(
REM (Π)

q (f)
)q]

=

∫ k

0

(√
k

x
− 1

)q
x
k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx+

∫ ∞
k

(√
x

k
− 1

)q
x
k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx.

(14)
We treat two integrals separately. We start with the second integral. Changing variables x

k = z2

results in ∫ ∞
k

(√
x

k
− 1

)q
x
k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx = 2

∫ ∞
1

(z − 1)
q
zk−1

e
z2k
2

(
k
2

)k/2
Γ
(
k
2

) dz.

Additional changing of variables z − 1 = t results in

2
(
k
2

)k/2
Γ
(
k
2

)
e
k
2

∫ ∞
0

tq(t+ 1)
k−1

e
k
(
t+ t2

2

) dt.

Using the inequality (1 + t) ≤ et for all real t, we have that the above is at most

2
(
k
2

)k/2
Γ
(
k
2

)
e
k
2

∫ ∞
0

tqe−t−
kt2

2 dt ≤
2
(
k
2

)k/2
Γ
(
k
2

)
e
k
2

∫ ∞
0

tqe−
kt2

2 dt.

Changing variables u = t2k
2 results in(

k
2

)k/2
Γ
(
k
2

)
e
k
2

(
2

k

) q+1
2
∫ ∞

0

u
q+1

2 −1

eu
du =

(
k
2

)k/2
Γ
(
k
2

)
e
k
2

(
2

k

) q+1
2

Γ

(
q + 1

2

)
.
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Using the inequalities of Lemma 11 and Lemma 12 we obtain that the second integral is bounded by∫ ∞
k

(√
x

k
− 1

)q
x
k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx ≤
(

1

e

) q
2
(
q + 1

k

) q
2

.

Next we bound the first integral of (14). Changing variables z2 = x
k we get∫ k

0

(√
k

x
− 1

)q
x
k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx =

(
k
2

) k
2

Γ
(
k
2

) ∫ 1

0

(1− z)qzk−1−q

e
k
2 z

2
dz.

Additional changing of variables 1− z = t results in(
k
2

) k
2

Γ
(
k
2

)
e
k
2

∫ 1

0

tq(1− t)k−1−q

e−kt+
kt2

2

dt.

Since q ≤ k − 1, k − 1− q ≥ 0, therefore, using the inequality 1− t ≤ e−t we get that the above is
bounded by(

k
2

) k
2

Γ
(
k
2

)
e
k
2

∫ 1

0

tqet(q+1)− kt22 dt ≤
e(q+1)

(
k
2

) k
2

Γ
(
k
2

)
e
k
2

∫ 1

0

tqe−
kt2

2 dt ≤
e(q+1)

(
k
2

) k
2

Γ
(
k
2

)
e
k
2

∫ ∞
0

tqe−
kt2

2 dt.

Therefore, by the estimations we made for the second integral we obtain that∫ k

0

(√
k

x
− 1

)q
x
k
2−1

2
k
2 Γ
(
k
2

)
e
x
2

dx ≤ 1

2
· eq+1

(
1

e

) q
2
(
q + 1

k

)q/2
.

Now, by Markov’s inequality, for any integer q ≥ 1 it holds that

Pr
[(
REM (Π)

q (f)
)q
≥ 4q · E

[
REM (Π)

q (f)q
]]
≤ 1

4q
.

Therefore, by the union bound, we obtain that with probability at least 2
3 , for all 1 ≤ q ≤ k − 1 it

holds that REM (Π)
q (f) = O

(√
q
k

)
, which completes the proof.

We turn to proof the bound on the σ-distortion of the JL transform. By Corollary 4, Claim 44 and
by the above proof, with constant probability the JL transform f into k dimensions is such that
`r-contr(f) = 1 +O

(
r

k−r

)
, `r-expans(f) = 1 +O

(
r
k

)
and such that Energy(Π)

q (f) = O
(√

q
k

)
,

for any given r ≤ q, and q ≤ k − 1. Therefore, by Claim 22, with constant probability:

(Π)

Φσ,q,r(f) = O
(
Energy(Π)

q (f)
)

+O

(
r

k − r

)
= O

(√
q

k

)
,

which completes the proof.

H Lower bounds

The following basic lemma turns to be useful in this paper.

Lemma 60. Let (X, dX) be an n-point metric space, and (Y, dY ) be any metric space. Let 2 ≤
s < n be an integer, and let S := {Z ⊆ X

∣∣|Z| = s}. For a given q ≥ 1 denote Mq =
{`q − dist, Energyq, Stressq, Stress∗q , REMq}. If for all Z ∈ S it holds that any embedding
f : Z → Y is such that Mq(f) ≥ α, for a fixed Mq ∈ Mq, then it holds that for any F : X → Y ,
Mq(F ) ≥ α.

Proof. Assume by contradiction there is F : X → Y , such that for some q it holds that Mq(F ) < α.
For a pair x, y ∈ X denote by µF (x, y) the appropriate distortion measure of the pair (according
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to the measure Mq under discussion). For a given subset Z ∈ S let F |Z denote the embedding F
restricted to Z. By definition, for any Z ∈ S

(Mq(F |Z))q =
1(
s
2

) ∑
x 6=y∈Z

(µF (x, y))q.

Therefore, ∑
Z∈S

(Mq(F |Z))q =
1(
s
2

) ((n− 2

s− 2

)) ∑
x 6=y∈X

(µF (x, y))q,

implying
1(
n
s

) ∑
Z∈S

(Mq(F |Z))q =

(
n−2
s−2

)(
n
2

)(
s
2

)(
n
s

) (Mq(F ))q = (Mq(F ))q.

Therefore, there might be at least one Z ∈ S such that Mq(F |Z)q < (α)q , a contradiction.

H.1 Additive distortion measures

The following two lemmas were proved by (8):
Lemma 61. For A = (ε̂ij), a t× t real, symmetric matrix, with all 1 on diagonal,

∑
1≤i<j≤t ε̂

2
ij ≥

t2

2·rank(A) −
t
2 .

Lemma 62. For A = (aij), a t× t real matrix, and for an integer q ≥ 1 define Aq a t× t matrix,
by (Aq)ij = aqij . Then rank(Aq) ≤

(
q+rank(A)−1

q

)
.

We first show a lower bound for even values of q,which in the next claim will be extended to hold for
all values of q.
Claim 63. Let En denote an n-point equilateral space. For any k ≥ 2, any even 2 ≤ q ≤ k, let
nq = d4 (9k/q)

q/2e. For all n ≥ nq , for any f : En → `k2 , Energyq(f) ≥ 1
250

√
q/k.

