
Computing Linear Restrictions of Neural Networks: Supplemental

A Specification of Evaluation Hardware

Although we do not claim particular performance results, we do point out that all EXACTLINE uses
in our experiments took only a matter of seconds on commodity hardware (although in some cases
the experiments themselves took a few minutes, particularly when computing gradients for Section
4).

For reproducibility, all experimental data reported was run on Amazon EC2 c5.metal instances, using
BenchExec [44] to limit to 16 CPU cores and 16 GB of memory. We have also run the results on
commodity hardware, namely an Intel Core i7-7820X CPU at 3.6GHz with 32GB of memory (both
resources shared with others simultaneously), for which the “matter of seconds” characterization
above holds as well.

All experiments were only run on CPU, although we believe computing EXACTLINE on GPUs is an
important direction for future research on significantly larger networks.

B Uniqueness of EXACTLINE

The smallest tuple satisfying the requirements on P
(
f �QR

)
is unique (when it exists) for any given f

and QR, and any tuple satisfying P
(
f �QR

)
can be converted to this minimal tuple by removing any

endpoint Pi which lies on Pi−1Pi+1. In the proceeding text we will discuss methods for computing
some tuple satisfying P

(
f �QR

)
; if the reader desires, they can use the procedure mentioned in

the previous sentence to reduce this to the unique smallest such tuple. However, we note that
the algorithms below usually produce the minimal tuple on real-world networks even without any
reduction procedure due to the high dimensionality of the functions involved.

C Runtime of EXACTLINE Algorithms

We note that the algorithm corresponding to Theorem 1 runs on a single line segment in constant
time producing a single resulting line segment. The algorithm corresponding to Equation 3 runs on
a single line segment in O(d) time, producing at most O(d) new segments. If w is the number of
windows and s is the size of each window, the algorithms for MaxPool and ReLU + MaxPool run
in time O(ws2) and produce O(ws) new line segments. Thus, using the algorithm corresponding
to Theorem 3, over arbitrarily many affine layers, l ReLU layers each with d units, and m MaxPool
or MaxPool + ReLU layers with w windows each of size s, then at most O((d+ ws)l+m) segments
may be produced. If only l ReLU and arbitrarily-many affine layers are used, at most O(dl) segments
may be produced.

D EXACTLINE for Affine Layers

Theorem 1. For any affine function A : X → Y and line segment QR ⊂ X , the following is a
suitable linear partitioning (Definition 1): P

(
A�QR

)
= (Q,R).

Proof. By the definition of P
(
A�QR

)
it suffices to show that {QR} partitions QR and produce an

affine map A′ such that A(x) = A′(x) for every x ∈ QR.

The first fact follows directly, as QR = QR =⇒ QR ⊆ QR and every element of QR belongs to
QR.

For the second requirement, we claim that A′ = A satisfies the desired property, as A is affine and
A(x) = A(x) for all x in general and in particular for all x ∈ QR.

13

E EXACTLINE for ReLU Layers

Theorem 2. Given a line segment QR in d dimensions and a rectified linear layer ReLU(x) =
(max(x1, 0), . . . ,max(xd, 0)), the following is a suitable linear partitioning (Definition 1):

P
(
ReLU�QR

)
= sorted

(
({Q,R} ∪ {Q+ α(R−Q) | α ∈ D}) ∩QR

)
, (3)

where D = {−Qi/(Ri −Qi) | 1 ≤ i ≤ d}, Vi is the ith component of vector V , and sorted returns
a tuple of the points sorted by distance from Q.

Proof. First, we define the ReLU function like so:

δ1sign(x1) 0 · · · 0

0 δ1sign(x2) · · · 0
...

...
. . .

...
0 0 · · · δ1sign(xd)

x1
x2
...
xd

where sign(x) returns 1 if x is positive and 0 otherwise while δij is the Kronecker delta.

Now, it becomes clear that, as long as the signs of each xi are constant, the ReLU function is linear.

We note that, over a Euclidean line segmentQR, we can parameterizeQR asQR(α) = Q+α(R−Q).
Considering the ith component, we have a linear relationQRi(α) = Qi +α(Ri−Qi) which changes
sign at most once, when QRi(α) = 0 (because linear functions in R are continuous and monotonic).
Thus, we can solve for the sign change of the ith dimension as:

QRi(α) = 0

=⇒ 0 = Qi + α(Ri −Qi)

=⇒ α = − Qi

Ri −Qi

As we have restricted the function to 0 ≤ α ≤ 1, at any α within these bounds the sign of some
component changes and the function acts non-linearly. Between any two such αs, however, the signs
of all components are constant, so the ReLU function is perfectly described by a linear map as shown
above. Finally, we can solve for the endpoints corresponding to any such α using the parameterization
QR(α) defined above, resulting in the formula in the theorem.

