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1 Proof of Incompatibility

Definition 1. (Weak dependence on inputs) Consider a piecewise-linear model

f(x) =


wT

1 x + b1 x ∈ U1
...

wT
nx + bn x ∈ Un

where all Ui are open connected sets. For this function, the saliency map S(x) = σ(f,x) for some
x ∈ Ui is constant for all x ∈ Ui and is a function of only the parameters wi, bi.
Definition 2. (Completeness) A saliency map S(x) is

• complete if there exists a function φ such that φ(S(x),x) = f(x).

• complete with a baseline x0 if there exists a function φc such that φc(S(x), S0(x0),x,x0) =
f(x)− f(x0), where S0(x0) is the saliency of the baseline.

Proposition 1. For any piecewise-linear function f , it is impossible to obtain a saliency map S that
satisfies both completeness and weak dependence on inputs, in general

Proof. From the definition of saliency maps, there exists a mapping from σ : (f,x) → S. Let us
consider the family of piecewise linear functions which are defined over the same open connected
sets given by Ui for i ∈ [1, n]. Members of this family thus can be completely specified by the set of
parameters θ = {wi, bi|i ∈ [1, n]} ∈ Rn∗(D+1) for f and similarly θ′ for f ′.

For this family, weak dependence implies that the restriction of the mapping σ to the set Ui, is
denoted by σ

∣∣
Ui

: (wi, bi)→ S. Now, since (wi, bi) ∈ RD+1 and S ∈ RD, the mapping σ
∣∣
Ui

is a
many-to-one function. This implies that there exists piecewise linear functions f and f ′ within this
family, with parameters θi = (wi, bi) and θ′i = (w′i, b

′
i) respectively (with θi 6= θ′i), which map to

the same saliency map S.

Part (a): From the first definition of completeness, there exists a mapping φ : S,x → f(x).
However, for two different piecewise linear functions f and f ′ that map to the same S for some input
x ∈ Ui, we must have that φ(S,x) = f(x) = wT

i x + bi for f and φ(S,x) = f ′(x) = w′
T
i x + b′i

for f ′. This can hold for a local neighbourhood around x if and only if wi = w′i and bi = b′i, which
we have already assumed to be not true.

Part (b): From the second definition of completeness, there exists a mapping φc : S, S0,x,x0 →
f(x)− f(x0).

Let the baseline input x0 ∈ Uj . Similar to the case above, let us assume existence of functions f and
f ′ with parameters θj = (wj , bj) and θ′j = (w′j , b

′
j) respectively (with θj 6= θ′j), which map to the

same saliency map S0. This condition is in addition to the condition already applied on Ui.
Hence we must have that φ(S, S0,x,x0) = f(x) − f(x0) = wT

i x + bi − wT
j x − bj for f and

φ(S, S0,x,x0) = f ′(x) − f ′(x0) = w′
T
i x + b′i − w′

T
j x − b′j for f ′. This can hold for local
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neighbourhoods around x and x0 if and only if wi = w′i, wj = w′j and bi − b′i = bj − b′j . The
final condition does not hold in general, hence completeness is not satisfied.

When does bi − b′i = bj − b′j hold?

• For piecewise linear models without bias terms (e.g.: ReLU neural networks with no biases),
the terms bi, b′i, bj , b

′
j are all zero, and hence this condition holds for such networks.

• For linear models, (as opposed to piecewise linear models), or when both x and x0 lie on
the same linear piece, then bi = bj , which automatically implies that the condition holds.

However these are corner cases and the condition on the biases does not hold in general.

2 Full-gradient Proofs

Proposition 2. Let f be a ReLU neural network without bias units, then f(x) = ∇xf(x)Tx.

Proof. For ReLU nets without bias, we have f(kx) = kf(x) for k ≥ 0. This is a consequence of
the positive homogeneity property of ReLU (i.e; max(0, kx) = kmax(0,x))

Now let ε ∈ R+ be infinitesimally small. We can now use first-order Taylor series to write the
following. f((1 + ε)x) = f(x) + εf(x) = f(x) + εxT∇xf(x).