Proof. By the argument in Lemma 60 it is enough to consider n = nq. For f : Enq → `k2 , denote
εij = |expansf (xi, xj)− 1|, for all 1 ≤ i < j ≤ nq , so (Energyq(f))

q
=
∑
i<j ε

q
ij/
(
nq
2

)
. If there

are more than nq/4 pairs of points xi 6= xj ∈ Enq with distf (xi, xj) > 2, then (Energyq(f))
q ≥

nq/4

(nq2 )
· 1

2q ≥
1

250q

(
q
k

)q/2
,

and we are done. Otherwise, there are at most nq/4 pairs with distf (xi, xj) > 2, implying there
is X ⊆ Enq , on n′q ≥ nq/2 points, such that for all x 6= y ∈ X , distf (x, y) ≤ 2. Let f |X
denote the embedding f restricted to X . Then (Energyq(f |X))q ≤ 5(Energyq(f))q, meaning
it is enough to lower bound the embedding f |X . Denote X = {xi | 0 ≤ i ≤ n′q − 1}, and
V = {vi | vi = f(xi),∀xi ∈ X}, w.l.o.g. v0 = 0. For all xi ∈ X define wq(xi) =

∑
j 6=i (εij)

q.
W.l.o.g. x0 is such that wq(x0) = min{wq(xi) | xi ∈ X}. Define a matrix DV by DV [i, j] =〈
vi/ ‖vi‖2 , vj/ ‖vj‖2

〉
, for 0 ≤ i 6= j ≤ n′q − 1. Then rank(DV ) ≤ k, DV [i, i] = 1 and

∀ i 6= j: DV [i, j] = cos(αij) = (‖vi‖22 + ‖vj‖22 − ‖vi − vj‖
2
2)/(2 ‖vi‖2 ‖vj‖2). For all j it holds

‖vj‖2 = ‖vj − v0‖2. Since εij = | ‖vi − vj‖2 − 1| and for all xi 6= xj ∈ X , distf (xi, xj) ≤ 2, it
holds that εij ≤ 1. It follows that for each i, j: either distf (xi, xj) = expansf (xi, xj), and thus
‖vi − vj‖ = 1+εij ≤ 2, or distf (xi, xj) = contractf (xi, xj), and thus ‖vi − vj‖ = 1−εij ≥ 1/2.
Therefore, it holds that: 1

2 − 3(ε0i + ε0j + εij) ≤ DV [i, j] ≤ 1
2 + 3(ε0i + ε0j + εij).

Let A = 2DV − J , where J is all 1 matrix. Then A is symmetric, A[i, i] = 1 and ∀i 6= j,|A[i, j]| ≤
6(ε0i + ε0j + εij), and rank(A) ≤ rank(DV ) + 1 ≤ k + 1. Applying Lemma 62 we get that
rank

(
Aq/2

)
≤ n′q/2.

Therefore, applying Lemma 61 on the matrix Aq/2:
∑

1≤i<j≤n′q−1 6q(ε0i + ε0j + εij)
q ≥

n′q
2

2·rank(Aq/2)
− n′q

2 ≥
1
4 ·

n′q
2

rank(Aq/2)
≥ 1

4 ·
n′q

2

eq/2
·
(

q
q+2k

)q/2
.
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On the other hand, since x0 minimizes wq(xi) over all xi ∈ X , we have for 1 ≤ i, j ≤ n′q − 1:∑
i<j

(ε0j + ε0i + εij)
q ≤ 2q−1

∑
i<j

(εq0i + εq0j + εqij) ≤ 2q(n′q − 1)
∑
j ε
q
0j + 2q−1

∑
i<j

εqij ≤

3 · 2q
∑

0≤i<j≤n′q−1

εqij . Therefore,
∑

1≤i<j≤n′q−1

6q(ε0j + ε0i + εij)
q ≤ 3 · 12q

∑
0≤i<j≤n′q−1

εqij =

3 · 12q
(n′q

2

)
(Energyq(f |X))q ≤ 15·12q

2 · (n′q)2 · (Energyq(f))q. Putting all together we obtain

(Energyq(f))q ≥ 1
30·36q ·

(
q
k

)q/2
, completing the proof.

The following claim extends the lower bound for all values of q ≤ k, from the case of lower bound
for even values of q.

Claim 64. For all k ≥ 2, k ≥ q ≥ 2, and n ≥ 4
(

9 · kq
)q/2

, for all f : En → `k2: Energyq(f) ≥
1

400

√
q
k .

Proof. If q is even, we are done by Claim 63. Otherwise, let q′ ≥ 2 be the largest even integer such
that q′ ≤ q. It is easily seen that Nq ≥ N ′q , for all 2 ≤ q′ ≤ q ≤ k. Therefore, by Claim 63, it holds
that for all n ≥ Nq ≥ N ′q

Energyq(f) ≥ Energyq′(f) ≥ 1

250

√
q′

k
≥ 1

250 ·
√

2

√
q

k
,

where the first inequality is due to the monotonicity of Energy measure, and the last inequality due to
the fact that q/q′ ≤ 2. This finishes the proof of the claim.

Corollary 6. For all k ≥ 2, k ≥ q ≥ 2, r ≤ q and n ≥ 4
(

9 · kq
)q/2

, for all embeddings

f : En → `k2 , it holds that Φσ,q,r(f) ≥ 1
400

√
q
k .

Proof. Let f : En → `k2 be any embedding. For 1 ≤ r ≤ q, consider `r-expans(f). Let f̂ : En →
`k2 be the embedding defined by: for all u ∈ En, f̂(u) = f(u)

`r-expans(f)
. Note that `r-expans(f̂) = 1.

Then, since σ-distortion is a scale invariant measure, it holds that

Φσ,q,r(f) = Φσ,q,r(f̂) = Eenergyq(f̂) = Ω

(√
q

k

)
,

where the last inequality is true by Claim 64.

Claim 65. For all k ≥ 1, 1 ≤ q < 2, and n ≥ 18k, for all f : En → `k2 it holds that Energyq(f) =
Ω
(

1
k1/q

)
.

Proof. In Claim 63 take q = 2. Then,
∑

1≤i<j≤N ′2−1

62(ε0j + ε0i + εij)
2 ≤ 3 · 122

∑
0≤i<j≤N ′2−1

ε2ij .

Note that for 1 ≤ q < 2 it holds that ε2ij ≤ ε
q
ij , for all 1 ≤ i < j ≤ N ′2 − 1, since for these indexes

εij ≤ 1.

Therefore, following the arguments of Claim 63, for 1 ≤ q < 2 we obtain∑
1≤i<j≤N ′2−1

62(ε0j + ε0i + εij)
2 ≤ 3·122

∑
0≤i<j≤N ′2−1

ε2ij ≤ 432
∑

0≤i<j≤N ′2−1

εqij = O((N ′2)2)·(Energyq(f))q.

Also for q = 2, we have for 1 ≤ q < 2, n ≥ N2 = 18k, for all f : En → `k2 , Energyq(f) =
Ω
(

1
k1/q

)
.
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H.2 Moments of distortions

Let us first to derive lower bounds for q ≤
√
k.

Corollary 7. Given an integer k ≥ 1, and any 1 ≤ q ≤
√
k, denote N = 18k. For any n ≥ N , if

f : En → `k2 then `q-dist(f) = 1 + Ω
(
q
k

)
.

Proof. Let f : En → `k2 be any embedding. For all xi 6= xj ∈ En, denote εij = |expansf (xi, xj)−
1|. Note that if expansf (xi, xj) ≥ 1, then distf (xi, xj) = 1 + εij , and otherwise distf (xi, xj) =

1
1−εij ≥ 1 + εij . Therefore, we have

(`q-dist(f))q =
1(
n
2

) ∑
1≤i<j≤n

(distf (xi, xj))
q ≥ 1(

n
2

) ∑
1≤i<j≤n

(1 + εij)
q.

Consider first the case q ≥ 2. It can be easily shown (by derivation, for example) that for any q ≥ 2,
and for any x ≥ 0 it holds that (1 + x)q ≥ 1 + q(q−1)

2 x2. Therefore, we obtain

1(
n
2

) ∑
1≤i<j≤n

(1 + εij)
q ≥ 1(

n
2

) ∑
1≤i<j≤n

(
1 +

q(q − 1)

2
ε2ij

)
= 1 +

q(q − 1)

2
(Energy2(f))2.

By Claim 64, we have that for some positive constant 0 < c < 1,

1 +
q(q − 1)

2
(Energy2(f))2 ≥ 1 + c · q

2

k
.

