
A Supplementary Material

A.1 From the sign activation to the erf function

For completeness, we present the detailed derivation of Equation (4). This result appears namely in
Germain et al. [2009], Langford [2005], Langford and Shawe-Taylor [2002].

Given x ∈ Rd, we have

Fw(x) = E
v∼N (w,I)

sgn(v · x)

=

∫
Rd

sgn(v · x)

(
1√
2π

)d
e−

1
2‖v−w‖

2

dv

=

∫
Rd

(1 [v · x > 0]− 1 [v · x < 0])

(
1√
2π

)d
e−

1
2‖v−w‖

2

dv

=

(
1√
2π

)d ∫
Rd

1 [v · x > 0] e−
1
2‖v−w‖

2

dv −
(

1√
2π

)d ∫
Rd

1 [v · x < 0] e−
1
2‖v−w‖

2

dv .

Without loss of generality, let us consider a vector basis where x
‖x‖ is the first coordinate. In this

basis, the first elements of the vectors v = (v1, v2, . . . , vd) and w = (w1, w2, . . . , wd) are

v1 =
v · x
‖x‖ , w1 =

w · x
‖x‖ .

Hence, v · x = v1 · ‖x‖ with ‖x‖ > 0. Looking at the left side of the subtraction from the previous
equation, we thus have(

1√
2π

)d ∫
Rd

1 [v · x > 0] e−
1
2‖v−w‖

2

dv

=

∫
R

1 [v1 > 0]
1√
2π
e−

1
2 (v1−w1)2

[∫
Rd−1

(
1√
2π

)d−1

e−
1
2‖v2:d−w2:d‖2dv2:d

]
dv1

=
1√
2π

∫ ∞
−∞

1 [t > −w1] e−
1
2 t

2

dt ,

with t := v1 − w1. Hence,

E
v∼N (w,I)

sgn(v · x) =
1√
2π

∫ ∞
−∞

1 [t > −w1] e−
1
2 t

2

dt− 1√
2π

∫ ∞
−∞

1 [t < −w1] e−
1
2 t

2

dt

=
1√
2π

∫ ∞
−w1

e−
1
2 t

2

dt− 1√
2π

∫ −w1

−∞
e−

1
2 t

2

dt

=
1

2
+

1√
2π

∫ w1

0

e−
1
2 t

2

dt− 1

2
+

1√
2π

∫ w1

0

e−
1
2 t

2

dt

=

√
2√
π

∫ w1

0

e−
1
2 t

2

dt

=
2√
π

∫ w1√
2

0

e−u
2

du with u = t√
2

= erf

(
w1√

2

)
= erf

(
w · x√
2 ‖x‖

)
,

where erf(·) is the Gauss error function defined as erf(x) = 2√
π

∫ x
0
e−t

2

dt.
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Figure 3: Visual comparison between the erf , tanh and sgn activation functions.

A.2 Aggregation of multilayer networks without the tree architecture

To understand the benefit of the BAM to tree architecture map introduced in Section 4, let us
compute the prediction function of an aggregation of two hidden layers networks following the same
strategy as for the single hidden layer case (see Subsection 3.1).

The two hidden layer network is parameterized by weights θ = vec({W1,W2,w3}), with W1 ∈
Rd1×d0 , W2 ∈ Rd2×d1 and w3 ∈ Rd2 . Given an input x ∈ Rd0 , the output of the network is

fθ(x) = sgn
(
w3 · sgn(W2 · sgn(W1x))

)
. (20)

We seek to compute Fθ(x) = Eθ̃∼Qθ fθ̃(x) with θ̃ = vec({V1,V2,v3}) and Qθ = N (θ, ID). First,
we need to decompose the probability of each θ̃ ∼ Qθ as Qθ(θ̃)=Q1(V1)Q2(V2)Q3(v3), with
Q1=N (W1, Id0d1), Q2=N (W2, Id1d2) and Q3=N (w3, Id2).
Fθ(x) = E

θ̃∼Qθ
fθ̃(x)

=

∫
Rd1×d0
Q1(V1)

