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Abstract

We investigate the sample complexity of networks with bounds on the magnitude1

of its weights. In particular, we consider the class2

N = {Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : W1, . . . ,Wt−1 ∈Md×d,Wt ∈M1,d}

where the spectral norm of each Wi is bounded by O(1), the Frobenius norm3

is bounded by R, and ρ is the sigmoid function ex

1+ex or the smoothened ReLU4

function ln (1 + ex). We show that for any depth t, if the inputs are in [−1, 1]d,5

the sample complexity of N is Õ
(
dR2

ε2

)
. This bound is optimal up to log-factors,6

and substantially improves over the previous state of the art of Õ
(
d2R2

ε2

)
, that was7

established in a recent line of work [9, 4, 7, 5, 2, 8].8

We furthermore show that this bound remains valid if instead of considering the9

magnitude of the Wi’s, we consider the magnitude of Wi −W 0
i , where W 0

i are10

some reference matrices, with spectral norm of O(1). By taking the W 0
i to be the11

matrices at the onset of the training process, we get sample complexity bounds that12

are sub-linear in the number of parameters, in many typical regimes of parameters.13

To establish our results we develop a new technique to analyze the sample complex-14

ity of familiesH of predictors. We start by defining a new notion of a randomized15

approximate description of functions f : X → Rd. We then show that if there is a16

way to approximately describe functions in a classH using d bits, then d
ε2 examples17

suffices to guarantee uniform convergence. Namely, that the empirical loss of all18

the functions in the class is ε-close to the true loss. Finally, we develop a set of19

tools for calculating the approximate description length of classes of functions20

that can be presented as a composition of linear function classes and non-linear21

functions.22

1 Introduction23

We analyze the sample complexity of networks with bounds on the magnitude of their weights. Let24

us consider a prototypical case, where the input space is X = [−1, 1]d, the output space is R, the25

number of layers is t, all hidden layers has d neurons, and the activation function is ρ : R→ R. The26

class of functions computed by such an architecture is27

N = {Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : W1, . . . ,Wt−1 ∈Md×d,Wt ∈M1,d}

As the class N is defined by (t − 1)d2 + d = O(d2) parameters, classical results (e.g. [1]) tell28

us that order of d2 examples are sufficient and necessary in order to learn a function from N (in a29

standard worst case analysis). However, modern networks often succeed to learn with substantially30
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less examples. One way to provide alternative results, and a potential explanation to the phenomena,31

is to take into account the magnitude of the weights. This approach was a success story in the days32

of SVM [3] and Boosting [10], provided a nice explanation to generalization with sub-linear (in the33

number of parameters) number of examples, and was even the deriving force behind algorithmic34

progress. It seems just natural to adopt this approach in the context of modern networks. For instance,35

it is natural to consider the class36

NR = {Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ∀i, ‖Wi‖F ≤ R, ‖Wi‖ ≤ O(1)}

where ‖W‖ = max‖x‖=1 ‖Wx‖ is the spectral norm and ‖W‖F =
√∑d

i,j=1W
2
ij is the Frobenius37

norm. This class has been analyzed in several recent works [9, 4, 7, 5, 2, 8]. Best known results38

show a sample complexity of Õ
(
d2R2

ε2

)
(for the sake of simplicity, in the introduction, we ignore the39

dependence on the depth in the big-O notation). In this paper we prove, for various activations, a40

stronger bound of Õ
(
dR2

ε2

)
, which is optimal, up to log factors, for constant depth networks.41

How good is this bound? Does it finally provide sub-linear bound in typical regimes of the parameters?42

To answer this question, we need to ask how large R is. While this question of course don’t have a43

definite answer, empirical studies (e.g. [12]) show that it is usually the case that the norm (spectral,44

Frobenius, and others) of the weight matrices is at the same order of magnitude as the norm of the45

matrix in the onset of the training process. In most standard training methods, the initial matrices46

are random matrices with independent (or almost independent) entries, with mean zero and variance47

of order 1
d . The Frobenius norm of such a matrix is of order

√
d. Hence, the magnitude of R is of48

order
√
d. Going back to our Õ

(
dR2

ε2

)
bound, we get a sample complexity of Õ

(
d2

ε2

)
, which is49

unfortunately still linear in the number of parameters.50

Since our bound is almost optimal, we can ask whether this is the end of the story? Should we51

abandon the aforementioned approach to network sample complexity? A more refined examination of52

the training process suggests another hope for this approach. Indeed, the training process doesn’t start53

from the zero matrix, but rather form a random initialization matrix. Thus, it stands to reason that54

instead of considering the magnitude of the weight matrices Wi, we should consider the magnitude55

of Wi −W 0
i , where W 0

i is the initial weight matrix. Indeed, empirical studies [6] show that the56

Frobenius norm of Wi −W 0
i is often order of magnitude smaller than the Frobenius norm of Wi.57

Following this perspective, it is natural to consider the class58

NR(W 0
1 , . . . ,W

0
t ) =

{
Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ‖Wi −W 0

i ‖ ≤ O(1), ‖Wi −W 0
i ‖F ≤ R

}
For some fixed matrices, W 0

1 , . . . ,W
0
t of spectral norm1 O(1). It is natural to expect that considering59

balls around the initial W 0
i ’s instead of zero, shouldn’t change the sample complexity of the class60

at hand. In other words, we can expect that the sample complexity of NR(W 0
1 , . . . ,W

0
t ) should be61

approximately the sample complexity of NR. Namely, we expect a sample complexity of Õ
(
dR2

ε2

)
.62

Such a bound would finally be sub-linear, as in practice, it is often the case that R2 � d.63

This approach was pioneered by [4] who considered the class64

N 2,1
R (W 0

1 , . . . ,W
0
t ) =

{
Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ‖Wi −W 0

i ‖ ≤ O(1), ‖Wi −W 0
i ‖2,1 ≤ R

}
where ‖W‖2,1 =

∑d
i=1

√∑d
j=1W

2
ij . For this class they proved a sample complexity bound of65

Õ
(
dR2

ε2

)
. Since, ‖W‖2,1 ≤

√
d‖W‖F , this implies a sample complexity bound of Õ

(
d2R2

ε2

)
on66

NR(W 0
1 , . . . ,W

0
t ), which is still not sublinear2. In this paper we finally prove a sub-linear sample67

complexity bound of Õ
(
dR2

ε2

)
on NR(W 0

1 , . . . ,W
0
t ).68

To prove our results, we develop a new technique for bounding the sample complexity of function69

classes. Roughly speaking, we define a notion of approximate description of a function, and count70

