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A Preliminaries

Before we proof Theorem 2, we introduce the concept of pseudo-dimension (Haussler, 1992; Li et al.,
2001) and a result from Li et al. (2001).
Definition 4. (Haussler, 1992; Li et al., 2001) Fix a countably infinite domain X . The pseudo-
dimension of a set F of functions from X to [0, 1], denoted by Pdim(F), is the largest d′ such there
is a sequence x1, . . . , xd′ of domain elements from X and a sequence r1, . . . , rd′ of reals such that
for each b1, . . . , bd′ ∈ {above, below}, there is an f ∈ F such that for all i = 1, . . . , d′ we have
f(xi) ≥ ri ⇐⇒ bi = above.
Theorem 4. (Li et al., 2001) Let α > 0, ν > 0 and δ > 0. Fix a countably infinite domain X
and let P be any probability distribution over X . Let F be a set of functions from X to [0, 1] with
Pdim(F) = d′. Denote by C a sample of m points from X independently drawn according to P with

m ≥ c

α2ν

(
d′ log

1

ν
+ log

1

δ

)
,

where c is an absolute constant. Then, it holds with probability of at least 1− δ that

dν

(
EP [f ],

1

|C|
∑
x∈C

f(x)

)
≤ α ∀f ∈ F ,

where dν(a, b) =
|a−b|
a+b+ν . Over all choices of F with Pdim(F) = d, this bound on m is tight.

B Proof of Theorem 2

The proof relies on bounds of the projection of a point x to the convex hull of the query Q.
Lemma 2. Let X be a set of points in Rd with mean µ. For all x ∈ X and Q ⊂ Rd satisfying
µ ∈ conv(Q), it holds that

d(x, Q)2 ≤ 2d(x, µ)2.

Proof. By the triangle inequality and since (|a|+ |b|)2 ≤ 2a2 + 2b2 we have for any x and Q that

d(x, Q)2 ≤ (d(x, µ) + d(µ,Q))2 ≤ 2d(x, µ)2 + 2d(µ,Q)2.

Since µ ∈ conv(Q), the distance of µ to the query Q is zero, i.e., d(µ,Q)2 = 0 yielding our claim:

d(x, Q)2 ≤ 2d(x, µ)2.

Theorem 2 can now be shown as follows.
Theorem 2. Let ε > 0, δ > 0 and k ∈ N. Let X be a set of points in Rd with mean µ ∈ Rd and let
C be the output of Algorithm 2 with a sample size m of at least

m ≥ c
dk log k + log 1

δ

ε2
,

where c is an absolute constant. Then, with probability of at least 1− δ, the set C fulfills

|φX (Q)− φC(Q)| ≤ εφX ({µ}) (7)

for any query Q ⊂ Rd of cardinality at most k satisfying µ ∈ conv(Q).

Proof. Let µ be the mean of X . Consider the function

gQ(x) =
d(x,Q)2

2d(x, µ)2
.
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Due to the non-negativity of the distances as well as Lemma 2 we know that gQ(x) ∈ [0, 1] for any
x ∈ X and Q ⊂ Rd satisfying µ ∈ conv(Q). Then, it holds that

φX (Q) =
∑
x∈X

d(x,Q)2 =
∑
x∈X

2d(x, µ)2φX ({µ})
2d(x, µ)2φX ({µ})

d(x,Q)2

= 2φX ({µ})
∑
x∈X

d(x, µ)2

φX ({µ})
d(x,Q)2

2d(x, µ)2
= 2φX ({µ})

∑
x∈X

q(x)gQ(x) = 2φX ({µ})Eq [gQ(x)] .

Following the discussion in Bachem et al. (2017) and since every coreset for k-means is also a coreset
for archetypal analysis (Proposition 1 in the paper), we use the result Pdim(G) ∈ O(dk log k).
Hence, we can choose d′ = 1

log 2dk log k. Let α = ε
6 , ν = 1

2 , c′ be an absolute constant and c = 72c′.
By using

m ≥ c′

α2ν

(
d′ log

1

ν
+ log

1

δ

)
=

72c′

ε2

(
d′ log 2 + log

1

δ

)
= c

dk log k + log 1
δ

ε2
,

Theorem 4 implies that with probability of at least 1− δ

dν

(
Eq[gQ(x)],

1

|C|
∑
x∈C

gQ(x)

)
≤ ε

6

uniformly for all setsQ of cardinality at most k including µ in their convex hull. Since both arguments
of dν are in [0, 1], the denominator of dν is bounded by 3. Hence, we have∣∣∣∣∣Eq[gQ(x)]− 1

|C|
∑
x∈C

gQ(x)

∣∣∣∣∣ ≤ ε

2
.

