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Abstract

A key requirement in sequence to sequence processing is the modeling of long
range dependencies. To this end, a vast majority of the state-of-the-art models use
attention mechanism which is of O(n?) complexity that leads to slow execution for
long sequences.

We introduce a new Shuffle-Exchange neural network model for sequence to
sequence tasks which have O(log n) depth and O(n log n) total complexity. We
show that this model is powerful enough to infer efficient algorithms for common
algorithmic benchmarks including sorting, addition and multiplication. We evaluate
our architecture on the challenging LAMBADA question answering dataset and
compare it with the state-of-the-art models which use attention. Our model achieves
competitive accuracy and scales to sequences with more than a hundred thousand
of elements.

We are confident that the proposed model has the potential for building more
efficient architectures for processing large interrelated data in language modeling,
music generation and other application domains.

1 Introduction

A key requirement in sequence to sequence processing is the modeling of long range dependencies.
Such dependencies occur in natural language when the meaning of some word depends on other
words in the same or some previous sentence. There are important cases, e.g., to resolve coreferences,
when such distant information may not be disregarded. A similar phenomenon occurs in music,
where a common motif may reappear throughout the entire piece and it should be kept coherent
by any applied transformation (Huang et al.,|2019). Dealing with long range dependencies require
processing very long sequences (several pages of text or the entire musical composition) in a manner
that aggregates information from their distant parts.

Aggregation of distant information is even more important for algorithmic tasks where each output
symbol typically depends on every input symbol. The goal for algorithm synthesis is to derive
an algorithm from given input-output examples which are often given as sequences. Algorithmic
tasks are especially challenging due to the need for processing sequences of unlimited length. Also,
generalization plays an important role since training is often performed on short sequences but testing
on long ones.

Currently the best neural network architectures do not scale well with the sequence length. A large
fraction of them uses the attention mechanism which has quadratic complexity depending on the
sequence length. These models can be easily trained on length 512 or so but become very slow and
memory hungry on longer sequences.
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On sequential algorithmic tasks, the best architecture in the respect of a variety of learnable tasks and
generalization to longer sequences is the improved (Freivalds and Liepins, 2018) Neural GPU (Kaiser
and Sutskever, |2015). It has O(n) convolutional layers where each layer performs O(n) operations
where 7 is the input length. This architecture can represent algorithms of running time ©(n?) but
to learn faster algorithms, for example of complexity O(n logn), a fundamentally new approach is
needed.

In this paper, we propose a new differentiable architecture for sequence processing tasks that has
depth O(log n) and allows modeling of any dependencies in the sequence. This architecture is derived
from the Shuffle-Exchange network used for packet routing in the field of computer networks (Dally
and Towles|, [2004]).

We empirically validate our model on algorithmic tasks and the LAMBADA question answering
task(Paperno et al., 2016). Our model is able to synthesize O(n log n) time algorithms for common
benchmark tasks such as copy, reversal, sorting and long binary addition which generalize to longer
sequences. On the LAMBADA task, our model scores second best in terms of accuracy, losing only
to the Universal Transformer(Dehghani et al., 2018), but is significantly faster and able to process
32x longer sequences than the Universal Transformer.

2 Related Work

Common tools for sequence processing tasks are recurrent networks, in particular, LSTM (Hochreiter
and Schmidhuber}|1997) and GRU networks (Cho et al.||2014). They can efficiently process sequences
of any length and have the ability to remember arbitrary long dependencies. But they process symbols
one by one and have limited state memory, hence can remember only a limited number of such
dependencies. They are successful at natural language processing but too weak for nontrivial
algorithmic tasks. Grid LSTM (Kalchbrenner et al., 2015) allows creating a multilayered recurrent
structure that is more powerful, able to learn more complex tasks such as addition and memorization
at the expense of increased running time.

Convolutional architectures can be used for sequence processing tasks (Gehring et al.,2017). But
convolutions are inherently local — the value of a particular neuron depends on a small neighborhood
of the previous layer, so it is common to augment the network with the attention mechanism. Attention
allows combining information from any two locations of the sequence in a single step. Attention
mechanism has become a standard choice in numerous neural models including Transformer (Vaswani
et al.| |2017) and BERT (Devlin et al., 2018 which achieve state-of-the-art accuracy in NLP and
related tasks. Although efficient for moderately long sequences, the complexity of the attention
mechanism is quadratic depending on the input length and does not scale to longer sequences.