1The bound of O(1) on the spectral norm of the W 0
i ’s and Wi −W 0

i is again motivated by the practice of
neural networks – the spectral norm of W 0

i , with standard initializations, is O(1), and empirical studies [6, 12]
show that the spectral norm of Wi −W 0

i is usually very small.
2We note that ‖W‖2,1 = Θ(

√
d) even if W is a random matrix with variance that is calibrated so that

‖W‖F = Θ(1) (namely, each entry has variance 1
d2

).
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how many bits are required in order to give an approximate description for the functions in the class71

under study. We then show that this number, called the approximate description length (ADL), gives72

an upper bound on the sample complexity. The advantage of our method over existing techniques is73

that it behaves nicely with compositions. That is, once we know the approximate description length74

of a class H of functions from X to Rd, we can also bound the ADL of ρ ◦ H, as well as L ◦ H,75

where L is a class of linear functions. This allows us to utilize the compositional structure of neural76

networks.77

2 Preliminaries78

Notation We denote by med(x1, . . . , xk) the median of x1, . . . , xk ∈ R. For vectors x1, . . . ,xk ∈79

Rd we denote med(x1, . . . ,xk) =
(
med(x11, . . . , x

k
1), . . . ,med(x1d, . . . , x

k
d)
)
. We use log to denote80

log2, and ln to denote loge An expression of the form f(n) . g(n) means that there is a universal81

constant c > 0 for which f(n) ≤ cg(n). For a finite set A and f : A → R we let Ex∈A f =82

Ex∈A f(a) = 1
|A|
∑
a∈A f(a). We denote BdM = {x ∈ Rd : ‖x‖ ≤ M} and Bd = Bd1. Likewise,83

we denote Sd−1 = {x ∈ Rd : ‖x‖ = 1} We denote the Frobenius norm of a matrix W by84

‖W‖2F =
∑
ijW

2
ij , while the spectral norm is denoted by ‖W‖ = max‖x‖=1 ‖Wx‖. For a pair of85

vectors x,y ∈ Rd we denote by xy ∈ Rd their point-wise product xy = (x1y1, . . . , xdyd)86

Uniform Convergence and Covering Numbers Fix an instance space X , a label space Y and a87

loss ` : Rd × Y → [0,∞). We say that ` is Lipschitz / Bounded / etc. if for any y ∈ Y , `(·, y)88

is. Fix a class H from X to Rd. For a distribution D and a sample S ∈ (X × Y)
m we define the89

representativeness of S as90

repD(S,H) = sup
h∈H

`D(h)−`S(h) where `D(h) = E
(x,y)∼D

`(h(x), y) and `S(h) =
1

m

m∑
i=1

`(h(xi), yi)

We note that if repD(S,H) ≤ ε then any algorithm that is guaranteed to return a function ĥ ∈ H91

will enjoy a generalization bound `D(h) ≤ `S(h) + ε. In particular, the ERM algorithm will return a92

function whose loss is optimal, up to an additive factor of ε. We will focus on bounds on repD(S,H)93

when S ∼ Dm. To this end, we will rely on the connection between representativeness and the94

covering numbers ofH.95

Definition 2.1. Fix a classH of functions from X to Rd, an integer m, ε > 0 and 1 ≤ p ≤ ∞. We96

define Np(H,m, ε) as the minimal integer for which the following holds. For every A ⊂ X of size97

≤ m there exists H̃ ⊂
(
Rd
)X

such that
∣∣∣H̃∣∣∣ ≤ Np(H,m, ε) and for any h ∈ H there is h̃ ∈ H̃ with98 (

Ex∈A
∥∥∥h(x)− h̃(x)

∥∥∥p
∞

) 1
p

≤ ε. For p = 2, we denote N(H,m, ε) = N2(H,m, ε)99

We conclude with a lemma, which will be useful in this paper. The proof can be found in the100

supplementary material.101

Lemma 2.2. Let ` : Rd × Y → R be L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded. Assume that for any102

0 < ε ≤ 1, log (N(H,m, ε)) ≤ n
ε2 . Then ES∼Dm repD(S,H) . (L+B)

√
n√

m
log(m). Furthermore,103

with probability at least 1− δ, repD(S,H) . (L+B)
√
n√

m
log(m) +B

√
2 ln(2/δ)

m104

A Basic Inequality105

Lemma 2.3. Let X1, . . . , Xn be independent r.v. with that that are σ-estimators to µ. Then106

Pr (|med(X1, . . . , Xn)− µ| > kσ) <
(
2
k

)n
107

3 Simplified Approximate Description Length108

To give a soft introduction to our techniques, we first consider a simplified version of it. We next109

define the approximate description length of a classH of functions from X to Rd, which quantifies110

the number of bits it takes to approximately describe a function fromH. We will use the following111

notion of approximation112

3



Definition 3.1. A random vector X ∈ Rd is a σ-estimator to x ∈ Rd if113

EX = x and ∀u ∈ Sd−1, VAR(〈u, X〉) = E 〈u, X − x〉2 ≤ σ2

A random function f̂ : X → Rd is a σ-estimator to f : X → Rd if for any x ∈ X , f̂(x) is a114

σ-estimator to f(x).115

A (σ, n)-compressor C for a classH takes as input a function h ∈ H, and outputs a (random) function116

Ch such that (i) Ch is a σ-estimator of h and (ii) it takes n bits to describe Ch. Formally,117