Therefore, using the inequality: for all 0 ≤ x ≤ 1, for all 0 < r ≤ 1, (1 + x)r ≥ 1 + 1
2xr, for

x = c · q
2

k , we conclude that

`q-dist(f) ≥ 1 + Ω
( q
k

)
,

completing the proof for all 2 ≤ q ≤
√
k.

For 1 ≤ q < 2 we apply the following inequality: for all x ≥ 0 and for all q ≥ 1, (1+x)q ≥ 1+ q ·x.
Therefore, applying Claim 65 we obtain that for some constant 0 < c < 1,

(`q-dist(f))q ≥ 1(
n
2

) ∑
1≤i<j≤n

(1+εij)
q ≥ 1(

n
2

) ∑
1≤i<j≤n

(1+q ·εij) ≥ 1+q ·Energy1(f) ≥ 1+c· q
k
.

Implying `q-dist(f) ≥ (1 + cq/k)
1
q = 1 + Ω(1/k), which completes the proof.

Theorem 66. For all k ≥ 16, for all N large enough, there exists a metric space Z ⊆ `2 on N
points, such that for any embedding F : Z → `k2 it holds that `q-dist(F ) ≥ 1 + Ω

(
q

k−q

)
, for all

Ω
(√
k log k

)
≤ q ≤ c̃k.

Proof. The proof is based on a recent breakthrough result of (49) showing tightness of the JL
dimension bound (improving upon (8)). Their result states that for all integer n ≥ 2, there exists
an n-point Euclidean metric space S ⊂ `n2 , such that for all 1

n0.4999 < ε < 1/8, it holds that any
embedding f : S → `d2 with distortion 1+εmust have d ≥ cLN logn

ε2 , for a constant 0 < cLN < 1/64.
In what follows we assume that q ≤ c̃k, for c̃ as defined in Remark 46, and the lower bound for the
rest of the range follows from q = c̃k.

Given any k ≥ 16, and q as in the theorem, let ε = cLN
200 ·

q
k−q , and let n = 2(2kε2)/cLN . For this

definition of n we have that k = cLN logn
2ε2 < cLN logn

ε2 . In addition, note that for the range of q as
in the theorem, it holds that ε > 1

n0.4999 . Moreover, from the definitions of ε and n it holds that
q = 100 · logn

ε ·
k−q
k . Since for all q it holds that k−qk < 1, we have that q ≤ 100 · logn

ε . In addition,
since q ≤ c̃k it holds that k−qk ≥ 1− c̃, recalling that c̃ ≤ 0.94 implies that k−qk ≥ 3/50. Therefore,
q ≥ 6 · logn

ε .
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Now we are ready to use the result of Larsen and Nelson. For the above chosen parameters ε, n, k,
there exists an n-point metric space S ⊂ `2, such that for any embedding f : S → `k2 it holds that
dist(f) ≥ 1 + ε. Therefore, applying Theorem 25 on S, we obtain that for our q, there exists a
metric space Z on N points, for all N > n, such that for any embedding F : Z → `k2 it holds

`q-dist(F ) ≥
(

1 + 2
(

(1 + ε)
q/2 − 1

)
/n2
)1/q

.

Note that using the Theorem 25 enables us to choose the metric space T (in the notions of the
theorem) to be Euclidean, and such that the composition of S and T will be Euclidean metric space as
well. Now, using the bounds on q we have established, we conclude `q-dist(F ) ≥ 1+

(
cLN
2400

) (
q

k−q

)
.

This completes the proof.

H.3 Phase transition: lower bound for q = k

Theorem 67. Any embedding f : En → `k2 has `k-dist(f) = Ω((
√

log n)
1/k
/k1/4), for any k ≥ 1.

By Claim 24, it is enough to prove that for any non-expansive embedding `k-dist(f) =

Ω((log n)
1/k
/
√
k). We use the hierarchical separated trees (HST), that were introduced in (12).

Definition 9. For s > 1, a rooted tree T , with labels ∆(v) ≥ 0 assigned to each node v ∈ V (T ),
is an s-HST if the leaves of T have ∆(v) = 0, and for u 6= v ∈ V (T ), if u is a child of v then
∆(u) ≤ ∆(v)/s.

An s-HST induces a metric on the set of its leaves: for all u 6= v leaves in T , the metric is define
by dT (u, v) = ∆(lcaT (u, v)). For s > 1, t ≥ 1, δ > 0, let s-Hδ

t be the set of all s-HST trees on n
leaves, with degree at most 2t, and with ∆(root(T )) = δ. Throughout the section we set s = 2, and
remove it from notation, i.e. Hδ

t denotes 2-Hδ
t . The proof follows from the following claim:

Claim 68. Any non-expansive embedding g : En → `k∞ has `k-dist(g) = Ω((log n)
1/k

).

To prove the claim it is enough to prove the following lemmas:
Lemma 69. Let g : En → `k∞ be any non-expansive embedding, then there exists a non-expansive
embedding h : g(En)→ H1

k such that `k-dist(g) ≥ `k-dist(h ◦ g).

Proof. Since g is non-expansive, g(En) ⊂ [0, 1]
k. Note that this cube has edge and diagonal lengths

1. Denote Cl the cube with edge and diagonal lengths l > 0. We build an embedding h : g(En)→ T ,
T ∈ H1

k , recursively as follows. The root of the tree T is defined to be r(T ) with ∆(r(T )) = 1.
Divide the unit cube [0, 1]

k into 2k C1/2-sub-cubes, denote these cubes C(j)
1/2, 1 ≤ j ≤ 2k. For

all C(j)
1/2-sub-cube recursively build the sub-trees Tj on the leaves of points in g(En) ∩ C(j)

1/2. Let

∆(r(Tj)) = 1/2. Set the (at most 2k) children of r(T ) to be Tj . If for some j, g(En) ∩ C(j)
1/2 = ∅,

then Tj is an empty tree. If |g(En) ∩ C(j)
1/2| = 1, then the tree Tj contains only the root with label 0.

Let rs 6= rt ∈ g(En) be any pair of points. Denote i ≥ 1 the first step in the recursive construction
in which rt, rs are separated. By construction, the `∞ distance between them is at most 1

2i−1 ,
while their distance on the constructed tree T is exactly 1

2i−1 , meaning distg(rs, rt) ≥ 2i−1, while
dist(h◦g)(rs, rt) = 2i−1. This completes the proof of the lemma.

Lemma 70. For any k ≥ 1, for any non-expansive F : En → H1
k , `k-dist(F ) = Ω((log n)

1/k
).