Proposition 3. Let f be a ReLU neural network with bias-parameters b ∈ RF , then

f(x;b) = ∇xf(x;b)Tx +
∑

i∈[1,F ]

(∇bf(x;b)� b)i

= ∇xf(x;b)Tx +∇bf(x;b)Tb (1)

Proof. We introduce bias inputs xb = 1F , an all-ones vector, which are multiplied with bias-
parameters b. Now f(x,xb) is a linear function with inputs (x,xb). Proposition applies here.

f(x,xb) = ∇xf(x,xb)
Tx +∇xb

f(x,xb)
Txb (2)

= ∇xf(x,xb)
Tx +

∑
i

(∇xb
f(x,xb))i

Using chain rule for ReLU networks, we have ∇xb
f(x,xb;b, z) = ∇zf(x,xb;b, z) � b, where

z ∈ RF consists of all intermediate pre-activations. Again invoking chain rule, we have
∇zf(x,xb;b, z) = ∇bf(x,xb;b, z)

Observation. For a piecewise linear neural network, f b(x) is locally constant in each linear region.

Proof. Consider a one-hidden layer ReLU net of the form f(x) = w1 ∗ relu(w0 ∗ x + b0) + b1,
where f(x) ∈ R. Let ρ(z) = drelu(z)

dz be the derivative of the output of relu w.r.t. its inputs. Then
the gradients w.r.t. b0 can be written as df

db0
= w1 ∗ ρ(w0 ∗ x + b0). For each linear region, the

derivatives of the relu non-linearities w.r.t. their inputs are constant. Thus for a one-hidden layer net,
the bias-gradients are constant in each linear region. The same can be recursively applied for deeper
networks.

3 Experiments to Illustrate Post-Processing Trade-offs

In this section, we shall describe the experiments performed on the MNIST dataset. First, we perform
the digit flipping experiment [1] to test class sensitivity of our method. Next, we perform pixel
perturbation experiment as outlined in Section 5.1 of the main paper.
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Method Random Gradient IntegratedGrad FullGrad FullGrad (no abs)

∆ log-odds 1.41± 8.21 11.92± 17.99 10.81± 20.11 8.26± 21.44 12.93± 18.20

Table 1: Results on the digit flipping task (8 → 3). We see that FullGrad (minimal) outperforms
others including FullGrad. Larger numbers are better.

Method Random Gradient IntegratedGrad FullGrad FullGrad (no abs)

RF = 0.5 0.82± 0.28 0.29± 0.22 0± 0 0.06± 0.13 0.19± 0.19
RF = 0.7 0.98± 0.34 0.52± 0.27 0.004± 0.06 0.08± 0.11 0.34± 0.23
RF = 0.9 1.12± 0.42 0.88± 0.34 0.44± 0.33 0.55± 0.30 0.63± 0.27

Table 2: Results on the pixel perturbation task on MNIST. In this case, FullGrad performs better than
FullGrad (minimal). The overall best performer here is Integrated gradients. Smaller numbers are
better.

3.1 Digit Flipping

Broadly, the task here is to turn images of the MNIST digit "8" into those of the digit "3" by removing
pixels which provide positive evidence of "8" and negative evidence for "3". We perform experiments
with a setting similar to the DeepLIFT paper [1], except that we use a VGG-like architecture. Here,
FullGrad (no abs) refers to using ψm(·) = bilinearUpsample(·) and the FullGrad method refers
to using ψm(·) = bilinearUpsample(abs(·)). From the results in Table 3.1, we see that FullGrad
without absolute value performs better in the digit flipping task when compared to FullGrad and all
other methods.

3.2 Pixel Perturbation

We perform the pixel perturbation task on MNIST. This involves removing the least salient pixels as
predicted by a saliency map method and measuring the fractional change in output. The smaller the
fractional output change, the better is the saliency method. From Table 3.2, we observe that Integrated
gradients perform best overall for this dataset. We hypothesize that the binary nature of MNIST data
(i.e.; pixels are either black or white, and "removed" pixels are black) may be well-suited to Integrated
gradients, which is not the case for our Imagenet experiments. However, more interestingly, we
observe that regular FullGrad outperforms the variant without absolute values.

Thus while for digit flipping it seems that FullGrad (no abs) is the best, followed by gradients and
Integrated gradients, for pixel perturbation it seems that Integrated Gradients is the best followed by
FullGrad and FullGrad (no abs). Thus it seems that any single saliency or post-processing method is
never consistently better than the others, which might point to either the deficiency of the methods
themselves, or the complementary nature of the metrics.

4 Saliency Results

3



Image Input
gradient [2]

Integrated
gradient [3]

Smooth-grad
[4]

Grad-CAM
[5]

FullGrad
(Ours)

Figure 1: Comparison of different neural network saliency methods.
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Figure 2: Comparison of different neural network saliency methods.
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