∫
Rd2×d1
Q2(V2)

∫
Rd2
Q3(v3)sgn(v3 · sgn(V2sgn(V1x)))dv3dV2dV1

=

∫
Rd1×d0
Q1(V1)

∫
Rd2×d1
Q2(V2) erf

(
w3·sgn(V2sgn(V1x))√
2‖sgn(V2sgn(V1x))‖

)
dV2dV1

=
∑

t∈{−1,1}d2

erf
(

w3·t√
2d2

)∫
Rd1×d0
Q1(V1)

∫
Rd2×d1
Q2(V2) 1[t = sgn(V2sgn(V1x))] dV2dV1

=
∑

t∈{−1,1}d2

erf
(

w3·t√
2d2

)∫
Rd1×d0
Q1(V1)

d2∏
i=1

∫
Rd2×d1
Qi2(vi2) 1[tisgn(vi2sgn(V1x)) > 0] dvi2dV1

=
∑

t∈{−1,1}d2

erf
(

w3·t√
2d2

)∑
s∈{−1,1}d1

∫
Rd1×d0
Q1(V1)1[s = sgn(V1x)]dV1

d2∏
i=1

[
1

2
+
ti
2

erf

(
wi

2 · s√
2d1

)]

=
∑

t∈{−1,1}d2

erf
(

w3·t√
2d2

)∑
s∈{−1,1}d1

d1∏
j=1

[
1

2
+
sj
2

erf

(
wj

1 · x√
2 ‖x‖

)]
︸ ︷︷ ︸

Ψs(x,W1)

d2∏
i=1

[
1

2
+
ti
2

erf

(
wi

2 · s√
2d1

)]
︸ ︷︷ ︸

Ψt(s,W2)

For each combination of first layer activation values s ∈ {−1, 1}d1 and second layer activation
values t ∈ {−1, 1}d2 , one needs to compute its probability Ψs(x,W1)Ψt(s,W2). This leads to a
summation of 2d1 × 2d2 terms. Instead, the layer by layer computation obtained by our tree mapping
trick implies 2d1 + 2d2 terms. This strategy enables a forward computation similar to traditional
neural network, as each hidden layer values relies solely on the values of the previous layer.
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A.3 Prediction for the multilayer case (with the proposed tree architecture map)

Details of the complete mathematical calculations leading to Equation (16) are presented below:

G
(j)
θ1:k+1

(x) :=

∫
Qζj(θ1:k+1)(η̃) gk+1(x, η̃) dη̃

=

∫
Qζ(θ1:k)(η̃1) . . .

∫
Qζ(θ1:k)(η̃dk)

(∫
Rd

k
Qwjk

(v)sgn[v · gk(x, η̃)]dv

)
dη̃dk . . . dη̃1

=

∫
Qζ(θ1:k)(η̃1) . . .

∫
Qζ(θ1:k)(η̃dk) erf

(
wj
k+1 · gk(x, η̃)√
2‖gk(x, η̃)‖

)
dη̃dk . . . dη̃1

=
∑

s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)∫
Qζ(θ1:k)(η̃1) . . .

∫
Qζ(θ1:k)(η̃dk) 1[s = gk(x, η̃)]dη̃dk · · · dη̃1

=
∑

s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)
dk∏
i=1

∫
Qζ(θ1:k)(η̃i) 1[si = gk(x, η̃i)]dη̃i

=
∑

s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)
dk∏
i=1

∫
Qζ(θ1:k)(η̃i)

(
1

2
+
si
2
gk(x, η̃i)

)
dη̃i

=
∑

s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)
dk∏
i=1

(
1

2
+
si
2

∫
Qζ(θ1:k)(η̃i)gk(x, η̃i)dη̃i

)

=
∑

s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)
dk∏
i=1

(
1

2
+

1

2
si ×G(i)

θ1:k
(x)

)
︸ ︷︷ ︸

Ψks (x,η)

.

Moreover,

Ψk
s (x, θ) =

dk∏
i=1

(
1

2
+

1

2
si ×G(i)

θ1:k
(x)

)
︸ ︷︷ ︸

ψksi
(x,θ)

.