Definition 3.2. A (σ, n)-compressor forH is a pair (C,Ω, µ) where µ is a probability measure on Ω,118

and C is a function C : Ω×H →
(
Rd
)X

such that119

1. For any h ∈ H and x ∈ X , (Cωh)(x), ω ∼ µ is a σ-estimator of h(x).120

2. There are functions E : Ω×H → {±1}n and D : {±1}n →
(
Rd
)X

for which C = D ◦E121

Definition 3.3. We say that a classH of functions from X to Rd has approximate description length122

n if for any set there exists an (1, n)-compressor forH123

It is not hard to see that if (C,Ω, µ) is a (σ, n)-compressor forH, then124

(Cω1,...,ωk
h)(x) :=

∑k
i=1(Cωi

h)(x)

k

is a
(
σ√
k
, kn

)
-compressor forH. Hence, if the approximate description length ofH is n, then for125

any 1 ≥ ε > 0 there exists an
(
ε, ndε−2e

)
-compressor forH.126

We next connect the approximate description length, to covering numbers and representativeness. We127

separate it into two lemmas, one for d = 1 and one for general d, as for d = 1 we can prove a slightly128

stronger bound.129

Lemma 3.4. Fix a classH of functions from X to R with approximate description length n. Then,130

log (N(H,m, ε)) ≤ n
⌈
ε−2
⌉
. Hence, if ` : Rd ×Y → R is L-Lipschitz and B-bounded, then for any131

distribution D on X × Y , ES∼Dm repD(S,H) . (L+B)
√
n√

m
log(m). Furthermore, with probability132

at least 1− δ, repD(S,H) . (L+B)
√
n√

m
log(m) +B

√
2 ln(2/δ)

m133

Lemma 3.5. Fix a classH of functions from X to Rd with approximate description length n. Then,134

log (N∞(H,m, ε)) ≤ log (N(H,m, ε)) ≤ n
⌈
16ε−2

⌉
dlog(dm)e

Hence, if ` : Rd × Y → R is L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded, then for any distribution D135

on X × Y , ES∼Dm repD(S,H) .
(L+B)

√
n log(dm)√
m

log(m). Furthermore, with probability at least136

1− δ, repD(S,H) .
(L+B)

√
n log(dm)√
m

log(m) +B
√

2 ln(2/δ)
m137

3.1 Linear Functions138

We next bound the approximate description length of linear functions with bounded Frobenius norm.139

Theorem 3.6. Let class Ld1,d2,M =
{
x ∈ Bd1 7→Wx : W is d2 × d1 matrix with ‖W‖F ≤M

}
140

has approximate description length141

n ≤
⌈

1

4
+ 2M2

⌉
2 dlog (2d1d2(M + 1))e

Hence, if ` : Rd2 × Y → R is L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded, then for any distribution D142

on X × Y143

E
S∼Dm

repD(S,Ld1,d2,M ) .
(L+B)

√
M2 log(d1d2M) log(d2m)√

m
log(m)

Furthermore, with probability at least 1− δ,144

repD(S,Ld1,d2,M ) .
(L+B)

√
M2 log(d1d2M) log(d2m)√

m
log(m) +B

√
2 ln (2/δ)

m
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We remark that the above bounds on the representativeness coincides with standard bounds ([11] for145

instance), up to log factors. The advantage of these bound is that they remain valid for any output146

dimension d2.147

In order to prove theorem 3.6 we will use a randomized sketch of a matrix.148

Definition 3.7. Let w ∈ Rd be a vector. A random sketch of w is a random vector ŵ that is samples149

as follows. Choose i w.p. pi =
w2

i

2‖w‖2 + 1
2d . Then, w.p. wi

pi
−
⌊
wi

pi

⌋
let b = 1 and otherwise b = 0.150

Finally, let ŵ =
(⌊

wi

pi

⌋
+ b
)
ei. A random k-sketch of w is an average of k-independent random151

sketches of w. A random sketch and a random k-sketch of a matrix is defined similarly, with the152

standard matrix basis instead of the standard vector basis.153

The following useful lemma shows that an sketch w is a
√

1
4 + 2‖w‖2-estimator of w.154

Lemma 3.8. Let ŵ be a random sketch of w ∈ Rd. Then, (1) E ŵ = w and (2) for any u ∈ Sd−1,155

E (〈u, ŵ〉 − 〈u,w〉)2 ≤ E 〈u, ŵ〉2 ≤ 1
4 + 2‖w‖2156

Proof. (of theorem 3.6) We construct a compressor for Ld1,d2,M as follows. Given W , we will157

sample a k-sketch Ŵ of W for k =
⌈
1
4 + 2M2

⌉
, and will return the function x 7→ Ŵx. We claim158

that that W 7→ Ŵ is a (1, 2k dlog(2d1d2(M + 1))e)-compressor for Ld1,d2,M . Indeed, to specify a159

sketch of W we need dlog(d1d2)e bits to describe the chosen index, as well as log (2d1d2M + 2)160

bits to describe the value in that index. Hence, 2k dlog(2d1d2(M + 1))e bits suffices to specify a161

k-sketch. It remains to show that for x ∈ Bd1 , Ŵx is a 1-estimator of Wx. Indeed, by lemma 3.8,162

E Ŵ = W and therefore E Ŵx = Wx. Likewise, for u ∈ Sd2−1. We have163

E
(〈

u, Ŵx
〉
− 〈u,Wx〉

)2
= E

(〈
Ŵ ,xuT

〉
−
〈
W,xuT

〉)2
≤

1
4 + 2M2

k
≤ 1

164

3.2 Simplified Depth 2 Networks165

To demonstrate our techniques, we consider the following class of functions. We let the domain X to166

be Bd. We fix an activation function ρ : R→ R that is assumed to be a polynomial ρ(x) =
∑k
i=0 aix

i167

with
∑n
n=1 |an| = 1. For any W ∈ Md,d we define hW (x) = 1√

d

∑d
i=1 ρ(〈wi,x〉) Finally, we168

let H =
{
hW : ∀i, ‖wi‖ ≤ 1

2

}
In order to build compressors for classes of networks, we will169

utilize to compositional structure of the classes. Specifically, we have that H = Λ ◦ ρ ◦ F where170

F = {x 7→Wx : W is d× d matrix with ‖wi‖ ≤ 1 for all i} and Λ(x) = 1√
d

∑d
i=1 xi.171

As F is a subset of Ld,d,√d, we know that there exists a (1, O (d log(d)))-compressor for it. We will172

use this compressor to build a compressor to ρ ◦ F , and then to Λ ◦ ρ ◦ F . We will start with the173

latter, linear case, which is simpler174

Lemma 3.9. Let X be a σ-estimator to x ∈ Rd1 . Let A ∈ Md2,d1 be a matrix of spectral norm175

≤ r. Then, AX is a (rσ)-estimator to Ax. In particular, if C is a (1, n)-compressor to a classH of176

functions from X to Rd. Then177

C′ω(Λ ◦ h) = Λ ◦ Cωh
is a (1, n)-compressor to Λ ◦ H178

We next consider the composition of F with the non-linear ρ. As opposed to composition with a linear179

function, we cannot just generate a compression version using F’s compressor and then compose180

with ρ. Indeed, if X is a σ-estimator to x, it is not true in general that ρ(X) is an estimator of ρ(x).181

