
A Proof of Theorem 2

Proof. Let bS =


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M (i)
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�Ik
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n+k. Observe that kM (i)x�b(i)k2+�kxk2 = kcM (i)x�bb(i)k2 and kS(M (i)y�b(i))k2+�kyk2 =

kbS(cM (i)y �bb(i))k2.
It suffices to prove that, for 1  i  d,

E
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kcM (i)y(i) �bb(i)k2 � kcM (i)x(i) �bb(i)k2

i
 O(") · kcM (i)x(i) �bb(i)k2

because we can sum over all i and apply Markov’s inequality to complete the argument.

Fix some i and set M = M (i), b = b(i), cM = cM (i),bb = bb(i), x = x(i), y = y(i). Let bUb be an
orthogonal matrix whose columns form an orthonormal basis for the columns of [cM bb]. Now define
� := kbUT

b
bST bS bUb � Ik+1k. We let U1 form its first n rows and U2 form the rest.

Since s < k, we can have an unbounded condition number if we just look at cbS(cM) so we need
to have a more subtle analysis than in [RSW16]. Instead of simply conditioning on �, let us define
M = Mh + Mt, where Mh is the component of M corresponding to the span of singular vectors
with values that are �2

i
� �. Then, Mt is the orthogonal component to Mh and is a subspace of

the span of singular vectors corresponding to values that are �2
i
< �. Since 2 � 1 + �

�2
i

, for �i

corresponding to Mh, then the rank of Mh is bounded by rh = O(sd�(M)). Since S has at least
⌦(sd�(M)/") rows, with probability 1, the condition number ch = cS([Mh, b]) will be finite with
probability 1 (note that b can be assumed to be orthogonal to the image of M ).

Let ↵ = ch(1 + �) be a product of condition numbers. If ↵ is close to 1, then we are in a good
regime so we will condition on ↵.It follows that
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kcMy �bbk2 � kcMx�bbk2

i
= Pr [↵ > 1.1] ·E

S

h
kcMy �bbk2 � kcMx�bbk2

��↵ > 1.1
i

+Pr [↵  1.1] ·E
S

h
kcMy �bbk2 � kcMx�bbk2

��↵  1.1
i

We will now bound the two terms in the sum and our final result follows by combining Claim A.1
and Claim A.4.

Claim A.1.

Pr [↵ > 1.1]E
S

h
kcMy �bbk2 � kcMx�bbk2

��↵ > 1.1
i
 O(") · kcMx�bbk2

Proof. To bound our expression, note that

kcMy �bbk2  1

bS([
cM bb])

kbS(cMy �bb)k2  1

bS([
cM bb])

kbS(cMx�bb)k2 
KbS([

cM bb])
bS([

cM bb])
kcMx�bbk2

By Claim A.2, kcMy �bbk2  10↵2kcMx�bbk2. By Claim A.3,

E
S

h
kcMy �bbk2 � kcMx�bbk2

��↵ > 1.1
i
 10kcMx�bbk2 E

S

⇥
↵2

��↵ > 1.1
⇤
 O(")kcMx�bbk2

Claim A.2. KbS([
cM bb])  ↵ and

1
 bS([cM bb])

 10↵

Proof. First, we bound KbS([
cM bb]). By definition of �, kS(Mx� b)k2 +�kxk2  (1+�)(kMx�

bk2 + �kxk2) so KbS([
cM bb])  1 + �  ↵.

More importantly, we want to bound 1
 bS([cM bb])

. First, we claim that kSMtxk 
p

�(1 + 2�)kxk.
We may assume x lies entirely in the column space of Mt and by definition of Mt, we know that
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kMxk2 = kMtxk2  �kxk2. Now, by the definition of �, kSMtxk2 = kSMxk2 which is at most
(1 + �)kMxk2 + ��kxk2  (1 + 2�)�kxk2.

We now consider two cases: one where kS(Mhx� b)k is at least 2
p
�(1 + 2�)kxk and one where

kS(Mhx� b)k < 2
p
�(1 + 2�)kxk.

