
GENO – GENeric Optimization for Classical
Machine Learning (Supplemental Material)

1 More Experiments

Here, we add more experiments that illustrate the versatility and efficiency of the GENO approach.

1.1 Support Vector Machines

Support Vector Machines (SVMs) [9] have been studied intensively and are widely used, especially
in combination with kernels [28]. They remain populat, as is indicated by the still rising citation
count of the popular and heavily-cited solver LIBSVM [5]. The dual formulation of an SVM is given
as the following quadratic optimization problem

mina
1
2 (a� y)

>K(a� y)− ‖a‖1
s. t. y>a = 0

0 ≤ a ≤ c,

where K ∈ Rm×m is a kernel matrix, y ∈ {−1,+1}m is a binary label vector, c ∈ R is the
regularization parameter, and � is the element-wise multiplication. While the SVM problem with a
kernel can also be solved in the primal [6], it is traditionally solved in the dual. We use a Gaussian
kernel, i.e., Kij = exp

(
−γ ‖Xi −Xj‖22

)
and standard data sets. We set the bandwith parameter

γ = 1/2 which corresponds to roughly the median of the pairwise data point distances and set
C = 1. Table 1 shows that the solver generated by GENO is as efficient as LIBSVM which has been
maintained and improved over the last 15 years. Both solvers outperform general purpose approaches
like CVXPY with OSQP [31], SCS [26], Gurobi [18], or Mosek [24] by a few orders of magnitude.

Table 1: Running times in seconds for solving a dual Gaussian-kernelized SVM. The optimality gap
is close to 10−4 for all solvers and data sets. Missing entries in the table indicate that the solver did
not finish within one hour.

Solver Datasets

ionosphere australian diabetes a1a a5a a9a w8a cod-rna

GENO 0.009 0.024 0.039 0.078 1.6 30.0 25.7 102.1
LIBSVM 0.005 0.010 0.009 0.088 1.0 18.0 78.6 193.1
SCS 0.442 1.461 3.416 11.707 517.5 - - -
OSQP 0.115 0.425 0.644 3.384 168.2 - - -
Gurobi 0.234 0.768 0.992 4.307 184.4 - - -
Mosek 0.378 0.957 1.213 6.254 152.7 - - -

1.2 Elastic Net

Elastic net regression [34] has also been studied intensively and is used mainly for mircoarray data
classification and gene selection. Given some data X ∈ Rm×n and a response y ∈ Rm, elastic net
regression seeks to minimize

1

2m
‖Xw − y‖22 + α

(
λ ‖w‖1 +

1− λ
2
‖w‖22

)
,
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where α and λ are the corresponding elastic net regularization parameters. The most popular solver
is glmnet, a dual coordinate descent approach that has been implementated in Fortran [17]. In our
experiments, we follow the same setup as in [17]. We generated Gaussian data X ∈ Rm×n with m
data points and n features. The outcome values y were generated by

y =

n∑
j=1

Xjβj + k · z,

where βj = (−1)j exp(−j/10), z ∼ N (0, 1), and k is chosen such that the signal-to-noise ratio is
3. We varied the number of data points m and the number of features n. The results are shown in
Table 2. It can be seen that the solver generated by GENO is as efficient as glment and orders of
magnitude faster than comparable state-of-the-art general purpose approaches like CVXPY coupled
with ECOS, SCS, Gurobi, or Mosek. Note, that the OSQP solver could not be run on this problem
since CVXPY raised the error that it cannot convert this problem into a QP.

Table 2: Running times for the elastic net regression problem in seconds. Missing entries in the table
indicate that the solver did not finish within one hour. The optimality gap is about 10−8 for all solvers
which is the standard setting for glmnet.

m n Solvers

GENO glmnet ECOS SCS Gurobi Mosek

1000 1000 0.11 0.10 43.27 2.33 21.14 1.77
2000 1000 0.14 0.08 202.04 9.24 58.44 3.52
3000 1000 0.18 0.08 513.78 22.86 114.79 5.38
4000 1000 0.21 0.09 - 38.90 185.79 7.15
5000 1000 0.27 0.11 - 13.88 151.08 8.69

1000 5000 1.74 0.62 - 28.69 - 13.06
2000 5000 1.49 1.41 - 45.79 - 27.69
3000 5000 1.58 2.02 - 81.83 - 50.99
4000 5000 1.24 1.88 - 135.94 - 67.60
5000 5000 1.41 1.99 - 166.60 - 71.92

5000 10000 4.11 4.75 - - - -
7000 10000 4.76 5.52 - - - -

10000 10000 4.66 3.89 - - - -
50000 10000 13.97 6.34 - - - -
70000 10000 18.82 11.76 - - - -

