
PerspectiveNet: A Scene-consistent Image Generator
for New View Synthesis in Real Indoor Environments

Supplementary material

Anonymous Author(s)
Affiliation
Address
email

1 Additional training details1

Learning details of the RGBD denoising autoencoder Φ The RGBD autoencoder Φ is trained on2

the dataset of partial renders from ScanNet for 150 epochs using Adam optimizer with initial learning3

rate 10−5 decaying 10-fold after visiting 100k minibatches. Where possible, the convolutional layers4

were initialized with weights of an ImageNet pre-trained ResNet50 network. Batch size was set to 105

and training on a single GPU took approximately 4 days.6

Loss weighting The individual terms of the overall loss L were weighted as follows. w(`TV) =7

0.01, w(`cons) = 0.01, w(`style) = 0.01. For w(`R), the first term of the outer sum was weighted8

with w(`1R) = 1 and the second with w(`2R) = 0.1. The weights were optimized by conducting a9

grid search on a subset of the training set. For each hyperparameter, the range of tested values was10

(1.,0.1,0.01).11

2 Differentiable bi-linear splat rendering12

This section describes our differentiable point tracer used for rendering scene point clouds to create13

partial renders v̂ and also to derive reprojection consistency losses.14

In order to render a point cloud X = {xj}Mj=1, each point xj is first projected into the camera15

frame with [u1j u2j dj 1]T ∼ Kg[xT
j 1]T . Using those projected floating-point coordinates16

(u1j , u2j , dj)
m
j=1 with di > 0 and their color vectors cj ∈ [0, 1]3, for each (a, b) ∈ Z2, we calculate17

a weight wa,b,j = (1− |u1j − a|)(1− |u2j − b|) exp(−dj) if |u1j − a| < 1 and |u2j − b| < 1, and18

zero otherwise. Each cell (a, b) in the lattice of the render is then colored with a weighted sum of the19

cj with normalized weights wa,b,j/
∑

j′ wa,b,j′ .20

3 Detailed explanation of 3DConvNet21

In what follows, we provide additional details about the 3D voxel-grid based architecture 3DConvNet22

benchmarked in the experimental section.23

The receptive field of the SparseConvNet U-Net is a 5123 grid of 2cm-cubed, RGB-valued voxels.24

This corresponds to a physical region of size appromixately 10m-cubed. During training, the input25

is a sparse point cloud derived from the 4 reference views. The network is trained to predict the26

dataset’s ‘ground-truth’ point cloud that was obtained using all the views of that scene.27

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

The ‘left’ half of the U-Net downsamples the input to size 2563, then 1283 and so on using a mixture28

of submanifold sparse convolutions and sparse strided-convolutions. The ‘right’ half of the U-Net29

upsamples the hidden states from 13 back up 5123 using strided transpose convolution. After each30

transpose convolution the network predicts which of the new voxels should be occupied. These31

predictions are used at test time to predict a full-scene point cloud. Shortcut connections pass32

information from left to right at the same spatial scale whenever the same location is active on both33

sides.34

On the test set, we post-process the predicted point cloud by:35

• Removing any voxels that cannot be present based on the empty space that can be inferred36

to exist inbetween the context camera positions and the corresponding observed points in37

the input partial point cloud.38

• Setting the RGB values of voxels that are present in the input to that value.39

• Setting the values of the new voxels iteratively by propagating the values from known40

neighbors.41

We then project the result to the test views and calculate the aforementioned metrics.42

2

	Additional training details
	Differentiable bi-linear splat rendering
	Detailed explanation of 3DConvNet