For instance, consider the case that ρ(x) = x2, and X = (X1, . . . , Xd) is a vector of independent182

standard Gaussians. X is a 1-estimator of 0 ∈ Rd. On the other hand, ρ(X) = (X2
1 , . . . , X

2
n) is not183

an estimator of 0 = ρ(0). We will therefore take a different approach. Given f ∈ F , we will sample184

k independent estimators {Cωif}ki=1 from F’s compressor, and define the compressed version of185

σ ◦ h as C′ω1,...,ωk
f =

∑d
i=0 ai

∏i
j=0 Cωi

f . This construction is analyzed in the following lemma186
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Lemma 3.10. If C is a
(
1
2 , n
)
-compressor of a classH of functions from X to

[
− 1

2 ,
1
2

]d
. Then C′ is187

a (1, n)-compressor of ρ ◦ H188

Combining theorem 3.6 and lemmas 3.9, 3.10 we have:189

Theorem 3.11. H has approximation length . d log(d). Hence, if ` : R × Y → R is L-Lipschitz190

and B-bounded, then for any distribution D on X × Y191

E
S∼Dm

repD(S,H) .
(L+B)

√
d log(d)√
m

log(m)

Furthermore, with probability at least 1− δ,192

repD(S,H) .
(L+B)

√
d log(d)√
m

log(m) +B

√
2 ln (2/δ)

m

Lemma 3.10 is implied by the following useful lemma:193

Lemma 3.12. 1. If X is a σ-estimator of x then aX is a (|a|σ)-estimator of aX194

2. Suppose that for n = 1, 2, 3, . . . Xn is a σn-estimator of xn ∈ Rd. Assume furthermore195

that
∑∞
n=1 xn and

∑∞
n=1 σn converge to x ∈ Rd and σ ∈ [0,∞). Then,

∑∞
n=1Xn is a196

σ-estimator of x197

3. Suppose that {Xi}ki=1 are independent σi-estimators of xi ∈ Rd. Then
∏k
i=1Xi is a198

σ′-estimator of
∏k
i=1 xi for σ′2 =

∏k
i=1

(
σ2
i + ‖xi‖2∞

)
−
∏k
i=1 ‖xi‖

2
∞199

We note that the bounds in the above lemma are all tight.200

4 Approximation Description Length201

In this section we refine the definition of approximate description length that were given in section 3.202

We start with the encoding of the compressed version of the functions. Instead of standard strings,203

we will use what we call bracketed string. The reason for that often, in order to create a compressed204

version of a function, we concatenate compressed versions of other functions. This results with205

strings with a nested structure. For instance, consider the case that a function h is encoded by the206

concatenation of h1 and h2. Furthermore, assume that h1 is encoded by the string 01, while h2 is207

encoded by the concatenation of h3, h4 and h5 that are in turn encoded by the strings 101, 0101 and208

1110. The encoding of h will then be [[01][[101][0101][1110]]]. We note that in section 3 we could209

avoid this issue since the length of the strings and the recursive structure were fixed, and did not210

depend on the function we try to compress. Formally, we define211

Definition 4.1. A bracketed string is a rooted tree S, such that (i) the children of each edge are212

ordered, (ii) there are no nodes with a singe child, and (iii) the leaves are labeled by {0, 1}. The213

length, len(S) of S is the number of its leaves.214

Let S be a bracketed string. There is a linear order on its leaves that is defined as follows. Fix a pair215

of leaves, v1 and v2, and let u be their LCA. Let u1 (resp. u2) be the child of u that lie on the path to216

v1 (resp. v2). We define v1 < v2 if u1 < u2 and v1 > v2 otherwise (note that necessarily u1 6= u2).217

Let v1, . . . , vn be the leaves of T , ordered according to the above order, and let b1, . . . , bn be the218

corresponding bits. The string associated with T is s = b1 . . . bn. We denote by Sn the collection of219

bracketed strings of length ≤ n, and by S = ∪∞n=1Sn the collection of all bracketed strings.220

The following lemma shows that in log-scale, the number of bracketed strings of length ≤ n differ221

from standard strings of length ≤ n by only a constant factor222

Lemma 4.2. |Sn| ≤ 32n223

We next revisit the definition of a compressor for a classH. The definition of compressor will now224

have a third parameter, ns, in addition to σ and n. We will make three changes in the definition.225

The first, which is only for the sake of convenience, is that we will use bracketed strings rather than226

standard strings. The second change, is that the length of the encoding string will be bounded only227
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in expectation. The final change is that the compressor can now output a seed. That is, given a228

function h ∈ H that we want to compress, the compressor can generate both a non-random seed229

Es(h) ∈ Sns and a random encoding E(ω, h) ∈ S with Eω∼µ len(E(ω, h)) ≤ n. Together, Es(h)230

and E(ω, h) encode a σ-estimator. Namely, there is a function D : Sns
× S →

(
Rd
)X

such that231

D(Es(h), E(ω, h)), ω ∼ µ is a σ-estimator of h. The advantage of using seeds is that it will232

allow us to generate many independent estimators, at a lower cost. In the case that n � ns, the233

cost of generating k independent estimators of h ∈ H is ns + kn bits (in expectation) instead of234

k(ns + n) bits. Indeed, we can encode k estimators by a single seed Es(h) and k independent235

“regular" encodings E(ωk, h), . . . , E(ωk, h). The formal definition is given next.236

Definition 4.3. A (σ, ns, n)-compressor for H is a 5-tuple C = (Es, E,D,Ω, µ) where µ is a237

probability measure on Ω, and Es, E,D are functions Es : H → T ns , E : Ω × H → T , and238

D : T ns × T →
(
Rd
)X

such that for any h ∈ H and x ∈ X (1) D(Es(h), E(ω, h)), ω ∼ µ is a239

σ-estimator of h and (2) Eω∼µ len(E(ω, h)) ≤ n240

We finally revisit the definition of approximate description length. We will add an additional241

parameter, to accommodate the use of seeds. Likewise, the approximate description length will242

now be a function of m – we will say thatH has approximate description length (ns(m), n(m)) if243

there is a (1, ns(m), n(m))-compressor for the restriction ofH to any set A ⊂ X of size at most m.244

Formally:245

Definition 4.4. We say that a classH of functions from X to Rd has approximate description length246

(ns(m), n(m)) if for any set A ⊂ X of size ≤ m there exists a (1, ns(m), n(m))-compressor for247