Researchers have recognized the need for processing long sequences and are searching for ways to
overcome the complexity of attention. An obvious way is to cut the sequence into short segments
and use attention only within the segment boundaries (Al-Rfou et al., [2018)). To, at least partially,
recover the lost information, recurrent connections can be added between the segments (Dai et al.,
2019). (Child et al.[(2019) reduce the complexity of attention to O(n+/n) by attending only to a
small predetermined subset of locations. Star-Transformer (Guo et al., 2019) sparsifies attention even
more by pushing all the long range dependency information through one central node and reaches
linear time performance. Clark and Gardner| (2017} enable document level question answering by
preselecting the paragraph most likely to contain the answer.

A different way to capture long range structure is to increase the receptive field of convolution
by using dilated (atrous) convolution, where the convolution mask is spread out at regular spatial
intervals. Dilated architectures have achieved great success in image segmentation (Yu and Koltun
2015) and audio generation (van den Oord et al., [2016)) but are hard to apply to algorithmic tasks
that require generalization to longer sequences. That would require layers with shared weights but
different dilation patterns, a setting that is not yet explored. Also, it is important to avoid congestion
(for example, that may arise in tree-like structures) when a lot of long range information is forced to
travel through a few nodes. Both these problems are elegantly solved with the proposed architecture.

The design of memory access is crucial for learning algorithmic tasks, see (Kant, 2018) for a good
overview. To access memory, attention mechanism over the input sequence is used in Pointer
Networks (Vinyals et al.l 2015). Specialized memory modules, which are controlled by a mechanism
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Figure 1: Shuffle-Exchange network. Figure 2: Bene$§ network.

similar to attention, are used by Neural Turing Machine (Graves et al.| [2014) and Differentiable
Neural Computer (Graves et al., |[2016)).

Neural GPU (Kaiser and Sutskever, 2015) utilizes active memory (Kaiser and Bengio, 2016) where
computation is coupled with memory access. This architecture is simple and fast and can learn
fairly complicated algorithms such as long number addition and multiplication. The computation and
memory coupling introduces a limitation: for the information to travel from one end of the sequence
to the other, o(n) layers are required which result in (n?) total complexity. The flow of information
is facilitated by introducing diagonal gates in (Freivalds and Liepins|, [2018)) that improves training
and generalization, but does not address the performance problem caused by many layers.

The goal of inferring algorithms with running time O(n log n) is pursued in (Nowak et al., |2018)
which use the divide and conquer paradigm with learnable split and merge steps. A hierarchical
memory layout with logarithmic access time is introduced in |Andrychowicz and Kurach| (2016]),
however, the model is discrete and has to be trained with reinforcement learning to achieve the claimed
performance. Neural programmer-interpreters (Reed and de Freitas| 2016) can learn very efficient
algorithms but often require program traces during training. Neural Random-Access Machines
(Kurach et al.| |2016) introduce a memory addressing scheme potentially allowing constant time
access facilitated by discretization. Discrete models are hard to train, but our model, on the contrary,
is continuous and differentiable and yet allows synthesizing O(n log n) time algorithms.

3 Shuffle-Exchange Networks

Routing messages from many sources to many destinations is a well-explored topic in the area of
computer networks where several kinds of sparse architectures have been developed to connect two
sets of devices. The Shuffle-Exchange networ has a regular layered structure and serves best as a
prototype for a neural network. Shuffle-Exchange network consists of repeated application of two
stages - shuffle and exchange. Fig.[I]shows a Shuffle-Exchange network for routing 8 messages.
Messages arrive on the left side, flow through the network layers and arrive at the rightmost nodes.