Base case:

G
(j)
θ1:1

(x) = E
η̃∼N (ζj(θ1:1),I)

g1(x, η̃)

=

∫
Rd0

Qwj1
(v)sgn(v · x)dv

= erf

(
wj

1 · x√
2‖x‖

)
.

14



A.4 Derivatives of the multilayer case (with the proposed tree architecture map)

We first aim at computing ∂
∂wk+1

Gθ1:k+1
(x).

Recall that wj
k ∈ {w1

k, . . . ,w
dk
k } is the jth line of Wk, that is the input weights of the corresponding

hidden layer’s neuron.

∂

∂wj
k+1

G
(j)
θ1:k+1

(x) =
∂

∂wj
k+1

∑
s∈{−1,1}dk

erf

(
wjk+1·s√

2dk

)
Ψk

s (x, θ)

=
∑

s∈{−1,1}dk

s√
2dk

erf ′
(

wjk+1·s√
2dk

)
Ψk

s (x, θ) .

The base case of the recursion is

∂

∂wj
1

G
(j)
θ1:1

(x) =
∂

∂wj
1

erf

(
wj

1 · x√
2‖x‖

)

=
x√

2‖x‖
erf ′

(
wj

1 · x√
2‖x‖

)
.

In order to propagate the error through the layers, we also need to compute for k > 1:

∂

∂G
(l)
θ1:k

G
(j)
θ1:k+1

=
∂

∂G
(l)
θ1:k

∑
s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)
dk∏
i=1

(
1

2
+

1

2
si ×G(i)

θ1:k

)

=
∑

s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)[
Ψk

s (x, θ)

ψksl(x, θ)

]
∂

∂G
(l)
θ1:k

ψksl(x, θ)

=
∑

s∈{−1,1}dk

erf

(
wj
k+1 · s√

2dk

)[
slΨ

k
s (x, θ)

2ψksl(x, θ)

]
.

Thus, we can compute

∂L̂S
(
G

(j)
θ1:k+1

(x)
)

∂wj
k

=
∑
l

∂L̂S
(
G

(j)
θ1:k+1

(x)
)

∂G
(l)
θ1:k+1

∂G
(l)
θ1:k+1

∂G
(j)
θ1:k

∂G
(j)
θ1:k

∂wj
k

.
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A.5 Proof of Theorem 3

Lemma 4 (Germain et al. [2009], Proposition 2.1; Lacasse [2010], Proposition 6.2.2).
For any 0 ≤ q ≤ p < 1, we have

sup
C>0

[
∆(C, q, p)

]
= kl(q‖p) ,

with

∆(C, q, p) := − ln(1− p(1− e−C))− Cq . (21)

Proof. For 0 ≤ q, p < 1, ∆(C, q, p) is concave in C and the maximum is c0 = − ln
(
qp−p
qp−q

)
.

Moreover, ∆(c0, q, p) = kl(q‖p).

Theorem 3. Given prior parameters µ ∈ RD, with probability at least 1− δ over S ∼ Dn, we have
for all θ on RD :

LD(Gθ) ≤ sup
0≤p≤1

{
p : kl(L̂S(Gθ)‖p) ≤

1

n
[K(θ, µ) + ln 2

√
n
δ ]

}
= inf
C>0

{
1

1−e−C

(
1− exp

(
−C L̂S(Gθ)−

1

n
[K(θ, µ) + ln 2

√
n
δ ]

))}
.