H|A248

It is not hard to see that if H has approximate description length (ns(m), n(m)), then for any249

1 ≥ ε > 0 and a setA ⊂ X of size≤ m, there exists an
(
ε, ns(m), n(m)dε−2e

)
-compressor forH|A.250

We next connect the approximate description length, to covering numbers and representativeness.251

The proofs are similar the the proofs of lemmas 3.4 and 3.5.252

Lemma 4.5. Fix a class H of functions from X to R with approximate description length253

(ns(m), n(m)). Then, log (N(H,m, ε)) . ns(m) + n(m)
ε2 Hence, if ` : Rd × Y → R is L-Lipschitz254

and B-bounded, then for any distribution D on X × Y255

E
S∼Dm

repD(S,H) .
(L+B)

√
ns(m) + n(m)√
m

log(m)

Furthermore, with probability at least 1− δ,256

repD(S,H) .
(L+B)

√
ns(m) + n(m)√
m

log(m) +B

√
2 ln (2/δ)

m

Lemma 4.6. Fix a class H of functions from X to Rd with approximate description length257

(ns(m), n(m)). Then, log (N(H,m, ε)) ≤ log (N∞(H,m, ε)) . ns(m) + n(m) log(dm)
ε2 . Hence, if258

` : Rd × Y → R is L-Lipschitz w.r.t. ‖ · ‖∞ and B-bounded, then for any distribution D on X × Y259

E
S∼Dm

repD(S,H) .
(L+B)

√
ns(m) + n(m) log(dm)√

m
log(m)

Furthermore, with probability at least 1− δ,260

repD(S,H) .
(L+B)

√
ns(m) + n(m) log(dm)√

m
log(m) +B

√
2 ln (2/δ)

m

We next analyze the behavior of the approximate description length under various operations261

Lemma 4.7. LetH1,H2 be classes of functions from X to Rd with approximate description length262

of (n1s(m), n1(m)) and (n2s(m), n2(m)). Then H1 + H2 has approximate description length of263

(n1s(m) + n2s(m), 2n1(m) + 2n2(m))264

Lemma 4.8. Let H be a class of functions from X to Rd with approximate description length265

of (ns(m), n(m)). Let A be d2 × d1 matrix. Then A ◦ H1 has approximate description length266 (
ns(m),

⌈
‖A‖2

⌉
n(m)

)
267
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Figure 1: The functions ln (1 + ex) and ex

1+ex

Definition 4.9. Denote by Ld1,d2,r,R the class of all d2× d1 matrices of spectral norm at most r and268

Frobenius norm at most R.269

Lemma 4.10. Let H be a class of functions from X to Rd1 with approximate description length270

(ns(m), n(m)). Assume furthermore that for any x ∈ X and h ∈ H we have that ‖h(x)‖ ≤ B. Then,271

Ld1,d2,r,R ◦ H has approximate description length272 (
ns(m), n(m)O(r2 + 1) +O

(
(d1 +B2)(R2 + 1) log(Rd1d2 + 1)

))
Definition 4.11. A function f : R → R is B-strongly-bounded if for all n ≥ 1, ‖f (n)‖∞ ≤ n!Bn.273

Likewise, f is strongly-bounded if it is B-strongly-bounded for some B274

We note that275

Lemma 4.12. If f is B-strongly-bounded then f is analytic and its Taylor coefficients around any276

point are bounded by Bn277

The following lemma gives an example to a strongly bounded sigmoid function, as well as a strongly278

bounded smoothened version of the ReLU (see figure 1).279

Lemma 4.13. The functions ln (1 + ex) and ex

1+ex are strongly-bounded280

Lemma 4.14. Let H be a class of functions from X to Rd with approximate description length of281

(ns(m), n(m)). Let ρ : R→ R be B-strongly-bounded. Then, ρ ◦ H has approximate description282

length of283 (
ns(m) +O

(
n(m)B2 log(md)

)
, O
(
n(m)B2 log(d)

))
5 Sample Complexity of Neural Networks284

Fix the instance space X to be the ball of radius
√
d in Rd (in particular [−1, 1]d ⊂ X ) and a B-285

strongly-bounded activation ρ. Fix matrices W 0
i ∈Mdi,di−1

, i = 1, . . . , t. Consider the following286

class of depth-t networks287

Nr,R(W 0
1 , . . . ,W

0
t ) =

{
Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ‖Wi −W 0

i ‖ ≤ r, ‖Wi −W 0
i ‖F ≤ R

}
We note that288

Nr,R(W 0
1 , . . . ,W

0
t ) = Nr,R(W 0

t ) ◦ . . . ◦ Nr,R(W 0
1 )

The following lemma analyzes the cost, in terms of approximate description length, when moving289

from a classH to Nr,R(W 0) ◦ H.290

Lemma 5.1. Let H be a class of functions from X to Rd1 with approximate description length291

(ns(m), n(m)) and ‖h(x)‖ ≤M for any x ∈ X and h ∈ H. Fix W 0 ∈Md2,d1 . Then, Nr,R(W 0
t ) ◦292

H has approximate description length of293 (
ns(m) + n′(m)B2 log(md2), n′(m)B2 log(d2)

)
for294

n′(m) = n(m)O(r2 + ‖W 0‖2 + 1) +O
(
(d1 +M2)(R2 + 1) log(Rd1d2 + 1)

)
The lemma is follows by combining lemmas 4.7, 4.8, 4.10 and 4.14. We note that in the case that295

d1, d2 ≤ d, M = O(
√
d1), B, r, ‖W 0‖ = O(1) (and hence R = O

(√
d
)

) and R ≥ 1 we get that296

Nr,R(W 0) ◦ H has approximate description length of297 (
ns(m) +O (n(m) log(md)) , O (n(m) log(d)) +O

(
d1R

2 log2(d)
))

By induction, the approximate description length of Nr,R(W 0
1 , . . . ,W

0
t ) is298 (

dR2O (log(d))
t
log(md), dR2O (log(d))

t+1
)
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6 Omitted proofs327

Lemma 6.1. [11] Let ` : Rd × Y → R be B-bounded. Then328

E
S∼Dm

repD(S,H) ≤ B2−M+1 +
12B√
m

M∑
k=1

2−k
√

ln (N(` ◦ H,m,B2−k))