We consider Shuffle-Exchange networks with 2* inputs and pad the input data to the nearest power
of two. First comes the exchange stage where elements are divided into adjacent pairs and each
pair is passed through a switch. The switch contains logic to select which input is routed to which
output. The shuffle stage follows(depicted as arrows in the figures), where messages are permuted
according to the perfect-shuffle permutation. The perfect-shuffle is often employed to shuffle a deck
of cards by splitting the deck into two halves and then interleaving the halves. In this permutation, the
destination address is a cyclic bit shift(left or right) of the source address. The network for routing 2%
messages contain k exchange stages and k£ — 1 shuffle stages. It is proven that switches can always
be programmed in a way to connect any source to any destination through the network (Dally and
Towles, 2004).

But the throughput of the Shuffle-Exchange network is limited — it may not be possible to route
several messages simultaneously. A better design for multiple message routing is the Benes network
(see Fig.[2). The Benes network is formed by connecting a Shuffle-Exchange network with its mirror
copyﬂ The mirror copy is obtained by reversing the direction of bit shift in the destination address

! Also called Omega network.
*In the literature, the Butterfly network is typically used instead which is isomorphic to the Shuffle-Exchange
network.



calculation. Benes network has 2k — 1 exchange stages and 2k — 2 shuffle stages. Such a network
can route 2% messages in any input-to-output permutation (Dally and Towles, 2004).

4 The Model

We propose a neural network analogue of the BeneS network where we replace each switch with a
learnable 2-to-2 function. The input to the neural network is a sequence of cells of length 2* where
each cell is a vector of size m. The network consists of alternating Switch and Shuffle layers. The
Switch Layer corresponds to a column of boxes in Fig. [T|and Fig. 2]and the Shuffle Layer corresponds
to the links between the box columns.

In the Switch Layer, we divide the cells into adjacent non-overlapping pairs and apply Switch Unit to
each pailﬂ The Switch Unit is similar to Gated Recurrent Unit(GRU) but it has two inputs [s!, 2]
and two outputs [s., s2]. It contains two reset gates, one for each output. The reset gate performs the
computing logic of the unit(c and tanh nonlinearities just keep the values in range) and it is important
that each output uses a separate reset gate for the unit to produce unrelated outputs. Technically,
creating the pairs is implemented as reshaping the sequence s into a twice shorter sequence where
each new cell concatenates two adjacent cells [s!, s?] along the feature dimension. The Switch Unit
is defined as follows:

s =[s', 57
' =a(W's+ B})
r? = g(W?2s + B?)
ct =tanh(Wl(r' ® s) + BY)
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In the above equations, W, and W,, are weight matrices of size 2m x 2m, W, are weight matrices of
size 2m x m, B are bias vectors; these are the parameters that will be learned; © denotes element-wise
vector multiplication and o is the sigmoid function.

The function swapHalf splits the values of s; and s, into two halves along the feature dimension and
swaps their second halves:

waiae ([ 1[5V =[[3].[5]]

The motivation for swapHalf is to encourage the unit to perform one of its two default actions —
return the two inputs unchanged or to swap them. The update gate u, which is borrowed from GRU,
is responsible for this. For GRU, there is only one default action and its update gate performs a
straight-through copy. To facilitate both actions of the Switch Unit, we perform the straight-through
copy in the first half of the feature maps and swapped copy in the second half. Such a fixed assignment
to maps works better than introducing another gate for action selection, see ablation study below.
A similar fixed assignment was found beneficial in (Freivalds and Liepins}, [2018)) for introducing
diagonal update gates.

The Shuffle Layer permutes cells according to bit rotation permutation, namely s[x] = s[rotate(x, k)],
where rotate(z, k) performs cyclic bit shift of by one position, where z is treated as a binary
number of length k. Left rotation is used in the first part of the Bene§ network, right in the second
(the difference is insignificant if we apply the rotations the other way). Shuffle Layer has no learnable
parameters. The whole network is organized by connecting these two kinds of layers in the pattern of
the Benes§ network. A deeper architecture can be obtained by stacking several blocks where each is

31dentical transformation is applied to all pairs of the sequence.



in the form of the Benes network. In such a case, the last switch layer of every but the final Benes
block is omitted. We typically use two stacked Bene§ blocks in our models, except for the simple
algorithmic tasks which use one block. Please see Fig. [3of the whole model containing two Benes
blocks on input length 16, £ = 4. We employ residual skip connections between blocks where a
scaled input of each Switch Layer is added to the input of a corresponding layer in the next Benes
block. The scaling factor is a learnable parameter resembling the forget gate of LSTM.
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Figure 3: Neural Shuffle-Exchange network with 2 Benes§ blocks.