Proof. For a non-expansive F : En → H1
k , let T ∈ H1

k be its image tree. Note that the `k-distortion
of the embedding is solely defined by the topology of T . Define the k-weight of T by wk(T ) =

(`k-dist(F ))
k ·
(
n
2

)
. For all k, n ≥ 1, δ ≤ 1, let Sk(n, δ) = min{wk(T )|T ∈ Hδ

k}, Sk(0, δ) = 0.
Thus, we have to prove that Sk(n, 1) ≥ Ω(n2log n/k), for all k ≥ 1, which we show by induction
on n. We prove that for any k ≥ 1, for all n ≥ 2, Sk(n, 1) ≥ n2log n/(4k). For n = 2,
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Sk(2, 1) = 1 ≥ 1
k , for all k ≥ 1. Assume the claim holds for all n′ < n. Let D = {0 ≤ ni ≤

n, 1 ≤ i ≤ 2k,
∑
i ni = n} be the set of constraints. Then, Sk(n, 1) = minD{

∑
i Sk(ni, 1/2) +∑

i 6=j ninj}. Note that for all n and k, by the definition Sk(n, 1/2) = 2kSk(n, 1). Substituting
this and applying the induction assumption on each Sk(ni, 1), we get that Sk(n, 1) ≥ minD{ 1

4k ·
2k
∑
i n

2
i log ni+

∑
i 6=j ninj}. We can write

∑
i6=j ninj = 1

2 ((
∑
i ni)

2−
∑
i n

2
i ) = n2

2 −
1
2

∑
i n

2
i ,

therefore Sk(n, 1) ≥ minD{
∑
i n

2
i (

2k

4k log ni − 1
2 ) + 1

2n
2}. Consider the real function f(x) =

x2( 2k

4k log x − 1
2 ), on x ≥ 2. Since f(x) is convex for all k ≥ 1, by Jensen’s inequality the

minimum value of the above minimization program is obtained at ni = n/2k, for all i. Thus,

Sk(n, 1) ≥ n2 log( n
2k

)

4k + ( 1
2 −

1
2k+1 )n2 = n2 logn

4k + ( 1
2 −

1
4 −

1
2k+1 )n2 ≥ n2 logn

4k , for all k ≥ 1.

Lemma 71. Let F : En → H1
k be any non-expansive embedding. Then `q-dist(F ) ≥

Ω

((
1

k−q

)1/q
)

, for any k − 1 ≤ q ≤ k−.

Proof. The proof of this lemma is similar to the proof of Lemma 70 itself. Namely, we show by
induction on n that Sq(n, 1) ≥ n2 ·α(n), where this time α(n) = 1

4(1−2(q−k))
·
(

1− n
q−k
k

)
(note that

in the Lemma 70, α(n) = log n). Let us first estimate the lower bound on α(n). For all n ≥ 2
k
k−q ,

and q, k such that q > k − 1, it holds that

α(n) ≥ 1

8 ln 2(k − q)
.

To see this, note that 1− n
q−k
k ≥ 1/2, and 1− 2(q−k) ≤ (k− q) ln 2 for the chosen values of n, q, k.

Also note, that from the above constrain on n it follows that q ≤ k
(

1− 1
logn+1

)
= k−.

Now we replicate the inductive proof of Lemma 70.

Inductive Claim. Given any k − 1 ≤ q ≤ k−, for all n ≥ 2, it holds that Sq(n, 1) ≥ n2α(n).

Base Case: n = 2. Sq(2, 1) = 1 ≥ 4 · 1
4 = 1.

Induction’s Assumption. Given any k − 1 ≤ q ≤ q∗, assume that for all n′ < n, Sq(n′, 1) ≥
(n′)

2
α(n′).

Induction’s Step. We have to prove that Sq(n, 1) ≥ n2α(n). Following the lines of the proof of
Lemma 70, it is enough to show that

min
0≤ni≤n,
1≤i≤2k,∑
i
ni=n

2q
∑
i

n2
iα(ni) +

∑
1≤i<j≤2k

ninj

 ≥ n2α(n),

substituting α(ni) it is equivalent to showing that

min
0≤ni≤n,
1≤i≤2k,∑
i
ni=n

2q
∑
i

n2
i

(
1− n( q−kk )

i

)
+ 4

(
1− 2(q−k)

) ∑
1≤i<j≤2k

ninj

 ≥ n2
(

1− n( q−kk )
)
.

Applying similar consideration to this of Lemma 70, we conclude that the minimum is obtained for
ni = n/2k, for all i. Therefore, substituting it in the formula and doing some math, we conclude that
we have to show that

2(q−k)n2 − n( q−kk )n2 +
(

1− 2(q−k)
)
n2 ≥ n2

(
1− n( q−kk )

)
,

which is true for any k, q, n ≥ 1. This completes the proof of the lemma, and of the claim.
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Claim 72. Any f : En → `k2 has `q-dist(f) ≥ Ω

(
1

k1/4

(
1

k−q

)1/2q
)

, for all n, k large enough, and

for all k − 1 ≤ q ≤ k−.

The proof of this claim follows the lines of the proof of Theorem 6. Specifically, Lemma 70 is
replaced by Lemma 71. The proof follows by induction argument showing that Sq(n, 1) ≥ n2 ·α(n),

where α(n) = 1
4(1−2(q−k))

·
(

1− n
q−k
k

)
(instead of α(n) = log n).

Claim 73. There exists an n-point metric space X ⊂ `2 such that for any embedding f : X → `k2 ,

for all k ≥ 1, for all q > k it holds that `q-dist(f) = Ω
(
n( 1

2dk/2e−
2
q )
)

.

Proof. We base the proof on the worst case lower bound of (59), who showed that there exists an
n-point metric space X ⊂ `k+1

2 such that any embedding of it into `k2 requires distortion at least
Ω
(
n2/k

)
for all even k ≥ 2, and at least Ω

(
n2/(k+1)

)
, for all odd k ≥ 3. The proof immediately

follows from the standard norm relations: for all q ≥ 1, `q-dist(f) ≥ `∞-dist (f)
n2/q . In addition, by

the definition `∞-dist(f) ≥
√
dist(f).

Another technique applied to the equilateral space provides us with the following lower bounds.
Claim 74. For all k ≥ 1 and for all q > k, any embedding f of an n point equilateral metric space
En into `k2 has `q-dist(f) ≥ Ω

(
n

1
2k−

1
2q

)
.

Proof. By Claim 24 it’s enough to show a lower bound on non-expansive embeddings. Let f :
En → `k2 be any non-expansive embedding, it is enough to show that for any q > k it holds that
`q-dist(f) ≥ Ω

(
n

1
k−

1
q

)
. The idea is to use a volume argument to show that there is a linear number

of pairs with small enough distance. Let us formulate this. First, w.l.o.g. assume that f(En) resides
in the Euclidean unit ball. For any 0 < ε < 1 the set of points N ⊂ `2 is called ε-separated, if for any
two points n1 6= n2 ∈ N it holds that ‖n1 − n2‖2 ≥ ε. The basic volume argument implies for any
ε-separated set N contained in a unit ball of any in k-dimensional normed space:

|N | ≤
(

2

ε
+ 1

)k
≤
(

4

ε

)k
.

If for at least n/2 points of f(En) there exists at least one point y ∈ f(En), such that their distance
is at most 100

n1/k , then there are at least n/4 pairs with distance at most 100
n1/k . Therefore, we have that

in such case

`q-dist(f) ≥

n/4 ·
(
n1/k

100

)q
n2

1/q

≥ Ω
(
n

1
k−

1
q

)
.

Otherwise, there is a subset of f(En) of size at least n/2 that is 100
n1/k - separated. Therefore, we get

that n/2 ≤
(

1
25

)k · n, contradiction.

I Lower bounds for all q simultaneously

Claim 75. Let k ≥ 1. For any n ≥ 18k, let f : En → `k2 be an embedding such that for some 1 ≤
q ≤
√
k, it holds that `q-dist(f) ≤ 1+ c

q , for some c > 0. Then, `1-dist(f) ≥ 1+ q
k ·Ω

(
1

c+ln(k/q2)

)
.

Proof. First, note that for q = o(log k), the statement in the claim is not interesting, since for such
values of q it guarantees a weaker lower bound than we have proven in Corollary 1. Therefore, we
will prove the claim for larger values of q. Let us define several parameters for which we will prove
the claim. Let τ = 1

4002 , let A = 4c + 4 ln
(
τ · kq2

)
. Observe that since q ≤

√
k and k ≥ 1, and
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c > 0, it holds that A ≥ 4 ln(4002) ≥ 8. We will show that for any q ≥ 2c+ log(τk) it holds that
`1-dist(f) ≥ 1 + 1

τ ·
q
k ·

1
A .

Denote S ⊆
(
n
2

)
the set of pairs such that distf (i, j) ≤ 1+ A

q , for all (i, j) ∈ S. Denote L =
(
n
2

)
\S.