Furthermore, with probability at least 1− δ,329

repD(S,H) ≤ B2−M+1 +
12B√
m

M∑
k=1

2−k
√

ln (N(` ◦ H,m,B2−k)) +B

√
2 ln (2/δ)

m

Proof. (of lemma 2.2) Denote330

A = B2−M+1 +
12B√
m

M∑
k=1

2−k
√

ln (N(` ◦ H,m,B2−k))

We will show that A . (L+B)
√
n√

m
log(m). We have, if B2−k

L ≤ 1,331

ln
(
N(` ◦ H,m,B2−k)

)
≤ ln

(
N

(
H,m, B

L
2−k

))
≤ nL222k

B2
+ n

Hence,332

A ≤ B2−M+1 +
12B√
m

M∑
k=1

√
nL

B
+

12B√
m

M∑
k=1

2−k
√
n ≤ B2−M+1 +

12(LM +B)
√
n√

m

Choosing M = log
(√

m
n

)
we get,333

A ≤
12(L log

(√
m
n

)
+B)

√
n+B

√
n

√
m

334

Proof. (of lemma 2.3) We have that Pr(|Xi − µ| > kσ) ≤ 1
k2 . It follows that the probability that335

≥ n
2 of X1, . . . , Xn fall outside of the segment (µ− kσ, µ+ kσ) is bounded by336 (

n

dn/2e

)(
1

k2

)dn/2e
< 2n

(
1

k2

)dn/2e
≤
(

2

k

)n
337

Proof. (of lemma 3.4) Fix a set A ⊂ X . Let (C,Ω, µ) be a
(
n
⌈
ε−2
⌉
, ε
)
-compressor for H. Let H̃338

be the range of C. Note that
∣∣∣H̃∣∣∣ ≤ 2ndε

−2e. Fix h ∈ H. It is enough to show that there is h̃ ∈ H̃339

with Ex∈A
(
h(x)− h̃(x)

)2
≤ ε2. Indeed,340

E
ω∼µ

E
x∈A

(h(x)− (Cωh)(x))
2

= E
x∈A

E
ω∼µ

(h(x)− (Cωh)(x))
2 ≤ ε2 .

Hence, there exists h̃ ∈ H̃ for which Ex∈A
(
h(x)− h̃(x)

)2
≤ ε2341

342

Proof. (of lemma 3.5) Denote k = dlog(dm)e. Fix a set A ⊂ X . Let C be a
(
n
⌈
16ε−2

⌉
, ε4
)
-343

compressor forH. Define344

(C′ω1,...,ωk
h)(x) = med ((Cω1

h)(x), . . . , (Cωk
f)(x))
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Let H̃ be the range of C′. Note that
∣∣∣H̃∣∣∣ ≤ 2knd16ε

−2e. Fix h ∈ H. It is enough to show that there is345

h̃ ∈ H̃ with maxx∈A

∥∥∥h(x)− h̃(x)
∥∥∥
∞
≤ ε. By lemma 2.3 we have that346

Pr
ω1,...,ωk∼µ

(
∃x ∈ A,

∣∣(C′ω1,...,ωk
h)(x)− h(x)

∣∣ > ε
)
< dm2−k ≤ 1

In particular, there exists h̃ ∈ H̃ for which maxx∈A

∥∥∥h(x)− h̃(x)
∥∥∥
∞
≤ ε347

Proof. (of lemma 3.8) Items 1. is straight forward. To see item 2. note that348

E (〈u, ŵ〉 − 〈u,w〉)2 ≤ E 〈u,w〉2

=
∑
i

pi

([
wi
pi

](⌊
wi
pi

⌋
+ 1

)2

+

(
1−

[
wi
pi

])(⌊
wi
pi

⌋)2
)
u2i

=
∑
i

pi

((⌊
wi
pi

⌋)2

+ 2

[
wi
pi

] ⌊
wi
pi

⌋
+

[
wi
pi

])
u2i

=
∑
i

pi

((⌊
wi
pi

⌋
+

[
wi
pi

])2

+

[
wi
pi

]
−
[
wi
pi

]2)
u2i

=
∑
i

pi

((
wi
pi

)2

+

[
wi
pi

](
1−

[
wi
pi

]))
u2i

≤
∑
i

pi

((
wi
pi

)2

+
1

4

)
u2i

≤ 1

4
‖u‖2∞ +

∑
i

w2
i u

2
i

pi

≤ 1

4
+
∑
i

w2
i u

2
i

pi

Now, since pi =
w2

i

2‖w‖2 + 1
2d we have349

∑
i

w2
i u

2
i

pi
≤
∑
i

w2
i u

2
i

w2
i

2‖w‖2
= 2‖w‖2

∑
i

u2i = 2‖w‖2

350

Proof. (of lemma 3.9) We have EAX = AEX = Ax. Furthermore, for any u ∈ Sd2−1,351

E 〈u, AX −Ax〉2 = E
〈
ATu, X − x

〉2 ≤ ‖ATu‖2σ2 ≤ r2σ2

352
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Proof. (of lemma 3.12) 1. and 2. are straight forward. We next prove 3. By replacing each Xi with353
Xi

σi
we can assume w.l.o.g. that σ1 = . . . = σk = 1. We have354

E
X1,...,Xk

〈
u,

k∏
i=1

Xi −
k∏

i=1

xi

〉2

= E
X1,...,Xk

〈
u,

k∏
i=1

((Xi − xi) + xi)−
k∏

i=1

xi

〉2

= E
X1,...,Xk

〈
u,
∑

A⊂[k]

∏
i∈A

(Xi − xi)
∏

i∈Ac

xi −
k∏

i=1

xi

〉2

= E
X1,...,Xk

〈u,
∑

A⊂[k]

∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉
−
〈
u,

k∏
i=1

xi

〉2

= E
X1,...,Xk

∑
A⊂[k]

∑
B⊂[k]

〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉〈
u,
∏
i∈B

(Xi − xi)
∏

i∈Bc

xi

〉

−2 E
X1,...,Xk

∑
A⊂[k]

〈
u,

k∏
i=1

xi

〉〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉

+

〈
u,

k∏
i=1

xi

〉2

(1)
= E

X1,...,Xk

∑
A⊂[k]

〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉2

−
〈
u,

k∏
i=1

xi

〉2

(2)

≤
∑

A⊂[k],A6=[k]

∥∥∥∥∥∥u
∏

i∈Ac

xi

∥∥∥∥∥∥
2

=
∑

A⊂[k],A6=∅

∥∥∥∥∥∥u
∏
i∈A

xi

∥∥∥∥∥∥
2

(3)