100000 10000 23.38 23.42 - - - -

1.3 Non-negative Least Squares

Least squares is probably the most widely used regression method. Non-negative least squares is
an extension that requires the output to be non-negative. It is given as the following optimization
problem

minx ‖Ax− b‖22
s. t. x ≥ 0,

where A ∈ Rm×n is a given design matrix and b ∈ Rm is the response vector. Since non-negative
least squares has been studied intensively, there is a plenitude of solvers available that implement
different optimization methods. An overview and comparison of the different methods can be found
in [30]. Here, we use the accompanying code described in [30] for our comparison. We ran two
sets of experiments, similarly to the comparisons in [30], where it was shown that the different
algorithms behave quite differently on these problems. For experiment (i), we generated random data
A ∈ R2000×6000, where the entries of A were sampled uniformly at random from the interval [0, 1]
and a sparse vector x ∈ R6000 with non-zero entries sampled also from the uniform distribution of
[0, 1] and a sparsity of 0.01. The outcome values were then generated by y =

√
0.003 ·Ax+0.003 ·z,

where z ∼ N (0, 1). For experiment (ii), A ∈ R6000×3000 was drawn form a Gaussian distribution
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and x had a sparsity of 0.1. The outcome variable was generated by y =
√

1/6000 ·Ax+ 0.003 · z,
where z ∼ N (0, 1). The differences between the two experiments are the following: (1) The Gram
matrix A>A is singular in experiment (i) and regular in experiment (ii), (2) The design matrix A has
isotropic rows in experiment (ii) which does not hold for experiment (i), and (3) x is significantly
sparser in (i) than in (ii). We compared the solver generated by GENO with the following approaches:
the classical Lawson-Hanson algorithm [20], which employs an active set strategy, a projected
gradient descent algorithm combined with an Armijo-along-projection-arc line search [1, Ch 2.3],
a primal-dual interior point algorithm that uses a conjugate gradient descent algorithm [2] with a
diagonal preconditioner for solving the Newton system, a subspace Barzilai-Borwein approach [19],
and Nesterov’s accelerated projected gradient descent [25]. Figure 1 shows the results for both
experiments. Note, that the Barzilai-Borwein approach with standard parameter settings diverged on
experiment (i) and it would stop making progress on experiment (ii). While the other approaches
vary in running time depending on the problem, the experiments show that the solver generated by
GENO is always among the fastest compared to the other approaches.

We provide the final running times of the general purpose solvers in Table 3 since obtaining inter-
mediate solutions is not possible for these solvers. Table 3 also provides the function values of the
individual solvers. It can be seen, while the SCS solver is considerably faster than the ECOS solver,
the solution computed by the SCS solver is not optimal in experiment (i). The ECOS solver provides
a solution with the same accuracy as GENO but at a running time that is a few orders of magnitude
larger.
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Figure 1: Running times for non-negative least squares regression. The figure on the left shows the
running times for the experiment (i) and the figure on the right the running times for experiment (ii).
The algorithms are projected gradient descent (pd), Lawson-Hanson (LH), subspace Barzilai-Borwein
(BB), primal-dual interior point method (pd), Nesterov’s accelerated projected gradient descent (Nest),
and GENO.

Table 3: Running times and function values for the non-negative least squares problem.

m n GENO ECOS SCS Gurobi Mosek

2000 6000 time 4.8 689.7 70.4 187.3 24.9
fval 0.01306327 0.01306327 0.07116707 0.01306330 0.01306343

6000 3000 time 0.3 3751.3 275.5 492.9 58.4
fval 0.03999098 0.03999098 0.04000209 0.03999100 0.03999114

1.4 Non-linear Least Squares

GENO makes use of a quasi-Newton solver which approximates the Hessian by the weighted sum of
the identity matrix and a positive semidefinite, low-rank matrix. One could assume that this does
not work well in case that the true Hessian is indefinite, i.e., in the non-convex case. Hence, we also
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conducted some experiments on non-convex problems. We followed the same setup and ran the same
experiments as in [23] and compared to state-of-the-art solvers that were specifically designed to
cope with non-convex problems. Especially, we considered the non-linear least squares problem,
i.e., we seek to minimize the function l(x) = ‖σ(Ax)− b‖22, where A ∈ Rm×n is a data matrix,
y ∈ {0, 1}m is a binary label vector, and σ(s) = 1/(1 + exp(−s)) is the sigmoid function. Figure 2
shows the convergence speed for the data set w1a and a1a. The state-of-the-art specialized solvers
that were introduced in [23] are S-AdaNCG, which is a stochastic adaptive negative curvature and
gradient algorithm, and AdaNCD-SCSG, an adaptive negative curvature descent algorithm that uses
SCSG [21] as a subroutine. The experiments show that GENO outperforms both algorithms by a
large margin. In fact, on the data set a1a, both algorithms would not converge to the optimal solution
with standard parameter settings. Again, this problem cannot be modeled and solved by CVXPY.
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Figure 2: Running times for the non-linear least squares problem. The figure on the left shows the
running times for the data set w1a and on the right for the data set a1a.