Q,R are included to meet the partitioning definition, as the sign of some element may not be 0 at the
Q,R endpoints.

F EXACTLINE for MaxPool Layers

As discussed in the paper, although we do not use MaxPool layers in any of our evaluated networks,
we have developed and implemented an algorithm for computing P

(
MaxPool�QR

)
, which we

present here. In particular, we present P
(
MaxPoolWindow�QR

)
, i.e. the linear restriction for any

given window. P
(
MaxPool�MN

)
can be then be computed by separating each window QR from

14

MN and applying P
(
MaxPoolWindow�QR

)
. Notably, there may be duplicate endpoints (e.g. if

there is overlap in the windows) which can be handled by removing duplicates if desired.

Algorithm 1: P
(
MaxPoolWindow�QR

)
. Binary operations involving both scalars and vectors

apply the operation element-wise to each component of the vector.

Input: QR, the line segment to restrict the MaxPoolWindow function to.
Output: P

(
MaxPoolWindow�QR

)
1 P ← [Q] // Begin an (ordered) list of points with one item, Q.
2 α← 0.0 // Ratio along QR of the last endpoint in P.
3 m← argmax(Q) // Maximum component of the last endpoint in P.
4 while m 6= argmax(R) do
5 D ← Q−Qm

(Ri−Qi)−(R−Q)

6 A← {(Di, i) | 1 ≤ i ≤ d ∧ α < Di < 1.0}
7 if A = ∅ then break
8 (α,m)← lexmin(A) // Lexicographical minimum of the tuples in A.
9 append(P, Q+ α× (R−Q))

10 append(P, R)
11 return P // Interpret the list P as a tuple and return it.

Proof. MaxPool applies a separate mapping from each input window to each output component, so it
suffices to consider each window separately.

Within a given window, the MaxPool operation returns the value of the maximum component. It is
thus linear while the index of the maximum component remains constant. Now, we parameterize
QR(α) = Q+ α× (R−Q). At each iteration of the loop we solve for the next point at which the
maximum index changes. Assuming the maximum index is m when α = αm, we can solve for the
next ratio αi > αm at which index i will become larger than m like so (again realizing that linear
functions are monotonic):

QRm(αi) = QRi(αi)

=⇒ Qm + αi × (Rm −Qm) = Qi + αi × (Ri −Qi)

=⇒ αi × (Rm −Qm +Qi −Ri) = Qi −Qm

=⇒ αi =
Qi −Qm

(Rm −Qm) +Qi −Ri

If αm ≤ αi < 1, then component i becomes larger than component m at QR(αi). We can compute
this for all other indices (producing set A in the algorithm) then find the first index that becomes
larger than m. We assign this index to m and its ratio to α. If no such index exists, we can conclude
that m remains the maximum until R, thus additional endpoints are not needed.

Thus, within any two points in P the maximum component stays the same, so the MaxPool can be
exactly replaced with a linear map returning only that maximum element.

At worst, then, for each of the w windows each of size s, we may add O(s) new endpoints (QR(α)
is monotonic in each component so the maximum index can only change s times), and for each of
those O(s) new endpoints we must re-compute D, which requires O(s) operations. Thus, the time
complexity for each window is O(s2) and for the entire MaxPool computation is O(ws2).

Although most practical applications (especially on medium-sized networks) do not reach that
worst-case bound, on extremely large (ImageNet-sized) networks we have found that such MaxPool
computations end up taking the majority of the computation time. We believe this is an area for future
work, perhaps using GPUs or other deep-learning hardware to perform the analysis.

G EXACTLINE for MaxPool + ReLU Layers

When a MaxPool layer is followed by a ReLU layer (or vice-versa), the preceding algorithm may
include a large number of unnecessary points (for example, if the maximum index changes but

15

the actual value remains less than 0, the ReLU layer will ensure that both pieces of the MaxPool
output are mapped to the same constant value 0). To avoid this, the MaxPool algorithm above can be
modified to check before adding each Pi whether the value at the maximum index is below 0 and thus
avoid adding unnecessary points. This can be made slightly more efficient by “skipping” straight to
the first index where the value becomes positive, but overall the worst-case time complexity remains
O(ws2).