≤
∑

A⊂[k],A6=∅

∏
i∈A
‖xi‖2∞

=

k∏
i=1

(
1 + ‖xi‖2∞

)
−

k∏
i=1

‖xi‖2∞

(1) If A 6= B, then w.l.o.g. k ∈ A \B. In this case we have355

E
X1,...,Xk

〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉〈
u,
∏
i∈B

(Xi − xi)
∏

i∈Ac

xi

〉

= E
X1,...,Xk−1

E
Xk

〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉〈
u,
∏
i∈B

(Xi − xi)
∏

i∈Bc

xi

〉

= E
X1,...,Xk−1

〈
u,
∏
i∈B

(Xi − xi)
∏

i∈Bc

xi

〉
E

Xk

〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉

= E
X1,...,Xk−1

〈
u,
∏
i∈B

(Xi − xi)
∏

i∈Bc

xi

〉〈
u,

∏
i∈A\[k]

(Xi − xi)

=0︷ ︸︸ ︷
E

Xk

(Xk − xk)
∏

i∈Ac

xi

〉
= 0

Similarly, if A 6= ∅, then w.l.o.g. k ∈ A. In this case we have356

E
X1,...,Xk

〈
u,

k∏
i=1

xi

〉〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉
= E

X1,...,Xk−1

E
Xk

〈
u,

k∏
i=1

xi

〉〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉

= E
X1,...,Xk−1

〈
u,

k∏
i=1

xi

〉〈
u,

∏
i∈A\[k]

(Xi − xi)

=0︷ ︸︸ ︷
E

Xk

(Xk − xk)
∏

i∈Ac

xi

〉

(2) Fix a set A that is w.l.o.g. A = {1, . . . , k′}. We note that if X ∈ Rd is a 1-estimator to 0,357

then for any vector z ∈ Rd358

E
X
‖zX‖2 =

d∑
i=1

z2i E
X
X2
i =

d∑
i=1

z2i E
X
〈ei, X〉2 ≤

d∑
i=1

z2i = ‖z‖2
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It follows that359

E
X1,...,Xk′−1

∥∥∥∥∥∥u
k∏

i=k′+1

xi

k′−1∏
i=1

(Xi − xi)

∥∥∥∥∥∥
2

= E
X1,...,Xk′−2

E
Xk′−1

∥∥∥∥∥∥u
k∏

i=k′+1

xi

k′−1∏
i=1

(Xi − xi)

∥∥∥∥∥∥
2

≤ E
X1,...,Xk′−2

∥∥∥∥∥∥u
k∏

i=k′+1

xi

k′−2∏
i=1

(Xi − xi)

∥∥∥∥∥∥
2

...

≤

∥∥∥∥∥u
k∏

i=k′+1

xi

∥∥∥∥∥
2

=

∥∥∥∥∥u ∏
i∈Ac

xi

∥∥∥∥∥
2

Hence,360

E
X1,...,Xk

〈
u,
∏
i∈A

(Xi − xi)
∏

i∈Ac

xi

〉2

= E
X1,...,X

k′−1

E
X

k′

〈
u

k∏
i=k′+1

xi

k′−1∏
i=1

(Xi − xi) , (Xk′ − xk′ )

〉2

X
k′ is 1-estimator of xk

≤ E
X1,...,X

k′−1

∥∥∥∥∥∥u
k∏

i=k′+1

xi

k′−1∏
i=1

(Xi − xi)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥u
∏

i∈Ac

xi

∥∥∥∥∥∥
2

(3) If z = u
∏
i∈A xi then for any j ∈ [d], |zj | ≤ |uj |

∏
i∈A ‖xi‖∞. Hence,361

‖z‖2 ≤
∏
i∈A
‖xi‖∞

d∑
j=1

u2j =
∏
i∈A
‖xi‖∞

362

Proof. (of lemma 4.2) By adding a pair of brackets around each bit, each bracketed string can be363

described by 2n− 1 correctly matched pairs of brackets, and a string of length ≤ n. As the number364

of ways to correctly match k pairs of brackets is the Catalan number Ck = 1
k+1

(
2k
k

)
≤ 22k, we have,365

|Sn| ≤ 24n−22n+1366

Proof. (of lemma 4.10) Fix as setA ⊂ X of sizem. We will construct a compressor to Ld1,d2,r,R ◦H367

as follows. Given h ∈ H and W ∈ Ld1,d2,r,R we first pay a seed cost ns(m) to useH’s compressor.368

Then, we useH’s compressor to generate a
√

1
k1

-estimator ĥ of h, at the cost of k1n(m) bits. Then,369

we take Ŵ to be a k2-sketch of W , at the costs of k2O (log (d1d2R+ 1)) bits. Finally, we output370

the estimator ĥ ◦ Ŵ . Fix a ∈ A. We must show that ŴX := Ŵ ĥ(a) is a 1-estimator of x = h(a).371
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Indeed, for u ∈ Sd2−1 we have,372

E
X

Ê
W

〈
u, ŴX −Wx

〉2
= E

X
Ê
W

〈
u, ŴX −WX

〉2
+ 2

〈
u, ŴX −WX

〉
〈u,WX −Wx〉+ 〈u,WX −Wx〉2

= E
X

Ê
W

〈
u, ŴX −WX

〉2
+ 2 E

X

〈
u,

=0︷ ︸︸ ︷
Ê
W

[
Ŵ −W

]
X

〉
〈u,WX −Wx〉+ E

X
Ê
W
〈u,WX −Wx〉2

= E
X

Ê
W

〈
u, ŴX −WX

〉2
+ 〈u,WX −Wx〉2

= E
X

Ê
W

〈
Ŵ −W,Xu

T
〉2

+
〈
W

T
u, X − x

〉2

Lemma 3.8
≤

2‖W‖2F + 1

k2
E
X
‖X‖2 +

1

k1
‖Wu‖2

(1)

≤
2‖W‖2F + 1

k2

[
E
X
‖X − x‖2 + ‖x‖2

]
+

1

k1
‖W‖2

(2)

