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Abstract

Temporal prediction is critical for making intelligent and robust decisions in com-
plex dynamic environments. Motion prediction needs to model the inherently
uncertain future which often contains multiple potential outcomes, due to multi-
agent interactions and the latent goals of others. Towards these goals, we introduce
a probabilistic framework that efficiently learns latent variables to jointly model
the multi-step future motions of agents in a scene. Our framework is data-driven
and learns semantically meaningful latent variables to represent the multimodal
future, without requiring explicit labels. Using a dynamic attention-based state
encoder, we learn to encode the past as well as the future interactions among
agents, efficiently scaling to any number of agents. Finally, our model can be used
for planning via computing a conditional probability density over the trajectories
of other agents given a hypothetical rollout of the ‘self’ agent. We demonstrate
our algorithms by predicting vehicle trajectories of both simulated and real data,
demonstrating the state-of-the-art results on several vehicle trajectory datasets.

1 Introduction

The ability to make good predictions lies at the heart of robust and safe decision making. It is
especially critical to be able to predict the future motions of all relevant agents in complex and
dynamic environments. For example, in the autonomous driving domain, motion prediction is central
both to the ability to make high level decisions, such as when to perform maneuvers, as well as to
low level path planning optimizations [34, 28].

Motion prediction is a challenging problem due to the various needs of a good predictive model.
The varying objectives, goals, and behavioral characteristics of different agents can lead to multiple
possible futures or modes. Agents’ states do not evolve independently from one another, but rather
they interact with each other. As an illustration, we provide some examples in Fig. 1. In Fig. 1(a),
there are a few different possible futures for the blue vehicle approaching an intersection. It can
either turn left, go straight, or turn right, forming different modes in trajectory space. In Fig. 1(b),
interactions between the two vehicles during a merge scenario show that their trajectories influence
each other, depending on who yields to whom. Besides multimodal interactions, prediction needs
to scale efficiently with an arbitrary number of agents in a scene and take into account auxiliary
and contextual information, such as map and road information. Additionally, the ability to measure
uncertainty by computing probability over likely future trajectories of all agents in closed-form (as
opposed to Monte Carlo sampling) is of practical importance.

Despite a large body of work in temporal motion predictions [24, 7, 13, 26, 16, 2, 30, 8, 39], existing
state-of-the-art methods often only capture a subset of the aforementioned features. For example,
algorithms are either deterministic, not multimodal, or do not fully capture both past and future
interactions. Multimodal techniques often require the explicit labeling of modes prior to training.
Models which perform joint prediction often assume the number of agents present to be fixed [36, 31].
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(a) Multiple possible future trajectories.

(b) Scenario A: green yields to blue.

(c) Scenario B: blue yields to green.

Figure 1: Examples illustrating the need for mutimodal interactive predictions. (a): There are a few possible
modes for the blue vehicle. (b and c): Time-lapsed visualization of how interactions between agents influences
each other’s trajectories.

We tackle these challenges by proposing a unifying framework that captures all of the desirable
features mentioned earlier. Our framework, which we call Multiple Futures Predictor (MFP), is
a sequential probabilistic latent variable generative model that learns directly from multi-agent
trajectory data. Training maximizes a variational lower bound on the log-likelihood of the data. MFP
learns to model multimodal interactive futures jointly for all agents, while using a novel factorization
technique to remain scalable to arbitrary number of agents. After training, MFP can compute both
(un)conditional trajectory probabilities in closed form, not requiring any Monte Carlo sampling.

MFP builds on the Seq2seq [32], encoder-decoder framework by introducing latent variables and
using a set of parallel RNNs (with shared weights) to represent the set of agents in a scene. Each
RNN takes on the point-of-view of its agent and aggregates historical information for sequential
temporal prediction for that agent. Discrete latent variables, one per RNN, automatically learn
semantically meaningful modes to capture multimodality without explicit labeling. MFP can be
further efficiently and jointly trained end-to-end for all agents in the scene. To summarize, we make
the following contributions: First, semantically meaningful latent variables are automatically learned
from trajectory data without labels. This addresses the multimodality problem. Second, interactive
and parallel step-wise rollouts are preformed for all agents in the scene. This addresses the modeling
of interactions between actors during future prediction, see Sec. 3.1. We further propose a dynamic
attentional encoding which captures both the relationships between agents and the scene context, see
Sec. 3.1. Finally, MFP is capable of performing hypothetical inference: evaluating the conditional
probability of agents’ trajectories conditioning on fixing one or more agent’s trajectory, see Sec. 3.2.