Proof. In the following, we denote ξ := 1
n [K(θ, µ) + ln 2

√
n
δ ] and we assume 0 < ξ < ∞. Let us

define
p∗ := sup

0≤p≤1

{
p : kl(L̂S(Gθ)‖p) ≤ ξ

}
. (22)

First, by a straightforward rewriting of Theorem 1 [Seeger, 2002], we have, with probability at least
1− δ over S ∼ Dn,

LD(Gθ) ≤ p∗ .
Then, we want to show

p∗ = inf
C>0

{
1

1−e−C

(
1− exp

(
−C L̂S(Gθ)− ξ

))}
. (23)

Case L̂S(Gθ) < 1: The function kl(L̂S(Gθ)‖p) is strictly increasing for p > L̂S(Gθ). Thus, the
supremum value p∗ is always reached in Equation (22), so we have

kl(L̂S(Gθ)‖p∗) = ξ,

and, by Lemma 4,

sup
C>0

[
∆(C, L̂S(Gθ), p

∗)
]

= ξ , (24)

and ∀C > 0 : ∆(C, L̂S(Gθ), p
∗) ≤ ξ . (25)

Let C∗ := argsupC>0

[
∆(C, L̂S(Gθ), p

∗)
]
.

By rearranging the terms of ∆(C∗, L̂S(Gθ), p
∗) (see Equation 21), we obtain, from Line (24),

p∗ = 1
1−e−C∗

(
1− exp

(
−C∗ L̂S(Gθ)− ξ

))
, (26)

and, from Line (25),

∀C > 0 : p∗ ≤ 1
1−e−C

(
1− exp

(
−C L̂S(Gθ)− ξ

))
. (27)

Thus, combining Lines (26) and (27), we finally prove the desired result of Equation (23).

Case L̂S(Gθ) = 1: From Equation (22), we have p∗ = 1, because limp→1 kl(1‖p) = 0. We also

have 1−e−C−ξ
1−e−C ≥ 1 and limC→∞

[
1−e−C−ξ
1−e−C

]
= 1, thus fulfilling Equation (23).
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Table 2: Datasets overview.

Dataset ntrain ntest d

ads 2459 820 1554
adult 36631 12211 108
mnist17 11377 3793 784
mnist49 10336 3446 784
mnist56 9891 3298 784
mnistLH 52500 17500 784

Table 3: Models overview.

Model name Cost function Train split Valid split Model selection Prior

MLP linear loss, L2 regularized 80% 20% valid linear loss -
PBGNet` linear loss, L2 regularized 80% 20% valid linear loss random init
PBGNet`-bnd linear loss, L2 regularized 80% 20% hybrid (see B.2) random init
PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre
– pretrain linear loss (20 epochs) 50% - - random init
– final PAC-Bayes bound 50% - PAC-Bayes bound pretrain

B Experiments

B.1 Datasets

In Section 6 we use the datasets Ads (a small dataset related to advertisements on web pages), Adult
(a low-dimensional task about predicting income from census data) and four binary variants of the
MNIST handwritten digits:

ads http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
The first 4 features which have missing values are removed.

adult https://archive.ics.uci.edu/ml/datasets/Adult

mnist http://yann.lecun.com/exdb/mnist/
Binary classification tasks are compiled with the following pairs:

• Digits pairs 1 vs. 7, 4 vs. 9 and 5 vs. 6.
• Low digits vs. high digits ({0, 1, 2, 3, 4} vs {5, 6, 7, 8, 9}) identified as mnistLH.

We split the datasets into training and testing sets with a 75/25 ratio. Table 2 presents an overview of
the datasets statistics.

B.2 Learning algorithms details

Table 3 summarizes the characteristics of the learning algorithms used in the experiments.

Cost functions.
MLP, PBGNet`, PBGNet`-bnd : The gradient descent minimizes the following according to parame-
ters θ.

L̂S(Gθ) +
ρ

2
‖θ‖2 ,

where ρ is the L2 regularization “weight decay” penalization term.

PBGNet, PBGNetpre : The gradient descent minimizes the following according to parameters θ and
C ∈ R+.

1

1− e−C
(

1− exp

(
−C L̂S(Gθ)−

1

n

[
K(θ, µ) + ln 2

√
n
δ

]))
,

where K(θ, µ) is given by Equation (17).
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Hyperparameter choices. We execute each learning algorithm for combination of hyperparameters
selected among the following values.

• Hidden layers ∈ {1, 2, 3} .

• Hidden size ∈ {10, 50, 100} .

• Sample size ∈ {10, 50, 100, 1000, 10000} .