≤
2‖W‖2F + 1

k2

[
1

k1
d1 + ‖x‖2

]
+

1

k1
‖W‖2

≤
2R2 + 1

k2

[
1

k1
d1 + B

2

]
+

1

k1
r
2

(1) We have373

E
X
‖X − x‖2 = E

X
‖X‖2 − 2 〈X,x〉+ ‖x‖2

= E
X
‖X‖2 − 2 〈EX,x〉+ ‖x‖2

= E
X
‖X‖2 − ‖x‖2

(2) We have374

E
X
‖X − x‖2 =

d1∑
i=1

E(Xi − xi)2

=

d1∑
i=1

E 〈X − x, ei〉2

≤
d1∑
i=1

1

k1
=
d1
k1

Finally, by choosing k1 =
⌈
2r2
⌉

+ 1 and k2 = 2(d1 +B2)(2R2 + 1) we get the result.375

Lemma 6.2. Suppose that {Xn}∞n=1 are independent σ-estimators to x ∈ Rd. Let ρ(t) =376 ∑∞
n=0 ant

n. Let U = a0+
∑∞
n=1 ânYn where Yn =

∏n
i=1Xi and ân = an

p1
w.p. pi and 0 otherwise.377

Then U is σ’-estimator of ρ(x) with σ′ =
∑∞
n=1

√
‖an‖2∞
pn

((σ2 + ‖x‖2∞)
n

+ (1− pn)d‖x‖2n∞ ).378

Remark 6.3. In particular, if ‖an‖∞ ≤ Bn,
√
σ2 + ‖x‖2∞ ≤ 1

6B and pn =

{
1 n ≤

⌈
log3(d)

2

⌉
4−n otherwise

,379

We have σ′ ≤ 1 and Emax{n : ân 6= 0} ≤ log3(d)+4
2 . Indeed,380

∞∑
n=1

√
‖an‖2∞
pn

((σ2 + ‖x‖2∞)n + (1− pn)d‖x‖2n∞ ) ≤
∞∑

n=1

√
‖an‖2∞
pn

(σ2 + ‖x‖2∞)n +
∞∑

n=1

√
‖an‖2∞
pn

(1− pn)d‖x‖2n∞

≤
∞∑

n=1

(2B)
n
√

(σ2 + ‖x‖2∞)n +
√
d

∞∑
n=

⌈
log3(d)

2

⌉
+1

(2B)
n ‖x‖n∞

≤
∞∑

n=1

(
1

3

)n

+
√
d

∞∑
n=

⌈
log3(d)

2

⌉
+1

(
1

3

)n

≤
∞∑

n=1

(
1

3

)n

+
∞∑

n=1

(
1

3

)n

= 1
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and381

Emax{n : ân 6= 0} ≤
⌈

log3(d)

2

⌉
+

∞∑
n=
⌈

log3(d)
2

⌉
+1

4−nn ≤
⌈

log3(d)

2

⌉
+ 1

Proof. By lemma 3.12 it is enough to show that for all n, ânYn is a382 √
‖an‖2∞
pn

((σ2 + ‖x‖2∞)
n

+ (1− pn)d‖x‖2n∞ )-estimator of anxn. Indeed,383

VAR (〈u, ânYn〉) = E
(
〈u, ânYn〉 −

〈
u, anx

n〉)2
= pn E

(〈
u,

an

pn
Yn

〉
−
〈
u, anx

n〉)2

+ (1− pn)
〈
u, anx

n〉2
=

1

pn
E 〈u, anYn〉2 − 2E 〈u, anYn〉

〈
u, anx

n〉
+ pn

〈
u, anx

n〉2
+ (1− pn)

〈
u, anx

n〉2
=

1

pn
E 〈u, anYn〉2 −

〈
u, anx

n〉2
=

1

pn
E
(
〈anu, Yn〉2 −

〈
anu,x

n〉2)
+

1− pn
pn

〈
u, anx

n〉2
lemma 3.12
≤

‖anu‖22
pn

((
σ
2
+ ‖x‖2∞

)n
+ (1− pn)‖xn‖22

)
≤

‖an‖2∞
pn

((
σ
2
+ ‖x‖2∞

)n
+ (1− pn)d‖x‖2n∞

)
384

Proof. (of lemma 4.13) Consider the complex function f(z) = ez

1+ez . It is defined in the strip385

{z = x+ iy : |y| < π}. By Cauchy integral formula, for any r < π, a ∈ R and n ≥ 0,386

f (n)(a) =
n!

2πi

∫
|z−a|=r

f(z)

(z − a)n+1

It follows that387 ∣∣∣f (n)(a)
∣∣∣ ≤ n!

rn
max
|z−a|=r

|f(z)| ≤ n!

rn
max

x+iy:|y|<r
|f(x+ iy)|

Now, if |y| < r < π
2 , we have388

|f(x+ iy)| = ex

|1 + eiyex|
≤ ex

|1 + cos(y)ex|
≤ ex

|1 + cos(r)ex|
≤ 1

cos(r)

This implies that ex

1+ex is strongly bounded. Likewise, since ex

1+ex is the derivative of ln (1 + ex), the389

function ln (1 + ex) is strongly bounded as well.390

Proof. (of lemma 4.14) Fix a set A ⊂ X of size ≤ m. Let ε2 = σ2 = 1
72B2 and note that391 √

σ2 + ε2 ≤ 1
6B . To generate a 1-estimator to ρ ◦ h ∈ ρ ◦ H on A we first describe h̃, which forms392

the seed, such that ∀i ∈ [m], ‖h̃(xi)− h(xi)‖∞ ≤ ε. Then, we generate σ-estimators ĥ1, ĥ2, . . . ,393

to h|A. Finally, we sample Bernoulli random variables Z1, Z2, . . . where the parameter of Zn is394

pn =

{
1 n ≤

⌈
log3(d)

2

⌉
4−n otherwise

. The final estimator is395

ĝ(x) = ρ(h̃(x)) +

∞∑
n=1

ρ(n)(h̃(x))

n!

Zn
pn
Yn where Yn =

n∏
i=1

(
ĥi(x)− h̃(x)

)
By lemma 6.2 and the following remark, ĝ is 1-estimator of ρ ◦ h|A.396

How many bits do we need in order to specify ĝ? By lemma 4.6 the restriction of H|A has an397

ε-cover, w.r.t. the∞-norm, of log-size . ns(m) + n(m) log(md)
ε2 . So the generation of the seed h̃398

costs ns(m) + n(m) log(md)
ε2 bits. We also need to specify N := max{n : Zn 6= 0}, Z1, . . . , ZN399

and ĥ1, . . . , ĥN . This can be done by concatenating the descriptions of the pairs (Zn, ĥn) for400

n = 1, . . . , N . The bit cost of this is bounded (in expectation) by log3(d)+4
2

(
d72B2en(m) + 1

)
401
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