2 Related Work
The problem of predicting future motion for dynamic agents has been well studied in the literature.
The bulk of classical methods focus on using physics based dynamic or kinematic models [38, 21, 25].
These approaches include Kalman filters and maneuver based methods, which compute the future
motion of agents by propagating their current state forward in time. While these methods perform well
for short time horizons, longer horizons suffer due to the lack of interaction and context modeling.

The success of machine learning and deep learning ushered in a variety of data-driven recurrent
neural network (RNN) based methods [24, 7, 13, 26, 16, 2]. These models often combine RNN
variants, such as LSTMs or GRUs, with encoder-decoder architectures such as conditional variational
autoencoders (CVAEs). These methods eschew physic based dynamic models in favor of learning
generic sequential predictors (e.g. RNNs) directly from data. Converting raw input data to input
features can also be learned, often by encoding rasterized inputs using CNNs [7, 13].

Methods that can learn multiple future modes have been proposed in [16, 24, 13]. However, [16]
explicitly labels six maneuvers/modes and learn to separately classify these modes. [24, 13] do not
require mode labeling but they also do not train in an end-to-end fashion by maximizing the data
log-likelihood of the model. Most of the methods in literature encode the past interactions of agents
in a scene, however prediction is often an independent rollout of a decoder RNN, independent of
other future predicted trajectories [16, 29]. Encoding of spatial relationships is often done by placing
other agents in a fixed and spatially discretized grid [16, 24].

2



(a) Graphical model of the MFP. Solid
nodes denote observed. Cross agent
interaction edges are shaded for clarity.
x t denotes both the state and contextual
information from timesteps 1 to t .

(b) Architecture of the proposed MFP. Circular ’world’ contains the
world state and positions of all agents. Diamond nodes are determin-
istic while the circular zn are discrete latent random variables.

Figure 2: Graphical model and computation graph of the MFP. See text for details. Best viewed in color.

In contrast, MFP proposes a unifying framework which exhibits the aforementioned features. To
summarize, we present a feature comparison of MFP with some of the recent methods in the
supplementary materials.

3 Multiple Futures Prediction
We tackle motion prediction by formulating a probabilistic framework of continuous space but discrete
time system with a finite (but variable) number of N interacting agents. We represent the joint state
of all N agents at time t as X t 2 RN � d := f x1

t ; x2
t ; : : : ; xN

t g, where d is the dimensionality of
each state1, and xn

t 2 Rd is the state n-th agent at time t . With a slight abuse of notation, we
use superscripted X n := f xn

t � � ; xn
t � � +1 ; : : : ; xn

t g to denote the past states of the n-th agent and
X := X 1:N

t � � :t to denote the joint agent states from time t � � to t , where � is the past history steps.
The future state at time � of all agents is denoted by Y �

:= f y 1
� ; y 2

� ; : : : ; y N
� g and the future trajectory

of agent n, from time t to time T , is denoted by Y n := f y n
t ; y n

t +1 ; : : : ; y n
T g. Y := Y 1:N

t :t + T denotes
the joint state of all agents for the future timesteps. Contextual scene information, e.g. a rasterized
image Rh� w � 3 of the map, could be useful by providing important cues. We use I t to represent any
contextual information at time t .

The goal of motion prediction is then to accurately model p(Y jX ; I t ). As in most sequential
modelling tasks, it is both inefficient and intractable to model p(Y jX ; I t ) jointly. RNNs are typically
employed to sequentially model the distribution in a cascade form. However, there are two major
challenges specific to our multi-agent prediction framework: (1) Multimodality: optimizing vanilla
RNNs via backpropagation through time will lead to mode-averaging since the mapping from X
to Y is not a function, but rather a one-to-many mapping. In other words, multimodality means
that for a given X , there could be multiple distinctive modes that results in significant probability
distribution over different sequences of Y . (2) Variable-Agents: the number of agents N is variable
and unknown, and therefore we can not simply vectorize X t as the input to a standard RNN at time t .

For multimodality, we introduce a set of stochastic latent variables zn � Multinoulli (K ), one
per agent, where zn can take on K discrete values. The intuition here is that zn would learn to
represent intentions (left/right/straight) and/or behavior modes (aggressive/conservative). Learning
maximizes the marginalized distribution, where z is free to learn any latent behavior so long as it
helps to improve the data log-likelihood. Each z is conditioned on X at the current time (before
future prediction) and will influence the distribution over future states Y . A key feature of the MFP is
that zn is only sampled once at time t , and must be consistent for the next T time steps. Compared to
sampling zn at every timestep, this leads to a tractability and more realistic intention/goal modeling,

1We assume states are fully observable and are agents’ (x; y ) coordinates on the ground plane (d=2).
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