• Weight decay ∈ {0, 10−4, 10−6} .

• Learning rate ∈ {0.1, 0.01, 0.001} .

Note that the sample size does not apply to MLP and weight decay is set to 0 for PBGNet and
PBGNetpre). For the learning algorithms that use the PAC-Bayes bound for model selection, the
union bound is applied to compute a valid bound value considering the 9 possible combinations of
“Hidden size” and “Hidden layers” hyperparameters: we set δ = 0.05

9 in Theorem 3 such that the
selected model bound value holds with probability 0.95.

We report all the hyperparameters of selected models, for all learning algorithms and all datasets, in
Table 4. The errors and bounds for these selected models are presented by Table 1 of the main paper.
The same results are visually illustrated by Figure 5.

Hybrid model selection scheme. Of note, PBGNet`-bnd has a unique hyperparameters selection
approach using a combination of the validation loss and the bound value. First all hyperparameters,
except the weight decay, are selected in order to minimize the bound value. This includes choosing
the best epoch from which loading the network weights. Thus, we obtain the best models according to
the bound for each weight decay values considered. Then, the validation loss can be used to identify
the best model between those, hence selecting the weight decay value.

Optimization. For all methods, the network parameters are trained using the Adam optimizer
[Kingma and Ba, 2015] for a maximum of 150 epochs on mini-batches of size 32 for the smaller
datasets (Ads and MNIST digit pairs) and size 64 for bigger datasets (Adult and mnistLH). Initial
learning rate is selected in {0.1, 0.01, 0.001} and halved after each 5 consecutive epochs without a
decrease in the cost function value. We empirically observe that the prediction accuracy of PBGNet
is usually better when trained using Adam optimizer than with plain stochastic gradient descent,
while both optimization algorithms give comparable results for our MLP model. The study of this
phenomenon is considered as an interesting future research direction.

Usually in deep learning framework training loops, the empirical loss of an epoch is computed as the
averaged loss of each mini-batch. As the weights are updated after each mini-batch, the resulting
epoch loss is only an approximation for the empirical loss of the final mini-batch weights. The
linear loss being a significant element of the PAC-Bayesian bound expression, the approximation
has a non-negligible impact over the corresponding bound value. One could obtain the accurate
empirical loss for each epoch by assessing the network performance on the complete training data at
the end of each epoch. We empirically evaluated that doing so leads to an increase of about a third
of the computational cost per epoch for the inference computation. A practical alternative used in
our experiments is to simply rely on the averaged empirical loss on the mini-batches in the bound
expression for epoch-related actions: learning rate reduction, early stopping and best epoch selection.

Prediction. Once the best epoch is selected, we can afford to compute the correct empirical loss
for those weights and use it to obtain the corresponding bound value. However, because PBGNet
and its variants use a Monte Carlo approximation in the inference stage, the predicted output is
not deterministic. Thus, to obtain the values reported in Table 1, we repeated the prediction over
the training data 20 times for the empirical loss computation of the selected epoch. The inference
repetition process was also carried out on the testing set, hence reported values ES , ET and Bnd
of the results consist in the mean over 20 approximated predictions. The standard deviations are
consistently below 0.001, with the exception of PBGNet`-bnd on Ads for ET which has a standard
deviation of 0.00165. If network prediction consistency is crucial, one can set a higher sample size
during inference to decrease variability, but keep a smaller sample size during training to reduce
computational costs.
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s = (−1,−1,−1) s = (−1,−1, 1) s = (−1, 1,−1) s = (−1, 1, 1) Deterministic Network Fθ

s = (1,−1,−1) s = (1,−1, 1) s = (1, 1,−1) s = (1, 1, 1) BAM Network fθ
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Figure 4: Illustration of the proposed method in Section 3 for a one hidden layer network of size
d1 = 3, interpreted as a majority vote over 8 binary representations s ∈ {−1, 1}3. For each s,
a plot shows the values of Fw2(s)Ψs(x,W1). The sum of these values gives the deterministic
network output Fθ(x) (see Equation 9). We also show the BAM network output fθ(x) for the same
parameters θ (see Equation 6).