1.5 Compressed Sensing

In compressed sensing, one tries to recover a sparse signal from a number of measurements [4, 14].
See the recent survey [27] for an overview on this topic. The problem can be reduced to finding the
solution to an underdetermined system of linear equations with minimal `1-norm. Hence, it can be
written as the following optimization problem

minx ‖x‖1
s. t. Ax = b,

(1)

where A ∈ Rm×n is a measurement matrix and b ∈ Rm is the vector of m measurements. Note, that
this problem is a constrained problem with a non-differentiable objective function. It is known that
when matrix A has the restricted isometry property and the true signal x∗ is sparse, then Problem (1)
recovers the true signal with high probability, if the dimensions m and n are chosen properly [3].
There has been made considerable progress in designing algorithms that come with convergence
guarantees [7, 8]. Very recently, in [15] a new and efficient algorithm based on the iterative reweighted
least squares (IRLS) technique has been proposed. Compared to previous approaches, their algorithm
is simple and achieves the state-of-the-art convergence guarantees for this problem.

We used the same setup and random data set as in [15] and ran the same experiment. The measurement
matrix A ∈ R150×200 had been generated randomly, such that all rows are orthogonal. Then, a sparse
signal x∗ with only 15 non-zero entries had been chosen and the corresponding measurement vector
b had been computed via b = Ax∗. We compared to their IRLS algorithm with the long-steps update
scheme. Figure 3 shows the convergence speed speed towards the optimal function value as well as
the convergence towards feasibility. It can be seen that the solver generated by GENO outperforms
the specialized, state-of-the-art IRLS solver by a few orders of magnitude.
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Figure 3: Running times for the compressed sensing problem. The figure on the left shows the
convergence to the optimal objective function value and the figure on the right shows the norm of the
constraint violation of the iterate x(k), i.e.,

∥∥Ax(k) − b∥∥
2
.

2 Summary of Solvers

Table 4: Summary of all solvers that were used in the experiments.

Name Type Reference

GENO quasi-Newton w/ augmented Lagrangian this paper

OSQP ADMM [31]
SCS ADMM [26]
ECOS interior point [13]
Gurobi interior point [18]
Mosek interior point [24]
LIBSVM Frank-Wolfe (SMO) [5]

LIBLINEAR conjugate gradient + [16, 33]dual coordinate descent
SAGA SGD [11]
SDCA SGD [29]
catalyst SDCA SGD [22]
Point-SAGA SGD [10]
glmnet dual coordinate descent [17]
Lawson-Hanson direct linear equations solver w/ active set [20]
projected gradient descent proximal algorithm [30]
primal-dual interior point w/ interior point [30]preconditioned conjugate gradient
subspace Barlizai-Borwein quasi-Newton [19]
Nesterov’s method accelerated gradient descent [25]
SymANLS block coordinate descent [32]
SymHALS block coordinate descent [32]
S-AdaNCG SGD [23]
AdaNCD-SCSG SGD [23]
IRLS IRLS w/ conjugate gradient method [15]
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3 GENO Models for all Experiments

parameters
Matrix X
Scalar c
Vector y

variables
Scalar b
Vector w

min
norm1(w) + c
* sum(log(exp((-y) .* (X*w
+ vector(b))) + vector(1)))

Figure 4: `1-regularized Logistic Regression

parameters
Matrix X
Scalar c
Vector y

variables
Vector w

min
0.5 * w' * w
+ c * sum(log(exp((-y) .* (X * w))
+ vector(1)))

Figure 5: `2-regularized Logistic Regression

parameters
Matrix K symmetric
Scalar c
Vector y

variables
Vector a

min
0.5 * (a.*y)' * K * (a.*y) - sum(a)

st
a >= 0
y' * a == 0

Figure 6: Support Vector Machine

parameters
Matrix X
Scalar a1
Scalar a2
Scalar n
Vector y

variables
Vector w

min
n * norm2(X*w - y).^2
+ a1 * norm1(w) + a2 * w' * w

Figure 7: Elastic Net

parameters
Matrix A
Vector b

variables
Vector x

min
norm2(A*x - b).^2

st
x > 0

Figure 8: Non-negative Least Squares

parameters
Matrix X symmetric

variables
Matrix U

min
norm2(X - U*U').^2

st
U >= 0

Figure 9: Symmetric NMF

parameters
Matrix X
Scalar s
Vector y

variables
Vector w

min
s * norm2(y - 0.5
* tanh(0.5 * X * w)
+ vector(0.5)).^2

Figure 10: Non-linear Least Squares

parameters
Matrix A
Vector b

variables
Vector x

min
norm1(x)

st
A*x == b

Figure 11: Compressed Sensing
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