Recall the definition of εij = |expansf (i, j) − 1|. Note that for any pair (i, j) ∈ S it holds that
εij ≤ A

q .

The proof of the claim follows from the following inequality (which we will prove in the sequel):
(Energy2(f |S))2 ≥ 1

τ ·
1
k , where as before, f |S denotes the embedding f restricted to the subset S.

Assume the inequality is correct, then we have

1

τ
· 1

k
≤ (Energy2(f |S))2 ≤ max

(i,j)∈S
{εij} · Energy1(f |S) ≤ A

q
· Energy1(f),

implying Energy1(f) ≥ 1
τ ·

q
k ·

1
A . Therefore, by Claim 19 we obtain

`1-dist(f) ≥ 1 +REM1(f) ≥ 1 + Energy1(f) ≥ 1 +
1

τ
· q
k
· 1

A
,

as required. Next we prove the inequality itself.

Recall that n ≥ 18k. Therefore, from Claim 64 it follows that (Energy2(f))2 ≥ 2
4002 · 1

k = 2
τ ·

1
k .

The proof proceeds by showing that (Energy2(f |L))2 has small contribution to the total energy.
Specifically, in the next computations we show that for the chosen parameters, (Energy2(f |L)2 ≤
1
τ ·

1
k , which will finish the proof of the claim.

For all α ≥ 1, denote by Pα the fraction of the pairs in L that have distortion bigger than 1 + α · Aq .

By assumption, (`q-dist(f))q ≤
(

1 + c
q

)q
. Then by Markov’s inequality, we have

Pα ≤

(
1 + c

q

)q
(

1 + α · Aq
)q .

Therefore,

(Energy2(f |L))2 ≤ 2

(
A

q

)2

·
∫ ∞

1

αPα dα ≤ 2

(
A

q

)2
∫ ∞

1

(
1 + c

q

)q
(

1 + α · Aq
)q ·α dα ≤ 2ec·

(
A

q

)2

·

∫ ∞

1

α(
1 + α · Aq

)q dα.
We compute the integral by dividing the integration interval into two sub intervals, and we show that
for the chosen parameters, each is bounded by 1

2τk . We start with the first integral:∫ q
A

1

α(
1 + α · Aq

)q dα ≤
∫ q

A

1

α

e
αA
2

dα,

where the last inequality holds since for all 0 ≤ x ≤ 1, 1 +x ≥ ex/2. Substituting z = αA
2 we obtain

=

(
2

A

)2

·

∫ ∞

A
2

z

ez
=

(
2

A

)2

· Γ
(

2,
A

2

)
=

(
2

A

)2

·
(

(A/2 + 1) · e−A2
)
,

using the exact evaluation of Γ(2, A/2) Therefore, putting all together, for the first integral we obtain

2ec ·
(
A

q

)2

·

∫ q
A

1

α(
1 + α · Aq

)q dα ≤ 4ec

q2
· (A+ 2) · e−A2 .
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Substituting the value of A we obtain

4ec

q2
· A+ 2

e2c · τ2 ·
(
k
q2

)2 =
4

ec
· q

2

τk
· (A+ 2) · 1

τk
.

We should verify that for the chosen value of A

4

ec
· q

2

τk
· (A+ 2) ≤ 1,

Substituting the value of A, and using k ≥ q2, and out choice of τ , we have:

A+ 2 ≤ 4 ln

(
ecτk

q2

)
+ 2 ≤ ecτk

4q2
,

as required. Now, it remains to bound the second integral taken over the second interval:

2ec ·
(
A

q

)2

·

∫ ∞

q
A

α(
1 + α · Aq

)q dα = 2ec
∫ ∞

2

z − 1

zq
dz ≤ 2ec · 1

2(q−2) · (q − 2)
,

where the second step is obtain by substituting z = 1 + αA
q , and noting that we may assume q > 2.

Recalling that A ≥ 8, and that q ≥ 2c+ log(τk), we conclude

2ec · 1

2(q−2) · (q − 2)
≤ ec · 1

2
· 1

4ckτ
≤ 1

2τk
,

as required. This completes the proof of the claim.

Claim 76. Let k ≥ 1 be any integer, and let n ≥ 18k. Let f : En → `k2 be an embedding
such that for some

√
k ≥ q > 2, it holds that Energyq(f) ≤ c ·

√
q
k , or some c ≥ 1. Then,

Energy1(f) ≥ Ω
(

1
( q
q−2 c)

(q/(q−2)) · 1√
q
√
k

)
.

Proof. The proof closely follows the lines of the proof of Claim 75. Let τ = 4002, and A =

(2 q
q−2τc

q)
1
q−2 . We will show that Energy1(f) ≥ 1

τ ·
1
A ·

1√
k
√
q

. Denote by S ⊆
(
n
2

)
the set of

the pairs with εij ≤ A ·
√

q
k . The proof of the claim will follow from the following inequality:

(Energy2(f |S))2 ≥ 1
τ ·

1
k .

Assuming the inequality is correct, we obtain

1

τ
· 1

k
≤ (Energy2(f |S))2 ≤ max

(i,j)∈S
{εij} · Energy1(f |S) ≤ A ·

√
q

k
· Energy1(f),

which implies the claim. It remains to prove the inequality itself.

For any α ≥ 1, denote Pα the fraction of the pairs of L with εij ≥ α · A ·
√

q
k . Therefore, by

Markov’s inequality

Pα ≤
cq
(
q
k

)q/2
αq ·Aq

(
q
k

)q/2 =
cq

Aq
1

αq
.

Therefore, the contribution of the pairs of the set L to the total sum is bounded by

(Energy2(f |L))2 ≤ 2

(
A ·
√
q

k

)2

·
∫ ∞

1

αPα dα ≤ 2
cq

Aq
·A2· q

k
·
∫ ∞

1

1

αq−1
dα = 2

cq

Aq−2
· q

q − 2
·1
k

By our choice of A we have that cq

Aq−2 · q
q−2 ≤

1
2τ , completing the proof of the claim.
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I.1 Limit of simultaneous embeddings for large q

In the following theorem we show that any embedding that achieves `1-dist = O(1), cannot obtain
for large q ≥ k − 1, the best bounds that could be achieved by non-simultaneous embeddings
(essentially it must forfeit the square root gain). We achieve the following results as corollaries of
Claim 24(second argument in max) composed with Claim 72 (for non-expansive embeddings), and
Claim 74.

Theorem 77. Let En be an equilateral metric space, for n large enough. Let f : En → `k2 be an
embedding such that `1-dist(f) = O(1). Then the following simultaneous guarantees on `q-dist(f)

hold14:
k − 1 ≤ q ≤ k− q = k k < q ≤ log n

Ω
(

1√
k(k−q)1/q

)
Ω
(

(logn)1/k

√
k

)
Ω
(
n

1
k−

1
q

)
J Approximate optimal embedding of general metrics

We present here the tight relation of the values of Stressq and Stress∗q . We formulate this relation
in the following claim.

Claim 78. Let (X, dX) be any finite metric space, and (Y, dY ) be any scalable metric space. For a
given q ≥ 1 and a distribution Π over pairs of X , the following two statements hold.