We use shared weights for every consecutive k& — 1 layers(shown with colors in Fig. [3). The last layer
of the last Benes$ block has non-shared weights. Weight sharing is required to obtain generalization
to longer sequences but we use it always, also for tasks not requiring generalization. This way we
reduce the number of learnable parameters without an observable decline of accuracy. See more
analysis in the Appendix.

5 Evaluation

In this section, we evaluate the proposed architecture on algorithmic tasks and the LAMBADA
question answering task (Paperno et al.l2016). We have implemented the proposed architecture in
TensorFlow. The code is available at https://github.com/LUMII-Syslab/shuffle-exchange!
The neural network model for evaluation consists of an embedding layer where each symbol of
the input is mapped to a vector of length m, one or more Benes blocks and the output layer which
performs a linear transformation to the required number of classes with a softmax cross-entropy loss
for each symbol independently(except for the LAMBADA task which will be described later). All
models are trained on a single Nvidia RTX 2080 Ti (11GB) GPU with Adam optimizer (Kingma and
Ba, 2014).

5.1 Algorithmic tasks

Let us evaluate the Shuffle-Exchange network to see if it can infer O(n log n) time algorithms purely
from input-output examples. We consider sequence duplication, reversal, long binary addition, long
binary multiplication, sorting. These tasks are common benchmarks in several papers including
(Kalchbrenner et al., 2015; Zaremba and Sutskever, 2015; Zaremba et al., 2016} Joulin and Mikolovl,
2015; |Grefenstette et al., 2015} Kaiser and Sutskever, |2015}; |[Freivalds and Liepins| [2018; Dehghani
et al.,[2018)). There are known O(n log n) time algorithms for these tasks (Brent and Kung, {1982}
Ajtai et al.|, [1983]; Seiferas| |2009; Harvey and Van Der Hoeven, [2019), although for sorting and
multiplication all known O(n log n) time algorithms have huge constants hidden by the O notation
and are not realistically usable in practice.

The proposed architecture performs very well on simple tasks(all except multiplication) — it achieves
100% test accuracy on examples of length it was trained on, so the main focus is to explore how
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well these tasks generalize to longer inputs. Multiplication is a considerably harder task than the
rest; from the existing architectures only the Neural GPU (Kaiser and Sutskever, [2015}; [Freivalds
and Liepins| [2018)) is able to learn it purely from input-output examples. The Shuffle-Exchange
architecture can learn multiplication up to certain input length (depending on the model size) but the
solution does not generalize to longer examples. Since it is the hardest task, we analyze it separately
and use it for tuning our model and ablation study.

We use dataset generators and curriculum learning from (Freivalds and Liepins, [2018). For training
we instantiate several models for different sequence lengths (powers of 2) sharing the same weights
and train each example on the smallest instance it fits.

Let us consider the simple tasks first. We train them on inputs of length 64 and test on 8x longer
instances. A small model comprising one Benes§ block and 192 feature maps suffice for these tasks.
For the duplication, reversal, sorting we use a fixed alphabet of symbols in range 1-12. Fig. |4{ shows
the generalization of simple tasks to sequences of length 512 vs. training step. The graphs show
the accuracy on the test set averaged over 5 training runs. We see that the duplication and reversal
tasks converge in a few hundred steps and generalize perfectly, the addition task quickly reaches 90%
accuracy(we measure the fraction of correctly predicted output symbols) and then converges to 98%
in about 10k steps. The sorting task reaches about 95% generalization accuracy.

It is interesting that this architecture (of depth 2logn) is able to learn a sorting algorithm that
generalizes. Although the best known sorting circuits have depth O(logn) (Ajtai et al., [1983;
Seiferas, 2009), they are huge, with estimated depth over 100 log n. Simple sorting circuits have
depth G)(log2 n) (Knuth, 1973). Apparently, the inferred algorithm takes advantage of the discrete
nature and limited range of the alphabet whereas the mentioned sorting circuits work in a comparison
based model that is applicable to any numeric values. Indeed, when we try increasing the alphabet
size, training becomes slower and a larger model is required at some point.