For all x such that kS(Mhx � b)k � 2
p

�(1 + 2�)kxk, we rewrite kS(Mx � b)k2 = kS(Mhx �
b) + SMtxk2. Then, by Cauchy-Schwarz,

kS(Mx� b)k2 � kS(Mhx� b)k2 � 2|hS(Mhx� b), SMtxi|
� kS(Mhx� b)k2 � 2kS(Mhx� b)kkSMtxk = kS(Mhx� b)k(kS(Mhx� b)k � kSMtxk)
� 0.5kS(Mhx� b)k2 � (0.5/ch)kMhx� bk2,

where the fourth line follows since kS(Mhx � b)k � 2
p
�(1 + 2�)kxk � 2kSMtxk and the fifth

line follows from definition of ch.

Finally, this implies

kS(Mx� b)k2 + �kxk2 � (0.5/ch)(kMhx� bk2 + 2�kxk2)
� (0.5/ch)(kMhx� bk2 + kMtxk2 + �kxk2) � (1/2ch)(kMx� bk2 + �kxk2)

where the first line follows since ch > 1, the second line follows from kMtxk2 < �kxk2 and the
last line from orthogonality.

Now consider all x such that kS(Mhx� b)k is less than 2
p
�KS(M)kxk. This means kMhx� bk

is less than 2
p
ch�KS(M)kxk. Then,

kMx� bk2 + �kxk2  4ch(1 + 2�)�kxk2 + �kxk2

 1

4ch(1 + 2�) + 1
· �kxk2  1

5ch(1 + 2�)
· (kS(Mx� b)k2 + �kxk2)

Together, we conclude that 1
 bS([cM bb])

 max(5ch(1 + 2�), 2ch)  10↵, where ↵ = ch(1 + �).

Claim A.3.

Pr [↵ > 1.1]E
S

h
↵2

���↵ > 1.1
i
= O(")

Proof. Note that for t > 1, we have

Pr (↵ > t)  Pr
⇣
1 + � >

p
t
⌘
+Pr

⇣
1 + � 

p
t and ch >

p
t
⌘

 Pr
⇣
1 + � >

p
t
⌘
+Pr

⇣
ch >

p
t
⌘

By Lemma 12 of [ACW17], note that kU1k2F is at most sd�(M) + 1 and kU1k < 1. Now, we can
express � = kbUT

b
bST bS bUb � Ik+1k which is equal to kUT

1 STSU1 � UT
1 U1k. By Lemma 2.1 with

A = B = U1 and � =
p
t

kU1k2 , then for any t > 1.1, we have

Pr[1 + � >
p
t] < "t�⌦(1)

since ` is larger than ⌦( 1
�2 (kU1k2F /kU1k2 + log(t/"))) = ⌦(sd�(M) + log(1/")).

Then, by [CD08], since Mh only has less than O(sd�(M)) columns, then since ` > sd�(M)/", we
have for t > 1.1, Pr[cS(M) >

p
t] = ⇥(t�1/") < "t�⌦(1). Thus, we conclude that

Pr [↵ > 1.1]E
S

h
↵2

���↵ > 1.1
i
 O(1)Pr[↵ > 1.1] +

Z 1

1.1
tPr[↵ > t] dt = O(")

Claim A.4. ES

h
kcMy �bbk2 � kcMx�bbk2

��↵  1.1
i
 O(") · kcMx�bbk2
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Proof. The normal equations for x tell us that cMT (cMx�bb) is 0. Thus, by the Pythagorean Theorem,

kcMy �bbk2 � kcMx�bbk2 = kcM(y � x)k2 = kỹ � x̃k2

where bUỹ = cMy and bUx̃ = cMx.

We have kỹ� x̃k  k(bUT bST bS bU�Ik)(ỹ� x̃)k+kbUT bST bS bU(ỹ� x̃)k, so since we are conditioning
on ↵  1.1, we know that �  0.1, which implies that kỹ � x̃k  O(1)kbUT bST bS bU(ỹ � x̃)k.
Since Pr[↵  1.1] � 1�O("), then

E
S

h
kcMy �bbk2 � kcMx�bbk2

��↵  1.1
i
 O(1) ·E

S

h
kbUT bST bS bU(ỹ � x̃)k2

i
.

and the normal equations for ỹ tell us that bUT bST bS(bUỹ �bb) is 0. Thus,

E
S

h
kbUT bST bS bU(ỹ � x̃)k2

i
= E

S

h
kbUT bST bS(bUx̃�bb)k2

i
.