Implementation details. We implemented PBGNet using PyTorch library [Paszke et al., 2017],
using the Poutyne framework [Paradis, 2018] for managing the networks training workflow. The
code used to run the experiments is available at:

https://github.com/gletarte/dichotomize-and-generalize

When computing the full combinatorial sum, a straightforward implementation is feasible, gradients
being computed efficiently by the automatic differentiation mechanism. For speed purposes, we
compute the sum as a matrix operation by loading all s ∈ {−1, 1}dk as an array. Thus we are mainly
limited by memory usage on the GPU, a single hidden layer of hidden size 20 using approximately
10Gb of memory depending on the dataset and batch size used.

For the Monte Carlo approximation, we need to insert the gradient approximation in a flexible way
into the derivative graph of the automatic differentiation mechanism. Therefore, we implemented
each layer as a function of the weights and the output of the previous layer, with explicit forward and
backward expression4. Thus the automatic differentiation mechanism is able to accurately propagate
the gradient through our approximated layers, and also combine gradient from other sources towards
the weights (for example the gradient from the KL computation when optimizing with the bound as
the cost function).

Experiments were performed on NVIDIA GPUs (Tesla V100, Titan Xp, GeForce GTX 1080 Ti).

B.3 Additional results

Figure 4 reproduces the experiment presented by Figure 1 with another toy dataset. Table 5 exhibits a
variance analysis of Table 1. Figure 6 shows the impact of the training set size. Figure 7 studies the
effect of the sampling size T on the stochastic gradient descent procedure. See figure/table captions
for details.

4See code in the following file: https://github.com/gletarte/dichotomize-and-generalize/
blob/master/pbgdeep/networks.py.
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PAC-Bayesian bounds are identified on the top of the bars and hold with probability 0.95.
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Figure 6: Study of the training sample size effect on PBGNet` and PBGNet for the biggest dataset,
mnistLH. The middle column report results for PBGNet` with a fixed network architecture of a
single hidden layer of 10 neurons, for a direct comparison with PBGNet which always selects this
architecture. For each training set size values, 10 repetitions of the learning procedure with different
random seeds were performed: each of them executed on different (random) train/test/valid dataset
splits, and the stochastic gradient descent is initialized with different random weights. Metrics means
of the learned models are displayed by the bold line, with standard deviation shown with the shaded
areas. Bound values for PBGNet` are trivial and thus not reported. We see that PBGNet bound
minimization strikingly avoids overfitting by controlling the KL value according to the training set
size. On the opposite, PBGNet` achieves lower test risk, but clearly overfits small training sets.
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Table 4: Selected models overview.

Dataset Model Hid. layers Hid. size T WD C KL LR Best epoch

ads

MLP 3 100 - 10−4 - - 0.1 9
PBGNet` 1 10 100 10−6 11.44 14219 0.1 8
PBGNet`-bnd 1 10 10 10−6 4.47 2440 0.001 101
PBGNet 3 10 10000 - 0.47 27 0.01 49
PBGNetpre 3 10 10000 - 0.58 0.09 0.1 82

adult

MLP 2 100 - 0 - - 0.1 21
PBGNet` 1 100 10000 10−6 2.27 13813 0.1 25
PBGNet`-bnd 1 10 10 0 0.76 1294 0.001 111
PBGNet 1 10 1000 - 0.30 226 0.1 78
PBGNetpre 3 10 10000 - 0.09 0.13 0.01 73

mnist17

MLP 2 50 - 0 - - 0.01 56
PBGNet` 3 10 100 0 19.99 5068371 0.1 15
PBGNet`-bnd 1 10 10 10−6 2.82 690 0.001 86
PBGNet 1 10 10000 - 1.33 164 0.1 106
PBGNetpre 1 10 1000 - 0.73 0.46 0.1 71