The multiplication task can be trained up to quite a large length (longer examples require a larger
model and longer training), the solution generalizes to other examples of the same length but not to
longer examples. We chose to demonstrate the multiplication task on sequences of length 128 for
which a model can be trained in a reasonably short time. A model with 384 feature maps reaches
100% accuracy on the test in about 50K steps, see Fig.[I0]

The generalization to longer sequences of the Shuffle-Exchange network is shown in Fig.[6] We
compare it to the optimized implementation of the Neural GPU with diagonal gates (DNGPU) by
Freivalds and Liepins| (2018)) which is currently the best in this respect. Shuffle-Exchange network
provides a similar generalization on duplication and reversal tasks but performs better on the addition
and sorting tasks. Both models were trained for 40k steps on length up to 64 symbols. A possible
explanation of why the multiplication task does not generalize is that there may not exist a simple
O(n log n) time algorithm for it. The only currently known asymptotically optimal algorithm (Harvey
and Van Der Hoeven, |2019) is galactic but practical algorithms, for example based on the Fast Fourier
Transform, have complexity O(n log n log log n) that is slightly more than available within our model.
We have tried training a model of depth O(log? n) but were not able to obtain better generalization.
Such model is relatively deep for the sequence lengths on which it can be realistically trained(for
example, we get 113 switch layers for sequence length 256) on and it seems unable to recognize the
proper scaling of O(log? n) instead of ¢n for some constant c.

A distinct advantage of the Shuffle-Exchange model is its speed. Fig. [5]shows the comparison
of the running time of the learned binary addition algorithm (or any other algorithm having the
same sized model) with the proposed model and DNGPU. We use 96 feature maps for both models
which is enough for both of them to learn binary addition. The time complexity of our model is
O(n log n) vs. O(n?) for DNGPU which is reflected in the measured running time. Also, DNGPU
demands a lot more GPU memory — we were able to evaluate it only up to length 16K, whereas the
Shuffle-Exchange model is able to process sequences of two million symbols in about 5 seconds.

5.2 LAMBADA question answering

The goal of the LAMBADA task is to predict a given target word from its broad context (on average
4.6 sentences collected from novels). The sentences in the LAMBADA dataset (Paperno et al., 2016)
are specially selected such that giving the right answer requires examining the whole passage. In
81% cases of the test set the target word can be found in the text and we follow a common strategy
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Figure 6: Generalization to longer sequences.

(Chu et al., 2017; Dehghani et al.| |2018)) to choose the target word as one from the text. Obviously,
the answer will be wrong in the remaining cases so the obtained accuracy will not exceed 81%.

We instantiate the model for input length 128 (almost all test examples fit into this length) and pad
the input sequence to that length by placing the sequence at a random position and adding zeros on
both ends. Without randomization, the model overfits. We use a pretrained fastText 1M English word
embedding (Mikolov et al.||2018) for the input words. The embedding layer is followed by 2 Benes
blocks with 384 feature maps. To perform the answer selection as a word from the text, the final layer
of the network is constructed differently. Each symbol of the output is linearly mapped to a single
scalar and we use softmax loss over the obtained sequence to select the position of the answer word.

In Table[T]we give our results in the context of previous works. Our architecture is able to score better
than Gated-Attention Reader (Chu et al.,|2017) and loses only to Universal Transformer (Dehghani
et al., 2018). Both these networks use attention mechanism enclosed in a highly elaborate neural
model, so it is remarkable that our model of much simpler architecture can provide a competitive

accuracy.

On the other hand, our model is significantly faster and has better scaling to long sequences. In
Fig.[7]we compare the training and execution time of our model to the Universal Transformer. We
use the official Universal Transformer implementation from the Tensor2Tensor library (Vaswani
et al.| 2018) and measure the time for one training or evaluation step on a single sequence. For both
models, we use configurations that reach the best test accuracy. We use the base configuration (as
mentioned in [Dehghani et al.|(2018))) for the Universal Transformer which has 152M parameters
and the Shuffle-Exchange network with 384 feature maps and 2 BeneS blocks and total parameter
count 33M. It’s worth mentioning that our model is about 5x smaller than Universal Transformer.
We perform the evaluation on sequence lengths that are able to fit in the 11GB of GPU memory. We
can see that the Shuffle-Exchange network is significantly faster and can be applied up to 32x longer
sequences using the same amount of GPU memory.