H EXACTLINE for General Piecewise-Linear Layers

A more general algorithm can be devised for any piecewise-linear layer, as long as the input space
can be partitioned into finitely-many (possibly unbounded) convex polytopes, where the function
is affine within each one. For example, RELU fits this definition where the convex polytopes are
the orthants. Once this has been established, then, we take the union of the hyperplanes defining
the faces of each convex polytope. In the RELU example, each convex polytope defining the
linear regions corresponds to a single orthant. Each orthant has an “H-representation” in the form
{x | x1 ≤ 0 ∧ x2 > 0 ∧ . . . ∧ xn ≤ 0}, where we say the corresponding “hyperplanes defining
the faces” of this polytope are {{x | x1 = 0}, . . . , {x | xn = 0}} (i.e., replacing the inequalities
in the conjunction with equalities). Finally, given line segment QR, we compare Q and R to each
hyperplane individually; wherever Q and R lie on opposite sides of the hyperplane, we add the
intersection point of the hyperplane with QR. Sorting the resulting points gives us a valid P

(
f �QR

)
tuple. If desired, the minimization described in Section 2 can be applied to recover the unique smallest
P
(
f �QR

)
tuple.

The intuition behind this algorithm is exactly the same as that behind the RELU algorithm; partition
the line such that each resulting segment lies entirely within a single one of the polytopes. The further
intuition here is that, if a point lies on a particular side of all of the faces defining the set of polytopes,
then it must lie entirely within a single one of those polytopes (assuming the polytopes partition the
input space).

Note that this algorithm can also be used to compute EXACTLINE for MAXPOOL layers, however,
in comparison, the algorithm in Appendix F effectively adds two optimizations. First, the “search
space” of possibly-intersected faces at any point is restricted to only the faces of the polytope that the
last-added point resides in (minimizing redundancy and computation needed). Second, we always
add the first (i.e., closest to Q) intersection found, so we do not have to sort the points at the end
(we literally “follow the line”). Such function-specific optimizations tend to be beneficial when the
partitioning of the input space is more complex (eg. MAXPOOL); for component-wise functions like
RELU, the general algorithm presented above is extremely efficient.

I EXACTLINE Over Multiple Layers

Here we prove Theorem 3, which formalizes the intuition that we can solve EXACTLINE for an entire
piecewise-linear network by solving it for all of the intermediate layers individually. Then, we use
EXACTLINE on each layer in sequence, with each layer partitioning the input line segment further so
that EXACTLINE on each latter layer can be computed on each of those partitions.

Theorem 3. Given any piecewise-linear functions f, g, h such that f = h ◦ g along with a line
segment QR where g(R) 6= g(Q) and P

(
g�QR

)
= (P1, P2, . . . , Pn) is EXACTLINE applied to g

over QR, the following holds:

P
(
f �QR

)
= sorted

(
n−1⋃
i=1

{
Pi +

y − g(Pi)

g(Pi+1)− g(Pi)
× (Pi+1 − Pi) | y ∈ P

(
h�g(Pi)g(Pi+1)

)})

where sorted returns a tuple of the points sorted by distance from Q.

Proof. Consider any linear partition of g defined by endpoints (Pi, Pi+1) of QR. By the definition
of P

(
g�QR

)
, there exists some affine map Ai such that g(x) = Ai(x) for any x ∈ PiPi+1.

16

Now, consider P
(
h�g(Pi)g(Pi+1)

)
= (Oi

1 = Pi, O
i
2, . . . , O

i
m = Pi+1). By the definition of

P
(
h�g(Pi)g(Pi+1)

)
, then, for any partition Oi

jO
i
j+1, there exists some affine map Bi

j such that

h(x) = Bi
j(x) for all x ∈ Oi

jO
i
j+1.

Realizing that Oi
j , O

i
j+1 ∈ g(Pi)g(Pi+1) and that PiPi+1 maps to g(Pi)g(Pi+1) under g (affineness

of g over PiPi+1), and assuming g(Pi) 6= g(Pi+1) (i.e., Ai is non-degenerate), there exist unique
Iij , I

i
j+1 ∈ PiPi+1 such that g(Iij) = Oi

j and g(Iij+1) = Oi
j+1. In particular, as affine maps retain

ratios along lines, we have that:

Iij = Pi +
Oi

j − g(Pi)

g(Pi+1)− g(Pi)
× (Pi+1 − Pi)

And similar for Iij+1. (In the degenerate case, we can take Iij = Pi, I
i
j+1 = Pi+1 to maintain the

partitioning).

Now, we consider the line segment IijI
i
j+1 ⊆ PiPi+1. As it is a subset of PiPi+1, all points

x ∈ IijIij+1 are transformed to Ai(x) ∈ g(Oi
j)g(Oi

j+1) by g. Thus, the application of h to any such

point y = Ai(x) ∈ Oi
jO

i
j+1 is Bi

j(y), and the composition (Bi
j ◦ Ai)(x) is an affine map taking

points x ∈ IijIij+1 to f(x).