1. For any f : X → Y there exists an embedding F : X → Y such that Stress∗(Π)
q (F ) ≤

2 · 21/qStress
(Π)
q (f).

2. For any g : X → Y there exists an embedding G : X → Y such that Stress(Π)
q (G) ≤

2 · 21/qStress∗(Π)
q (g).

Proof. We show the proof for the first item of the claim. The second item is obtained similarly.
Denote by H∗ : X → Y the trivial embedding for Stress∗(Π)

q . Recall that the trivial embedding is
just some embedding into Y scaled such that its Stress∗(Π)

q is at most 1. We have two cases.

If Stress(Π)
q (f) ≥ 1

2·21/q , then taking F := H∗ we obtain Stress∗(Π)
q (H) ≤ 1 ≤ 2 · 21/q ·

Stress
(Π)
q (f). Otherwise, if Stress(Π)

q (f) ≤ 1
2·21/q , taking F := f we obtain that we have to show

that

(
Stress(Π)

q (f)
)q
≥ 1

2q · 2
·
(
Stress∗(Π)

q (f)
)q
.

Recall that it holds that

(
Stress(Π)

q (f)
)q

=
(
Stress∗(Π)

q (f)
)q
·

∑
1≤i6=j≤n

Π(i, j)
(
d̂ij

)q
∑

1≤i 6=j≤n
Π(i, j)(dij)q

,

where dij = dX(i, j), and d̂ij = dY (f(i), f(f)), for all i 6= j ∈ X . Therefore, it is enough to show
that

∑
1≤i 6=j≤n

Π(i, j)
(
d̂ij

)q
∑

1≤i 6=j≤n
Π(i, j)(dij)q

≥ 1

2q · 2
.

14Where k− =
(

1− 1
logn+1

)
· k.
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Therefore, it holds that

2q


∑

1≤i6=j≤n
Π(i, j)

(
d̂ij

)q
∑

1≤i 6=j≤n
Π(i, j)(dij)q

+

∑
1≤i 6=j≤n

Π(i, j)
∣∣∣dij − d̂ij∣∣∣q∑

1≤i 6=j≤n
Π(i, j)(dij)q

 =

2q


∑

d̂ij≥dij
Π(i, j)

(
d̂ij

)q
∑

1≤i 6=j≤n
Π(i, j)(dij)q

+

∑
d̂ij<dij

Π(i, j)
(
d̂ij

)q
∑

1≤i 6=j≤n
Π(i, j)(dij)q

+

∑
1≤i 6=j≤n

Π(i, j)
∣∣∣dij − d̂ij∣∣∣q∑

1≤i 6=j≤n
Π(i, j)(dij)q

 ≥
∑

d̂ij≥dij
Π(i, j) (dij)

q

∑
1≤i6=j≤n

Π(i, j)(dij)q
+

∑
d̂ij<dij

Π(i, j) (dij)
q

∑
1≤i6=j≤n

Π(i, j)(dij)q
= 1.

From this inequality we obtain the required.

The following corollary immediately follows from the claim.
Corollary 8. Let (X, dX) be an n-point metric space and Π be any distribution. Then for any
q ≥ 2 there exists a polynomial time algorithm that computes an embedding F : X → `n2 such that
Stress∗(Π)

q (F ) ≤ 4 · 41/qOPT ∗, where OPT ∗ = inf
f :X→`n2

{Stress∗(Π)
q (f)}.

Proof. In Claim 78, take f : X → `n2 to be an embedding that brings Stress(Π)
q to its minimum, and

take g : X → Y to be an embedding that brings Stress∗(Π)
q to its minimum. By Theorem 8 f can be

computed in polynomial time. Therefore, F would be either equal to H∗ or to f itself, and this can
be decided in polynomial time. Applying Claim 78 to this choice results the corollary.

Remark 79. We note that for the special case of q = 2 (and for any distribution Π over the pairs),
it can be easily shown that OPT = OPT ∗, and furthermore, scaling the embedding that brings
Stress

(Π)
2 to the minimum by factor

∑
Π(i,j)(dij)

2∑
Π(i,j)(d̂ij)2

, results in the embedding that brings Stress∗(Π)
2

to the minimum. Note that this observation implies approximation factor 1 for the above corollary.
Theorem 80. Let (X, dX) be an n-point metric space and Π be any distribution. Then for any q ≥ 2

and for Obj(Π)
q 6= Stress∗

(Π)
q ,Φ

(Π)
σ,q,2 there exists a polynomial time algorithm that computes an

embedding f : X → `n2 such that Obj(Π)
q (f) approximates OPT (n) to within any level of precision.

For Obj(Π)
q = Stress∗(Π)

q there exists a polynomial time algorithm that computes an embedding
f : X → `n2 with Stress∗(Π)

q (f) = O
(
OPT (n)

)
.

Proof. For X = {xi}n−1
i=0 denote dij = dX(xi, xj). For all 0 ≤ i < j ≤ n − 1 let variable zij

represent the square of the distance between the images of the pair (xi, xj). Let gij = 1
2 (z0i +

z0j − zij), then √zij describe Euclidean distances iff the matrix G[i, j] = (gij) is PSD. For all the
objective measures, the optimization program is:

min
∑

0≤i<j<n

Π(i, j) (distObj(i, j))
q

; s.t. gij = (1/2)(z0i+z0j−zij), G[i, j] = (gij) � 0, zij ≥ 0; ∀i 6= j.

Where for Obj = `q-dist , (distObj(i, j))
q = (max{ zij

(dij)2 ,
(dij)

2

zij
})q/2; for

Obj = Energy, (distObj(i, j))
q = ((

√
zij/dij − 1)

2
)q/2; for Obj = Stress,

(distObj(i, j))
q = ((

√
zij − dij)2

)
q/2

; for Obj = REM , (distObj(i, j))
q =

max
{

((max{ dij√
zij
− 1, 0})2)q/2, ((

√
zij
d − 1)2)q/2

}
. It is easily checked that all are convex

functions, for q ≥ 2.
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In the next claim we show that optimizing for σ-distortion can be reformulated in terms of optimizing
for Energy measure.

Claim 81. Let (X, dX) be an n-point metric, and Π be a distribution over
(
X
2

)
. For a given

q ≥ 2, there is a polynomial time algorithm that finds an embedding f : X → `n2 , such that Φ
(Π)
σ,q,2

approximates OPTn, with any level of precision.

Proof. Similarly to the proof of Theorem 80, the embedding f is given by the solution to the following
optimization problem:

minimize
∑

1≤i 6=j≤n Π(i, j)

∣∣∣∣∣ √
zij/dij√

(n2)
−1∑

1≤i6=j≤n zij/d
2
ij

− 1

∣∣∣∣∣
q

,

subject to zij ≥ 0, gij = (1/2)(z0i + z0j − zij), and G[i, j] = (gij) � 0. Since σ-distortion is
scalable, this minimization problem is equivalent to the following:

minimize
∑

1≤i 6=j≤n Π(i, j)

∣∣∣∣∣ √
zij/dij√

(n2)
−1∑

1≤i6=j≤n zij/d
2
ij

− 1

∣∣∣∣∣
q

,

subject to
(
n
2

)−1 ·
∑

1≤i 6=j≤n zij/d
2
ij = 1 and subject to all the rest previous constraints. Namely,

the optimization problem we have to solve is minimize
∑

1≤i 6=j≤n Π(i, j)
∣∣√zij/dij − 1

∣∣q, s.t.

zij ≥ 0, gij = (1/2)(z0i + z0j − zij), G[i, j] = (gij) � 0, and
(
n
2

)−1 ·
∑

1≤i6=j≤n zij/d
2
ij = 1.