It is interesting to note that, in contrast to Transformers, our architecture does not need positional
embeddings. It can learn positional embedding itself if required. Assume that the input has a marked
position(end-of-line marker, for example) and consider the binary tree of paths from it to the nodes at



depth log(n). Each leaf of this tree can be uniquely labeled according to left-or-right choices on the
path connecting it to the root. Such labeling can be learned by the first log(n) layers of the network
and the rest of the network can use this information as positional embedding.

Table 1: Accuracy on LAMBADA word prediction task

Model Test accuracy (%)
Random word from passage (Paperno et al.| 2016) 1.6
Gated-Attention Reader (Chu et al., |2017) 49.0
Shuffle-Exchange network (this work) 52.28
Universal Transformer (Dehghani et al., 2018) 56.0
Human performance (Chu et al.,[2017) 86.0

= Shuffle-Exchange eval
=== Shuffle-Exchange train

= = Universal Transformer eval
=== Universal Transformer train

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

input length

Figure 7: Evaluation and training time of Shuffle-Exchange and Universal Transformer (log scale).

5.3 Ablation study

We have studied several modifications of our architecture and confirmed that the presented form is
the best. We verified the need for the key features by removing them one by one and comparing
with a baseline version on the multiplication, LAMBADA, addition and sorting tasks (Fig. [8). We
considered the following ablations: using the identity function instead of swapHalf (without swap),
removing residual connections(without residual), disabling the idea by Benes to use two shuffle
directions(without Benes), using an additional swap gate in place of swapHalf function which chooses
a straight-through or a swapped input for the update gate (swap gate). Additionally, we explore two
versions where the Switch Unit is replaced with two fully connected layers with ReLU and twice
the number of feature maps in the middle(ReLU on both FC layers does not work well). The first
ablation replaces the entire unit (Two FC layers), the second one replaces only the part involving
reset gates but keeps the update gate(Two FC layers+gate).

We can see that the baseline version gives the best accuracy overall. The differences are most
pronounced on the multiplication task, on other tasks all versions, except the one without the gate,
perform reasonably well.

We have also evaluated the effect of the network depth(measured in the Bene$ block count) and
feature map count on the test accuracy, see Figures[9]and[I0] There are no surprises — a larger and
deeper network is generally better.

6 Conclusions

We have introduced a Shuffle-Exchange neural network model that has O(log n) depth and O(n log n)
total complexity and allows modeling any dependencies in the sequence. We have shown that this
model can successfully synthesize nontrivial O(n log n) time algorithms with good generalization.
The Shuffle-Exchange model can serve as an alternative to the attention mechanism with better
scaling to long sequences. Although we obtained slightly lower accuracy on the LAMBADA question
answering task, our model is much simpler than the winning Universal Transformer and has fewer
parameters. We are looking forward to implementing more elaborate architectures combining Shuffle-
Exchange blocks with other kinds of layers to achieve unmatched accuracy for long sequence tasks.



accuracy %

= Baseline = without Bene3 = =swap gate
— Baseline - - Without Benes = =Swap gate =+=Two FC layers =+=Two FC layers === Two FC layers + gate —-= without swap
«+2+ Two FC layers + gate-~ Without swap = = Without residual 5
Tensuetgionan,
100 S emeret R N
50 A X -
SRPRPDURAL
45 Pt o DU - \'\,
"
40
8
3 35
e
S
g 30
©
25
20
15
0 0.2M 0.4M 0.6M 0.8M ™
0 50k 100k 150k 200k
step step
(a) Multiplication task (b) LAMBADA task
= Baseline - - without Bene3 = =swap gate = Baseline - = without Bene3 = =swap gate