Let t be a natural number. Note that S has ⌦( 1
"
(s+ log(1/")) = ⌦( 1

t"
(s+ log((1/")t)) rows. Note

that bS only sketches U1 but leaves U2 un-sketched. By Lemma 2.1 with A = U1, B = U1x̃ � b,
� =

p
t"/kU1k we have

Pr
h
kbUT bST bS(bUx̃�bb)k >

p
t"kbUx̃�bbk

i
< O("t) (2)

Let Et denote the event that kbUT bST bS(bUx̃�bb)k is between
p
(t� 1)"kcMx�bbk and

p
t"kcMx�bb.

By inequality (2) we have

E
S

h
kbUT bST bS(bUx̃�bb)k2

i
 kcMx�bbk2

1X

t=1

t" ·Pr [Etk]

 " · kcMx�bbk2
1X

t=1

O("t) · t  O(") · kcMx�bbk2

and we are done.

B Proof of Theorem 4

Proof. Observe that our algorithm in Theorem 3,

Ṽ = argmin
V 2 k⇥n

dX

j=1

kQ(j)V;,j � S00DW;,jA;,jk2 + �kV;,jk2

where Q(j) = S00DW;,jU which equals R(j)U which is a O((s + log(1/"))/") by k matrix and
R(j) = S00DW;,j . Note that R(j) can be written as a linear combination of r matrices with rank at
most O((s+ log(1/"))/"). Therefore, by letting P be the projection matrix on the span of the total

O((s+ log(1/"))r/")

right singular vectors of these r matrices, we see that Ṽ equals

argmin
V 2 k⇥n

dX

j=1

kR(j)PUV;,j � S00DW;,jA;,jk2 + �kV;,jk2

Since this holds for any U , we see that
kW � (PU⇤Ṽ �A)k2

F
+ �kPU⇤k2

F
+ �kṼ k2

F

 kW � (U⇤Ṽ �A)k2
F
+ �kU⇤k2

F
+ �kṼ k2

F

Since PU⇤Ṽ has rank at most the rank of P , we conclude by noting that by the guarantees of
Theorem 3,

kW � (U⇤Ṽ �A)k2
F
+ �kU⇤k2

F
+ �kṼ k2

F
 (1 + ")OPT(k)
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C Proof of Theorem 6

Proof. Since we know W = Y Z, where Y 2 Rn⇥r
0

and Z 2 r
0⇥n are non-negative, then we

claim that we have a rounding procedure to create W 0 with only (log n/")r
0

distinct columns and
rows that produces an "-close solution. The procedure is as expected: round all values in Y, Z to the
nearest power of (1+") and call W 0 = Y 0Z 0 our new matrix. Note that there are at most (log n/")r

0

distinct rows, since each row in A takes on only (log n/")r
0

possible values. Symmetrically, the
number of columns is bounded by the same value. Now, we claim that:

Claim C.1. (1� ")2W  W 0  (1 + ")2W

Proof. It suffices to show that the intermediary matrix cW = Y 0Z satisfies this bound. Consider each
row of cW , so WLOG, let cW1 be the first row of cW which can be expressed as cW1 =

P
r
0

i=1(Y
0)1iZi,

where Zi is the i-th row of Z. Note that W1 =
P

r
0

i=1 Y1iZi. Finally, since (Y 0)1i 2 (1�", 1+")Y1i

by our rounding procedure and all values in Y1i, Zi are non-negative, we deduce that (1� ")cW1 
W1  (1 + ")cW1.

Since we only have (log n/")r
0

distinct columns and rows, when we call the polynomial solver, the
degree of our system is at most (log n/")r

0
and our bound follows from polynomial system solver

guarantees.