mnist49

MLP 2 100 - 10−6 - - 0.001 32
PBGNet` 2 50 10000 0 19.99 819585 0.01 33
PBGNet`-bnd 1 10 10 0 2.40 1960 0.001 102
PBGNet 1 10 10000 - 0.90 305 0.1 110
PBGNetpre 1 100 10000 - 0.44 1.94 0.1 77

mnist56

MLP 2 50 - 10−6 - - 0.001 17
PBGNet` 2 10 10000 0 19.99 883939 0.1 26
PBGNet`-bnd 1 10 10 0 1.95 808 0.001 55
PBGNet 1 10 10000 - 0.92 192 0.01 95
PBGNetpre 1 50 10000 - 0.56 0.70 0.1 84

mnistLH

MLP 3 100 - 10−6 - - 0.001 55
PBGNet` 3 100 10000 10−6 19.99 98792960 0.1 92
PBGNet`-bnd 1 10 100 10−6 2.00 8297 0.001 149
PBGNet 1 10 50 - 0.81 1544 0.1 107
PBGNetpre 2 100 10000 - 0.16 0.43 0.01 99
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Table 5: Variance analysis of the experiment presented in Table 1. We repeated 20 times the
experimental procedure described in Section 6, but with a fixed network architecture of a single
hidden layer of 10 neurons to limit computation complexity. Each repetition is executed on different
(random) train/test/valid dataset splits, and the stochastic gradient descent is initialized with different
random weights. The resulting standard deviations highlight the stability of the models.

Dataset
MLP PBGNet` PBGNet`-bnd PBGNet PBGNetpre

ES ET ES ET ES ET Bnd ES ET Bnd ES ET Bnd

ads
0.020 0.034 0.014 0.029 0.026 0.035 0.777 0.112 0.119 0.218 0.046 0.048 0.081
± ± ± ± ± ± ± ± ± ± ± ± ±

0.005 0.007 0.003 0.008 0.003 0.005 0.000 0.003 0.007 0.002 0.007 0.012 0.007

adult
0.133 0.149 0.132 0.148 0.148 0.151 0.271 0.156 0.159 0.215 0.153 0.154 0.166
± ± ± ± ± ± ± ± ± ± ± ± ±

0.007 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.002 0.001 0.003 0.003 0.002

mnist17
0.002 0.005 0.002 0.005 0.004 0.006 0.102 0.005 0.006 0.041 0.005 0.005 0.010
± ± ± ± ± ± ± ± ± ± ± ± ±

0.001 0.001 0.000 0.001 0.000 0.001 0.004 0.000 0.001 0.001 0.001 0.001 0.001

mnist49
0.003 0.013 0.004 0.016 0.031 0.033 0.300 0.039 0.040 0.143 0.019 0.019 0.031
± ± ± ± ± ± ± ± ± ± ± ± ±

0.002 0.002 0.001 0.003 0.001 0.002 0.000 0.001 0.003 0.001 0.002 0.003 0.002

mnist56
0.004 0.010 0.003 0.010 0.020 0.023 0.186 0.022 0.023 0.090 0.012 0.012 0.020
± ± ± ± ± ± ± ± ± ± ± ± ±

0.001 0.002 0.001 0.002 0.001 0.002 0.000 0.001 0.002 0.001 0.002 0.003 0.002

mnistLH
0.014 0.032 0.017 0.038 0.042 0.049 0.309 0.054 0.056 0.162 0.042 0.042 0.050
± ± ± ± ± ± ± ± ± ± ± ± ±

0.003 0.002 0.001 0.003 0.001 0.003 0.001 0.001 0.002 0.001 0.002 0.002 0.002
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Figure 7: Impact of the sample size T on stochastic gradient descent solution test error for PBGNet`
and PBGNet. Network parameters were fixed with a single hidden layer of size 10 and trained with
initial learning rate of 0.1. For each sample size values and the combinatorial sum approach, 20
repetitions of the learning procedure with different random seeds were performed: each of them
executed on different (random) train/test/valid dataset splits, and the stochastic gradient descent is
initialized with different random weights. The test error mean of the learned models is displayed by
the bold line, with standard deviation shown with the shaded areas.

23