accuracy %

accuracy %

accuracy %

=== Two FC layers ===+ Two FC layers + gate —-- without swap

== Two FC layers

==== Two FC layers + gate --= without swap

100
EY
B0 F 1 K
ol
©
70 5
3 60
&
GD..' 1 50 e "
JAY o= —
[ AR
5040~ 07 ,
! i \, PROSS
Nt
30
0 5k 10k 15k 20k 0 5k 10k 15k 20k
step step
(c) Addition task (d) Sorting task
Figure 8: Ablation study.
100 R
50
Jem P Ny -
%0 45 S
< 40
80 § 35
3 30
70 &
-7 = =1block 25 = =1block
oS- = 2 blocks = 2 blocks
60 =+=* 3 blocks 20 =+=* 3 blocks
15
0 50k 100k 150k 200k 0 0.2Mm 0.4M 0.6M 0.8M ™
step step
(a) Multiplication task (b) LAMBADA task
Figure 9: Test accuracy depending on the block count.
100 55 -
B R
50
EY _ 45
T 4
80 §35 R T R . -
ES
70 ©
, ==+ 384 feature maps 2 ==+ 384 feature maps
= 192 feature maps 20 = 192 feature maps
60 = =96 feature maps 15 = =96 feature maps
0 50k 100k 150k 200k 0 0.2Mm 0.4M 0.6M 0.8M ™
step step

(a) Multiplication task

(b) LAMBADA task

Figure 10: Test accuracy depending on the feature map count.



Acknowledgements

We would like to thank Renars Liepin$ for the valuable discussion regarding the subject matter of the
paper, the IMCS UL Scientific Cloud for the computing power and Leo Truksans for the technical
support. We sincerely thank all the reviewers for their comments and suggestions. This research is
funded by the Latvian Council of Science, project No. 1zp-2018/1-0327.

References

Ajtai, M., J. Komlés, and E. Szemerédi
1983. Sorting in c log n parallel steps. Combinatorica, 3(1):1-19.

Al-Rfou, R., D. Choe, N. Constant, M. Guo, and L. Jones
2018.  Character-level language modeling with deeper self-attention.  arXiv preprint
arXiv:1808.04444.

Andrychowicz, M. and K. Kurach
2016. Learning efficient algorithms with hierarchical attentive memory. arXiv preprint
arXiv:1602.03218.

Brent, R. P. and H. T. Kung
1982. A regular layout for parallel adders. IEEE transactions on Computers, (3):260-264.

Child, R., S. Gray, A. Radford, and I. Sutskever
2019. Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509.

Cho, K., B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio
2014. Learning phrase representations using RNN encoder-decoder for statistical machine transla-
tion. arXiv preprint arXiv:1406.1078.

Chu, Z., H. Wang, K. Gimpel, and D. McAllester
2017. Broad context language modeling as reading comprehension. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers, Pp. 52-57. ACL (Association for Computational Linguistics).

Clark, C. and M. Gardner
2017.  Simple and effective multi-paragraph reading comprehension.  arXiv preprint
arXiv:1710.10723.

Dai, Z., Z. Yang, Y. Yang, W. W. Cohen, J. Carbonell, Q. V. Le, and R. Salakhutdinov
2019. Transformer-x1: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Dally, W. J. and B. P. Towles
2004. Principles and practices of interconnection networks. Elsevier.

Dehghani, M., S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser
2018. Universal transformers. arXiv preprint arXiv:1807.03819.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova
2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805.

Freivalds, K. and R. Liepins
2018. Improving the neural GPU architecture for algorithm learning. The ICML workshop Neural
Abstract Machines & Program Induction v2 (NAMPI 2018).

Gehring, J., M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin
2017. Convolutional sequence to sequence learning. In Proceedings of the 34th International
Conference on Machine Learning, D. Precup and Y. W. Teh, eds., volume 70 of Proceedings of
Machine Learning Research, Pp. 1243-1252. PMLR.

Graves, A., G. Wayne, and 1. Danihelka
2014. Neural Turing machines. arXiv preprint arXiv:1410.5401.

10



Graves, A., G. Wayne, M. Reynolds, T. Harley, 1. Danihelka, A. Grabska-Barwiriska, S. G. Col-
menarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al.
2016. Hybrid computing using a neural network with dynamic external memory. Nature,
538(7626):471.

