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1 Proof of Lemma 1

Let (U, V) be a minimizer to (4). Then by the feasibility it satisfies X = UV . Therefore
T
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Suppose that (U, V) satisfies M = UV " and UT U = I,.. Such (U, V) always exists. For example,
think about the SVD of M. Since (U, V) is feasible to (3), it follows that
T T T
1Xlnisea < 10l [V < VEIUIIV Ty = VPV, -
On the other hand,
X1y = max [[UVTeif|, = max [VTes]|, = [[VT]
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‘We have shown
HXHmixed S \/; ||X||1*>2 .

In summary, we have
X[ 2 < 1K ixea < VT IX -

That is, the pair of ||-|| ;..q and ||-||;_,, can be also used for a surrogate of the rank of a matrix.

2 Proof of Lemma 2

We derive a tail estimate on supy; ||Qmé ||§ by using the results on suprema of chaos processes [[1]
summarized in the following theorem.

Theorem 1 (Theorem 3.1 in [1]) Let & € R™ be a Gaussian vector with E[¢] = 0 and E[£¢T] = I,,,
A CR™*" and 0 < { < 1. There exists a numerical constant C' such that

sup |[|Q€)5 — E[IQE3]]
QeA
<C (E + V/log(2¢—1) + Ulog(zc;—l))

holds with probability 1 — (, where

E = y(A, ) (A 1) + de(A)],
Vo= ds(A) 2 (A, 1)) + dr(A)],
U :=di(A).
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We apply Theorem [1fto the set A = {Qn : M € k(a, R)}. The radii of A with respect to the
Frobenius norm and to the spectral norm are respectively upper-bounded as follows:

dp(A) < av/dy
and
ds(A) < A

Let Bg denote the unit ball with respect to the spectral norm. Then the ~,-functional of A with
respect to the spectral norm is upper-bounded through Dudley’s inequality by

(A l) < ¢ / Viog N (A, 7Bs) dn
0
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where the last inequality follows from Lemma 4.

Then E, U, and V' in Theorem [I] are upper-bounded by
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By plugging in these upper estimates to Theorem I] we obtain
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with probability at least 1 — 2 exp(—émin(t2/V?2,t/U)).
We take t = aR\Vd log?’/ 2d / Lds not to increase the upper bound in order. This leads to the Lemma
2.

3 Upper bound on 7' and 75

A tail bound for 77 can be derived by the following lemma [2], which is a direct consequence of the
moment version of Dudley’s inequality (e.g., p. 263 in [3]) and a version of Markov’s inequality (e.g.,
Proposition 7.11 in [3]).

Lemma 1 Let i € C" be a standard complex Gaussian vector with E pu* = I,,, and let A C C™,
0 < ¢ < €2, Then, there exists constant ¢ such that

sup |f* | < ev/log(C1) / Viog N(A, - las Dt
feA 0
with probability 1 — (.




We apply Lemmato the maximum of linear forms of a Gaussian vector y1 = [b{ ; ---b] ; ] over
the set F = {fm : M € k(a, R)}, where fu is defined by

-
fM = [11’L®(M61)T 11,L®(Med2)—r]
Here 1, j, is the row vector of length L with all entries set to 1. Then we have
vt = faaelly = M= M| VI
< MM, VIdy.

Hence,

N(F,nBy) < N (H(Q,R), \/ZTQ&) .

Combining these quantities and the entropy estimate for N (x(«, R), \/%Be) with the above lemma,
we get

sup 1., Me;)| < clog .
> (bii,Me;)| < clog"* dVLRVd

Mer(a,R) |75

Using this, we get

Ty =B wiAyllls < cov/dyRVdlog? d
1,i

with probability at least 1 — 2 exp(—cd)

R /d.d .
Ty <oy lds | S0/ EE2 41 logPd
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Note that 77 dominates 75 when Lds < dqds. In this case, we conclude that

1> vaAilll [d . .
e < L ——log” d.
& < coVLR Td, og

4 Details of the ADMM based algorithm

Using Lemma 2, we have

We now give closed form solutions to each of the update step in Algorithm 1.
4.0.1 Update for T
T = arg ming L(X, W*, ZF)
= arg min, oA ([§ §1.T) + (2,T = W) + 2T - WII7
= msg (W = p7H (Z* + 0[5 8))

where 7 denotes the projection operator and S i s the set of PSD matrices of size d.

4.0.2 Update for W
WH = arg miny, L(TF, W, ZF)

This optimization can be separate into four sub-problems. Let C = T*+1 4 p~1Z*, Let M be the
matrix obtained by setting the diagonal elements of any matrix M to 0 and let ¢ = diag(Ca2) The
four sub-problems are



. . 2
L WS = argmin f(Wio) + (25, T — Wio) + £||XJ" — Wi}, where
[Wizll, ,,<a

F(Wi2) =37y — (Avi, Wag) |2
2. W = arg minyy,  [[Wi — Cu||§7
— — ~ 2
k+1 _ s _
3. Wy, = arg ming; Hng CQQHF

) . 2
4. dlag(W’;;'l) =arg min g [|ul|, + 5 |lu —ql[5
u€R2

Sub-problem 1 is a least-squares problem which has a closed form solution. Sub-problems 2 and 3

are readily solved by setting W™ = C;; and VV’;; 1 — Cy,. Sub-problem 4 has a closed form
solution as described in [4].

5 Entropy Estimates of Tensor Products

For symmetric convex bodies D and F, the covering number N (D, E) and the packing number
M (D, E) are respectively defined by

N(D,E) := min{l|§|y1,...,yl en,.pc |J +E)},
1<5<i

M(D,E) = max{l|§|y1,...,yl €D,y —y & B, V) # k}.
Let X, Y be Banach spaces. For T' € L(X,Y), the dyadic entropy number [3] is defined by
ex(T) := inf{e > 0| M(T(Bx),eBy) < 2871},

where Bx and By denote unit balls. We will use the following shorthand notation for the weighted
summation of the dyadic entropy numbers:

E21(T) =Y k™' ey(T),
k=1

which is up to a constant equivalent to the entropy integral fooo \/ In N(T(Bx), eBy )de [6], which
plays a key role in analyzing properties on random linear operators on low-rank matrices.

In this section, we derive the &> ; of the identity operator from the injective tensor product to the
projective tensor product of a set of Banach space pairs. Note that these tensor product spaces are
valid Banach spaces too. The main machinery in deriving these estimates is Maurey’s empirical
method [7]], summarized in the following lemma.

Lemma?2 LetT € (%2 @ (4. Then
Eo1(T) < CV/1+1n(dy Vdy) (1+1In(dy Ado))>?|T|y.

To apply Lemmato (% @ Egl with 2 < p < oo, we need the following result that shows embedding
of finite dimensional £,, space to 1 up to a small Banach-Mazur distance.

Lemma 3 ([7, Lemma 5]) Ler 1 < p < 2 and € > 0. There is a constant ¢(p, €) > 0 for which the
Sollowing property holds: For each dy, there exists k > ¢(p, €)d; so that E‘lh contains a subspace
(1 4+ €)-isomorphic to (%, i.e., the Banach-Mazur distance is upper-bounded by (1 + ¢).

Then we obtain the following entropy estimate for ¢42 ®€g1 with 2 < p < co by combining Lemmas
and[3

Let 2 < p < oo. Then
Eaa(id : (2 & 01 — 122 @ 0) < C\/dy + dy (1 + In(dydp))*/2.

Note that Lemma 4 in the main paper is a particular case of Lemma 3 above.
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