D Proof of Theorem 8

Proof. Fix some i. By Theorem 7, we may express a k-order approximation of Ũi,; as

Ũk

i,; = Ai,;DWi,;S
0(P (i))T pk(P

(i)(P (i))T + �Ik)

where pk is a degree O(k) polynomial that approximate the inverse. Furthermore, we claim �Ik �
P (i)(P (i))T + �Ik � log(n)(1 + �/�)Ik, where P (i) = V ⇤Dwi,;S, with high probability.

By the same arguments as in the proof of Theorem 2 in Claim A.3, let MT = V ⇤Dwi,; and cM
defined analogously, along with bU, bS. Now define � := kbUT bST bS bU � Ikk. Again, let U1 form its
first n rows and U2 form the rest. Note that kU1k2F  sd�(M) and kU1k < 1. By Lemma 2.1 with
A = B = U1 and � = log(n)/kU1k2, then we have

Pr[1 + � > log(n)] < n�⌦(1)

since ` > ⌦( 1
�2 (kU1k2F /kU1k2 + log(n))) = ⌦(sd�(M)) = ⌦(s).

This implies that with high probability

kSMxk2 + �kxk2  log(n)(kMxk2 + �kxk2).

Specifically, we have �1(P (i))2  log(n)�1(V ⇤Dwi,;)
2 + � log(n)  log(n)�2 + � log(n).

Therefore, by the guarantees of Theorem 7, we have

Ũk

i,;P
(i) �Ai,;DWi,;S

0k2 + �kŨk

i,;k2  kŨi,;P
(i) �Ai,;DWi,;S

0k2 + �kŨi,;k2 + ⌧/n

holds if k > ⌦((�2/�) log(�(�2 + �)/�n/⌧)).

Summing up for all i and applying a union bound over failure probabilities, we see that with constant
probability, we have

nX

i=1

kŨk

i,;P
(i) �Ai,;DWi,;S

0k2 + �kŨk

i,;k2  (1 + ")OPT + ⌧.

Finally, since the degree of the polynomial system using Ũk is simply O(k), our theorem follows.
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E Proof of Theorem 9

Proof. For all i, we want to show there exists some matrix B such that ⌘(P (i)(P (i))T + �Ik) �
B � P (i)(P (i))T + �Ik with constant probability. Then, we may simply guess B�1 with only an
additional O((s + log(1/"))2) variables and apply Theorem 7, express a k-order approximation of
Ũi,; as

Ũk

i,; = Ai,;DWi,;S
0(P (i))T pk(P

(i)(P (i))T + �Ik, B
�1)

where pk is a degree O(k) polynomial that approximate the inverse and apply the same analysis as
Theorem 8 to see that k = O(⌘�1 log(cB/⌧)) suffices.

In fact, we will explicitly construct B. Let D 2 n⇥n be the diagonal matrix with diagonal entries
lW . Let P = V ⇤DS = RS, where R = V ⇤Dl. Also, we define P (i) = V ⇤Dwi,;S = R(i)S. Then,
we see that by our bounds on W ,

lW
uW

R(i)(R(i))T � RRT � R(i)(R(i))T

By using similar arguments for condition number bounds as in Claim A.3 in Theorem 2, we see that

lW
uW log(n)

R(i)SST (R(i))T � RSSTRT � log(n)R(i)SST (R(i))T

with high probability. So, we set B = (1/ log(n))RSSTR and that implies that ⌘ =
1/ log(n)2(uW /lW ). Then, using Theorem 7, we conclude with the same analysis as in Theo-
rem 8.

F A Note on the Experiments

It may surprise the reader to see that the objective values when using sketching slightly outperform
the objective values without using sketching and that the objective value improves as the sketching
dimension decreases. In theory, this should not happen because in low rank approximation problems,
it never hurts the objective value to increase the number of columns of U and number of rows of V
since one can simply add 0’s.

This phenomenon arises due to the use of the alternating minimization heuristic. Although an ideal
low rank approximation algorithm would recognize that if U and V have more columns / rows,
then one only needs to add 0’s, we found in our experiments that alternating minimization tended
to add mass to those extra columns / rows. This extra mass resulted in a higher contribution from
the regularization terms. Thus, by sketching onto fewer dimensions, the alternating minimization
heuristic was improved because it couldn’t add mass in the form of extraneous columns for U or
rows for V .
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