Finally, as the Ojs partition each g(Pi)g(Pi+1) and each PiPi+1 partitions QR, and we picked Iijs
to partition each PiPi+1, the set of Iijs partitions QR.

This theorem can be applied for each layer in a network, allowing us to identify a linear partitioning
for the entire network with only linear partitioning algorithms for each individual layer.

J Constant Gradients with EXACTLINE

In Section 4, we relied on the fact that the gradients are constant within any linear partition given by
P
(
RELU�QR

)
computed with Equation 3. This fact was formalized by Theorem 4, which we prove

below:

Theorem 4. For any network f with nonlinearities introduced only by ReLU functions and
P
(
f �QR

)
= (P1, P2, . . . , Pn) computed according to Equation 3, the gradient of f with respect to

its input vector x, i.e. ∇f(x), is constant within each linear partition PiPi+1.

Proof. We first notice that the gradient of the entire network, when it is well-defined, is determined
completely by the signs of the internal activations (as they control the action of the ReLU function).

Thus, as long as the signs of the internal activations are constant, the gradient will be constant as well.

Equation 4 in our paper identifies partitions where the signs of the internal activations are constant.
Therefore, the gradient in each of those regions PiPi+1 is also constant.

However, in general, for arbitrary f , it is possible that the action of f may be affine over the line
segment PiPi+1 but not affine (or not describable by a single Ai) when considering points arbitrarily
close to (but not lying on) PiPi+1. In other words, the definition of P

(
f �QR

)
as presented in our

paper only requires that the directional derivative in the direction of QR is constant within each
linear partition PiPi+1, not the gradient more generally. A stronger definition of EXACTLINE could
integrate such a requirement, but we present the weaker, more-general definition in the text for clarity
of exposition.

However, as demonstrated in the above theorem, this stronger requirement is met by Equation 3, thus
our exact computation of Integrated Gradients is correct.

17

K Further EXACTLINE Implementation Details

We implemented our algorithms for computing P
(
f �QR

)
in C++ using a gRPC server with Protobuf

interface. This server can be called by a fully-fledged Python interface which allows one to define or
import networks from ONNX [45] or ERAN [41] formats and compute P

(
f �QR

)
for them. For the

ACAS Xu experiments, we converted the ACAS Xu models provided in the ReluPlex [12] repository
to ERAN format for analysis by our tool.

Internally, we represent P
(
f �QR

)
by a vector of endpoints, each with a ratio along QR (i.e., α for

the parameterization QR(α) = Q+ α× (R−Q)), the layer at which the endpoint was introduced,
and the corresponding post-image after applying f (or however many layers have been applied so
far).

On extremely large (ImageNet-sized) networks, storing the internal network activations corresponding
to each of the thousands of endpoints requires significant memory usage (often hundreds of gigabytes),
so our implementation sub-divides QR when necessary to control memory usage. However, for
all tested networks, our implementation was extremely fast and could compute P

(
f �QR

)
for all

experiments in seconds.

L Floating Point Computations

As with ReluPlex [12], we make use of floating-point computations in all of our implementations,
meaning there may be some slight inaccuracies in our computations of each Pi. However, where float
inaccuracies in ReluPlex correspond to hard-to-interpret errors relating to pivots of simplex tableaus,
floating point errors in our algorithms are easier to interpret, corresponding to slight miscomputation
in the exact position of each linear partition endpoint Pi. In practice, we have found that these
errors are small and unlikely to cause meaningful issues with the use of EXACTLINE. With that said,
improving accuracy of results while retaining performance is a major area of future work for both
ReluPlex and EXACTLINE.

M Future Work

Apart from the future work described previously, EXACTLINE itself can be further generalized. For
example, while our algorithm is extremely fast (a number of seconds) on medium- and large-sized
convolutional and feed-forward networks using ReLU non-linearities, it currently takes over an
hour to execute on large ImageNet networks due to the presence of extremely large MaxPool layers.
Scaling the algorithm and implementation (perhaps by using GPUs for verification, modifying the
architecture of the network itself, or involving safe over-approximations) is an exciting focus for future
work. Furthermore, we plan to investigate the use of safe linear over-approximations to commonly
used non-piecewise-linear activation functions (such as tanh) to analyze a wider variety of networks.
Finally, we can generalize EXACTLINE to compute restrictions of networks to higher-dimensional
input regions, which may allow the investigation of even more novel questions.

18