Note that the objective function is the objective of Energyq measure, which we showed to be convex.
In addition, all the constraints are convex. Thus, the minimization problem is a convex minimization,
which can be solved in polynomial time with any level of precision. This completes the proof.

Theorem 82. Let (X, dX) be a finite metric space, Π a distribution over
(
X
2

)
, k ≥ 3 and 2 ≤ q ≤

k − 1. There exists a randomized polynomial time algorithm that finds an embedding F : X → `k2 ,
such that with high probability each one of the following holds:15

1. `q-dist
(Π)(F ) =

(
1 +O

(
1√
k

+ q
k−q

))
OPT.

2. Obj(Π)
q (F ) = O (OPT ) + O

(√
q
k

)
, for Obj

(Π)
q ∈{

REM (Π)
q , Energy

(Π)
q ,Φ

(Π)
σ,q,2, Stress

(Π)
q , Stress∗(Π)

q

}
.

Proof. The embedding F : X → `k2 is defined to be the composition of the embedding OPT (n) :
X → `n2 , and the JL transform g : `n2 → `k2 . In Appendix D.2 we provide results on the composition
of embeddings for each of the objective functions Obj(Π)

q , except Φ
(Π)
σ,q,2, which we treat in a

sequel. In particular, we bound E
[
Obj

(Π)
q (F )

]
in terms of OPT (n) and

(
E
[
(Obj

(Π)
q (g))q

])1/q

.

For the first item we use Claim 29 to obtain E
[
`q-dist (Π)(F )

]
=
(

1 +O
(

1√
k

+ q
k−q

))
OPT .

To get the constant probability of success we apply Markov’s inequity on the random variable
`q-dist (Π)(F )−OPT . The second item follows by composition claims: Claims 30, 31, 32, 33 and
by bounds that are developed in the proof of Theorem 2. To get the constant probability of success
we apply Markov’s inequality. A slightly more involved argument yields the high probability result.

For the σ-distortion measure, let f : X → `n2 be the embedding of Claim 81. Namely, Φ
(Π)
σ,q,2(f)

has optimal value for Φ
(Π)
σ,q,2 objective, and also Energy(Π)(f) has optimal value for Energy(Π)

q

objective, under constraint `2-expans(Π)(f) = 1.

Let g : `n2 → `k2 be a JL transform into k dimensions, and let F : X → `k2 be the composition g ◦ f .
Then, by the composition property of Energyq (Claim 31) and by the analysis of the JL transform

15We note that, essentially, our technique also provides approximation guarantees for values of q > k − 1,
yet they are not interesting for Energyq , Stressq and Stress∗, since these measures are less than 1 (as the
approximation we provide is additive).
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for the additive measures:

E
[
Energy(Π)

q (F )
]

= O
(
Energy(Π)

q (f)
)

+O

(√
q

k

)
= O (OPT ) +O

(√
q

k

)
,

where OPT is the value of the optimal (for Φ
(Π)
σ,q,2) embedding into k dimensions. In addition, by the

composition properties of the `q-expansion (Claim 29) and by bounds of Claim 44:

E
[
(`2-expans(F ))2

]
≤ (`2-expans(f))2 ·

(
1 +

2

k

)
.

In addition,

E

[
1

(`2-expans(g ◦ f))2

]
= E

[
1∑

1≤i6=j≤n
(
n
2

)−1 · (expansf (i, j))2 · (expansg(i, j))2

]

≤ E

 ∑
1≤i 6=j≤n

(
n

2

)−1

· (expansf (i, j))2 · 1

(expansg(i, j))
2

 ,
where the last inequity holds by Jensen’s inequality, since

∑
1≤i6=j≤n

(
n
2

)−1 · (expansf (i, j))2 = 1

(recall that f is such that `2-expans(f) = 1). Then, since 1/(expansg(i, j)) = contractg(i, j):

E

[
1

(`2-expans(g ◦ f))2

]
≤ E

 ∑
1≤i 6=j≤n

(
n

2

)−1

· (expansf (i, j))2 · (contractg(i, j))2


=

∑
1≤i 6=j≤n

(
n

2

)−1

· (expansf (i, j))2 · E
[
(contractg(i, j))

2
]
≤ 1 +

2

k − 1
,

where the last inequality is due to Claim 43.

Thus, by Markov’s inequality and union bound we conclude that with constant probability there exists
an embedding F : X → `k2 , such that 1

1+16/k ≤ `2-expans(F ) ≤ 1 + 16/k, and Eneregy(Π)
q (F ) =

O (OPT ) +O
(√

q
k

)
. Therefore, by Claim 22, we conclude that with constant probability there is an

embedding F : X → `k2 such that Φσ,q,2(F ) = O (OPT ) +O
(√

q
k

)
, which completes the proof.

K On moments of embedding general metrics

In this section we consider a general question of embedding a finite metric space into low dimensional
normed spaces.

In (3) it was shown that every finite metric embeds in Euclidean space with `q-distortion O(q) in
O(log n) dimension. One immediate consequence of our bounds on the `q-distortion is a substantial
improvement of the dimension in this theorem to O(q). An immediate application are linear size-
constant query time distance oracles with average case guarantees.

Theorem 83 (Theorem 9, (3)). Let (X, dX) be an n point metric space, and let 1 ≤ p ≤ ∞. There
exists a non-contractive embedding f : X → `dp, with d = Op(log n), and such that for every
1 ≤ q ≤ ∞ it holds that `q-dist(f) = O (min{q, log n}/p).

Assuming q = O(log n), we obtain the following corollary result:

Corollary 9 (General metric space into k-dimensional Euclidean space). Given any n point metric
space (X, dX), integer k ≥ 1, any q ≥ 1, there exists an embedding F : X → `k2 with the following
guarantees16 on `q-dist(F ):

16The constant c̃ is defined in Remark 46.
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1 ≤ q < c̃k c̃k ≤ q ≤ k− q = k k < q

O
(√
q
)

O

(
√
q
(

k
k−q

)1/2q
)

O
(√

k(
√

log n)
1/k
)

O
(
q3/4 n(1/k−1/q)

k1/4(q−k)1/2q

)
Proof. Denote the embedding into Euclidean space of Theorem 83 by fABN , and the JL embedding
into k dimensions of Theorem 45 by fJL. Embed X as follows: first apply fABN to Euclidean space,
and then apply fJL to reduce the dimension. To analyze the `q-dist(fJL ◦ fABN ) we invoke the
second part of Claim 27, with the following parameters: f = fABN , g = fJL, s1 = t1 = 2, and
s2 = ∞, t2 = 1. Since fABN is non-contractive it holds that `∞-contr(fABN ) ≤ 1, and for any
q ≥ 1 it holds that `2q-expans(fABN ) = `2q-dist(fABN ) = O(q). The bounds on `q-expansion and
`q-contraction of the JL transform (for a given value of q) are estimated in Lemma 43 (`q-contraction
for 1 ≤ q < k), in Lemma 53 (`q-contraction for q ≥ k), and in Lemma 44 (`q-expansion for all
k, q ≥ 1).

Yet stronger result follows by composition of fABN with the embedding of Theorem G.2 (note that
both embeddings provide guarantees for all q simultaneously), and by the first part of Claim 27.