Grefenstette, E., K. M. Hermann, M. Suleyman, and P. Blunsom
2015. Learning to transduce with unbounded memory. In Advances in Neural Information
Processing Systems 28, C. Cortes and Lee D.D. et al., eds., Pp. 1828-1836. Curran Associates,
Inc.

Guo, Q., X. Qiu, P. Liu, Y. Shao, X. Xue, and Z. Zhang
2019. Star-transformer. arXiv preprint arXiv:1902.09113.

Harvey, D. and J. Van Der Hoeven
2019. Integer multiplication in time O(n log n).

Hochreiter, S. and J. Schmidhuber
1997. Long short-term memory. Neural computation, 9(8):1735-1780.

Huang, C.-Z. A., A. Vaswani, J. Uszkoreit, I. Simon, C. Hawthorne, N. Shazeer, A. M. Dai, M. D.
Hoffman, M. Dinculescu, and D. Eck
2019. Music transformer. In International Conference on Learning Representations.

Joulin, A. and T. Mikolov
2015. Inferring algorithmic patterns with stack-augmented recurrent nets. In Advances in Neural
Information Processing Systems 28, C. Cortes and Lee D.D. et al., eds., Pp. 190-198. Curran
Associates, Inc.

Kaiser, L. and S. Bengio
2016. Can active memory replace attention? In Advances in Neural Information Processing
Systems 29, D. Lee and Luxburg U.V. et al., eds., Pp. 3781-3789. Curran Associates, Inc.

Kaiser, L. and I. Sutskever
2015. Neural GPUs learn algorithms. arXiv preprint arXiv:1511.08228.

Kalchbrenner, N., I. Danihelka, and A. Graves
2015. Grid long short-term memory. arXiv preprint arXiv:1507.01526.

Kant, N.
2018. Recent advances in neural program synthesis. arXiv preprint arXiv:1802.02353.

Kingma, D. and J. Ba
2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Knuth, D. E.
1973. The art of computer programming, vol. 3: Searching and sorting. Reading MA: Addison-
Wisley.

Kurach, K., M. Andrychowicz, and 1. Sutskever
2016. Neural random access machines. ICLR.

Mikolov, T., E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin
2018. Advances in pre-training distributed word representations. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), N. Calzolari and
Choukri, Khalid et al., eds. European Language Resources Association (ELRA).

Nowak, A., D. Folqué, and J. Bruna
2018. Divide and conquer networks. In International Conference on Learning Representations.

Paperno, D., G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Fernandez
2016. The lambada dataset: word prediction requiring a broad discourse context. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Pp. 1525-1534. ACL (Association for Computational Linguistics).

11



Reed, S. E. and N. de Freitas
2016. Neural programmer-interpreters. In 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

Seiferas, J.
2009. Sorting networks of logarithmic depth, further simplified. Algorithmica, 53(3):374-384.

van den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. W.
Senior, and K. Kavukcuoglu
2016. Wavenet: A generative model for raw audio. In SSW - the 9th ISCA Speech Synthesis
Workshop, Sunnyvale, CA, USA, 2016, P. 125.

Vaswani, A., S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, L. Kaiser,
N. Kalchbrenner, N. Parmar, et al.
2018. Tensor2tensor for neural machine translation. arXiv preprint arXiv:1803.07416.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.. Kaiser, and I. Polosukhin
2017. Attention is all you need. In Advances in Neural Information Processing Systems 30,
I. Guyon and Luxburg U.V. et al., eds., Pp. 5998-6008. Curran Associates, Inc.

Vinyals, O., M. Fortunato, and N. Jaitly
2015. Pointer networks. In Advances in Neural Information Processing Systems 28, C. Cortes and
Lee D.D. et al., eds., Pp. 2692-2700. Curran Associates, Inc.

Yu, F. and V. Koltun
2015. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.

Zaremba, W., T. Mikolov, A. Joulin, and R. Fergus
2016. Learning simple algorithms from examples. In International Conference on Machine
Learning, Pp. 421-429.

Zaremba, W. and 1. Sutskever
2015. Reinforcement learning neural Turing machines-revised. arXiv preprint arXiv:1505.00521.

12