We now multiply both sides by 2φX ({µ}) yielding∣∣∣∣∣2φX ({µ})Eq[gQ(x)]− 2φX ({µ})
|C|

∑
x∈C

gQ(x)

∣∣∣∣∣ ≤ εφX ({µ}).
The first part is equal to φX (Q) and the second part can be rewritten as follows:

2φX ({µ})
|C|

∑
x∈C

gQ(x) =
2φX ({µ})
|C|

∑
x∈C

d(x,Q)2

2d(x, µ)2
=
∑
x∈C

φX ({µ})
|C|d(x, µ)2

d(x,Q)2

=
∑
x∈C

1

|C| d(x,µ)
2

φX ({µ})

d(x,Q)2 =
∑
x∈C

1

|C|q(x)
d(x,Q)2 = φC(Q).

Finally, we obtain our claim:
|φX (Q)− φC(Q)| ≤ εφX ({µ}).

C Proof of Theorem 3

Theorem 3. Let ε > 0 and X be a set of points in Rd with mean µ ∈ Rd. Denote by Q?X the optimal
solution on X and by Q?C the optimal solution on C. Then it holds that

φX (Q
?
C) ≤ φX (Q?X ) + 2εφX ({µ}).

Proof. Since Q?C is the optimal solution on C we know that
φC(Q

?
C) ≤ φC(Q?X ) (8)

and by the property in Equation (7) we have that
φX (Q)− εφX ({µ}) ≤ φC(Q) ≤ φX (Q) + εφX ({µ}).

Inserting Q?C and Q?X yields
φX (Q

?
C)− εφX ({µ}) ≤ φC(Q?C) ≤ φX (Q?C) + εφX ({µ}), (9)

φX (Q
?
X )− εφX ({µ}) ≤ φC(Q?X ) ≤ φX (Q?X ) + εφX ({µ}). (10)

It follows that

φX (Q
?
C)− εφX ({µ})

(9)
≤ φC(Q

?
C)

(8)
≤ φC(Q

?
X )

(10)
≤ φX (Q

?
X ) + εφX ({µ}).

Adding εφX ({µ}) to both sides yields the claim.
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Algorithm 3 Archetypal Analysis (Cutler and Breiman, 1994)
Input: data matrix X, number of archetypes k
Output: weight matrices A and B
Z← initialization of the archetypes, e.g., via FurthestSum (Mørup and Hansen, 2012)
while not converged do

for i = 1, 2, . . . , n do
ai = argmin

‖ai‖1=1,ai≥0
‖Z>ai − xi‖22

end for
Z = (A>A)−1A>X
for j = 1, 2, . . . , k do
bj = argmin

‖bj‖1=1,bj≥0
‖X>bj − zj‖22

end for
Z = BX

end while

D Weighted Archetypal Analysis

Algorithm 2 does not only produce a subset C of X but also corresponding weights wi > 0 (i =
1, . . . ,m) of the sampled data points. These weights need to be incorporated into the learning
procedure.

Eugster and Leisch (2011) propose a weighted archetypal analysis by moving the weights into the
Frobenius norm in Equation (2) as follows
n∑
i=1

wi‖xi − ZTai‖22 =

n∑
i=1

wi

d∑
j=1

((xi)j − (ZTai)j)
2 =

n∑
i=1

d∑
j=1

((
√
wixi)j − (

√
wiX

TBTai)j)
2

=

n∑
i=1

d∑
j=1

((x̃i)j − (X̃TBTai)j)
2,

where the x̃i =
√
wixi (i = 1, . . . , n) denote the transformed data points. Once the data has been

transformed, a standard archetypal analysis can be computed. Note that, before application, the
weight matrix A needs to be re-computed on the original data using the archetypes. Unfortunately,
this approach has a major drawback: Since the archetypes zj live on the boundary of conv(X ),
scaling X will change the support of the archetypes. This is however counterintuitive in our setting.
While the placement of the archetypes may be influenced by the weights, their support should not be
affected.

We thus propose an alternative way to include weights into vanilla archetypal analysis as proposed by
Cutler and Breiman (1994) and outlined in Algorithm 3. Without loss of generality, assume that the
weights were natural numbers. Hence, having a weight wi on data point xi is equivalent to having
the data point wi times within the data set. This causes wi times the projection ‖xi − ZTai‖22. In
addition, we have wi times the weight vector ai. Thus, the weight wi affects the intermediate update
of the archetypes, which is Z = (A>A)−1A>X as outlined in Algorithm 3. Instead of adding a
point xi multiple (wi) times, we can incorporate the weights via the modified update rule

Z = (Ã>Ã)−1Ã>X̃,

where Ã = WA, X̃ = WX and W is the diagonal matrix of rooted weights, i.e., Wii =
√
wi.

Note that by this change, the location but not the support of the archetypes z1, . . . , zk is altered with
respect to the weights. The generalization to real-valued weights wi > 0 follows directly.
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