Corollary 10. Given any n-point metric (X, d) and any integer k ≥ 1 there exists an embedding
F : X → `k2 such that for all q ≥ 1 simultaneously the following bounds on `q-dist(f) hold:

1 ≤ q < c̃k c̃k ≤ q ≤ k− q = k k < q

O (q) O

(
q +

(
k
k−q

)1/q
)

O
(
k + (log n)

1/k
)

O
(
q
√
qk + n(2/k−2/q)

(q−k)1/q

)
L Application to hyper-sketching

We propose a generalization of the standard sketching model (45; 43) for pairs, and consider sketches
that provide a good approximation for the weighted sum of moments of distances of a set of points
S ⊆ X .

Definition 10 (Hyper-Sketching). Let (X, d) be a finite metric space, and let ` ∈ N, α ≥ 1
and 0 < δ < 1. We say that X admits an (`, α, δ)-hyper-sketching if there exists a distribution
over maps σ, mapping points of X into words of length `, and an algorithm H such that given
a query (S,w, q), where S ⊆ X , w is a nonnegative weight function over pairs of S and q ≥ 1,
computes a function H(σ(S)), that with probability at least 1 − δ returns an α approximation to(∑

(x,y)∈(S2)
w(x, y)(d(x, y))q

)1/q

. The query time is the running time ofH.

We may focus on δ = 2/3 and omit it from the notation. The results extend by the standard median
estimate method at a cost of O(log(1/δ)) factor in all parameters. The query time17 depends on
mw = |support(w)|, which is bounded by

(|S|
2

)
. In what follows we focus on Euclidean subsets,

whereas the case of the general metric sketching analyzed in the next subsection.

Theorem 84. Let X ⊂ `d2 be any n-point set, and let 0 < ε < 1. Then X admits
(
1/ε2, α(ε, q)

)
-

hyper-sketching, where α(ε, q) = 1 +O
(
ε+ qε2

)
if q < 1/ε2, and α(ε, q) = O

(
ε
√
q
)

if q ≥ 1/ε2.

The query time is O
(
mw/ε

2
)

= O
(

(s/ε)
2
)

, and the preprocessing time is O
(
nd
ε2

)
.

Proof. In the preprocessing stage we apply the JL map f : X → `
(1/ε2)
2 . Given any S ⊆ X and

nonnegative weight function w over pairs of S, let W =
∑

(u,v)∈(S2)
w(u, v). We can extend w

into a distribution Π over all pairs of X by defining Π(x, y) = w(x, y)/W for all x 6= y ∈ S,

and Π(x, y) = 0, for all the rest pairs. It therefore holds that
(∑

(x,y)∈(S2)
w(x, y)‖x− y‖q2

) 1
q

=

W ·
(∑

(x,y)∈(S2)
Π(x, y)‖x− y‖q2

) 1
q

= W ·
(∑

(x,y)∈(X2 ) Π(x, y)‖x− y‖q2
) 1
q

. To answer the query,

17It should be noted that sketching scheme which answers pairwise distances does not necessarily extend to
hyper-sketching, since answering correctly all the

(|S|
2

)
distances in a set may fail with probability ≈ δ

(|S|
2

)
.
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the algorithm computes the quantity: W ·
(∑

(x,y)∈(S2)
Π(x, y)(||f(x)− f(y)||q2

) 1
q

. The theorem
follows immediately from our bounds on the distortion of the lq-norm in Theorem 57.

Improved Query Time for Sum of Distances. Focusing on the basic case of q = 1 and unit weight
function w, we improve the query time to linear in |S| while keeping asymptotically the same bound
on the distortion. We use ideas of (26) in a non-black manner:

Theorem 85. Let X ⊂ `d2 be any n-point set, and let 0 < ε < 1. Then X admits (O
(
1/ε2

)
, 1 + ε)-

hyper-sketching that answers queries for q = 1 and uniform weight function w, with query time
O(s+ 1/ε4), and with the preprocessing time O

(
nd
ε2

)
.

Proof. We shall present here a simple construction that provides query time O
(
s+

√
s
ε4

)
= O(s+

1/ε8). A more involved argument allows us to improve the query time (details will appear in the full
version of the paper).

In the preprocessing phase we apply two JL embeddings of dimension k, f : X → `k2 where
k = O

(
1/ε2

)
, and g : `k2 → `82. For xi 6= xj ∈ X denote by fij = ‖f(xi) − f(xj)‖2, and

gij = ‖g(xi)−g(xj)‖2. Given a query set S ⊆ X of size |S| = s, letD =
∑

(xi,xj)∈(S2)
‖xi − xj‖2.

We argue that with probability at least 3/4 all of the following events hold

1.
∑

(xi,xj)∈(S2)
fij ∈ (1± ε)D ,

2.
∑

(xi,xj)∈(S2)
gij = Θ (D) ,

3. There exists a positive constant c > 0 such that for all (xi, xj) ∈
(
S
2

)
it holds that fijgij ≤

c · s1/4.

It is enough to show that each of these events holds with probability at least 11/12. The first two
items hold by Theorem 57. The third item holds by Lemma 52.

From now on we condition on the event that all these three events hold. To answer the query, apply
the first phase of (26) on g(f(S)) with the distances given by the gij , to obtain the probabilities
p̃ij . By the above observations, there exists a positive constant c̃ such that p̃ij ≥ gij

c̃D . This involves
O(s+ 1/ε2) distance computations, where computation takes a constant time (it is done in R8). Next,
sample the set U of samples of pairs of f(S), |U | = u, according to the probabilities p̃ij (we will
choose u later), in time O(s+ u), and compute the estimator D̂ from the samples. It holds that

E
[
D̂
]

=
1

u
· E

 ∑
(xi,xj)∈U

fij/p̃ij

 =
∑

(xi,xj)∈(S2)

fij .

DenoteDf =
∑

(xi,xj)∈(S2)
fij , and note that for all i 6= j it holds that fij/p̃ij ≤ fij

gij
· c̃D ≤ c′s1/4D,

for some positive c′. Therefore, by Hoeffding’s inequality it holds that

Pr
[
|D̂ −Df | ≥ εDf

]
≤ 2e

−
2uε2(Df )2

(c′)2
√
sD2 .

Since Df/D ≥ C, for some C > 0, it is enough to choose u = Ĉ
√
u
ε2 , for constant Ĉ > 0 big

enough, to have the desired approximation with constant probability. Therefore, the time required to
compute D̂ on the set of samples U is O

(√
s
ε4

)
= O

(
s+ 1

ε8

)
(using the inequality a · b ≤ a2 + b2

for any a, b ∈ R), which finishes the proof.
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L.1 Hyper Sketching for General Metrics

Combining our JL moment analysis results with some previous results on embeddings of arbitrary
metric spaces into Euclidean space we can obtain the following result. For a finite metric space X
and a set S let λ(S) = minx∈X,r>0{|B(x, 3r)||S ⊆ B(x, r)}. Applying Theorem 57 together with
the scaling local embedding Theorem 3 of (2) we get:
Corollary 11. Let X be an n-point metric space. Then for every k ≥ 1 and q ≥ 1, X admits(
k, (1 +

√
q
k ) · Õ(log(λ(S)))

)
-hyper-sketching.18 The query time is O (mwk) = O

(
s2k
)
, with

O(n2) preprocessing time.

Also in the special case of q = 1 and uniform weights we can compose the scaling local embedding
of (2) with Theorem 85 to obtain the improved query time:
Corollary 12. Let X be an n-point metric space. Then for every k ≥ 1 and q ≥ 1, X admits(
O(1), Õ(log(λ(S)))

)
-hyper-sketching.19 The query time is O (s), with O(n2) preprocessing time.

18In fact, the worst case distortion may be at most O(logn).
19In fact, the worst case distortion may be at most O(logn).
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