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A Derivation of optimization algorithm

In this section we derive the closed-form updates for the proximal method stated in (2.11). In
particular, recall that for all 1 ≤ j, l ≤ p

∆new
jl =

[(
‖Aold

jl ‖F − λnη
)
/‖Aold

jl ‖F
]
+
×Aold

jl ,

where Aold = ∆old − η∇L(∆old) and x+ = max{0, x}, x ∈ R represents the positive part of x.

Proof of (2.11). Let Aold = ∆old − η∇L(∆old), and let fjl denote the loss decomposed over each
j, l block so that

fjl(∆jl) =
1

2λnη
‖∆jl −Aold

jl ‖2F + ‖∆jl‖F , (A.1)

and
∆new
jl = arg min

∆jl∈RM×M

fjl(∆jl). (A.2)

The loss fjl(∆jl) is convex, so the first order optimality condition implies that:

0 ∈ ∂fjl
(
∆new
jl

)
, (A.3)

where ∂fjl (∆jl) is the subdifferential of fjl at ∆jl. Note that ∂fjl (∆jl) can be expressed as:

∂fjl(∆jl) =
1

λnη

(
∆jl −Aold

jl

)
+ Zjl, (A.4)

where

Zjl =


∆jl

‖∆jl‖F if ∆jl 6= 0{
Zjl ∈ RM×M : ‖Zjl‖F ≤ 1

}
if ∆jl = 0.

(A.5)

Claim 1 If ‖Aold
jl ‖F > λnη > 0, then ∆new

jl 6= 0.

We verify this claim by proving the contrapositive. Suppose ∆new
jl = 0, then by (A.3) and (A.5), there

exists a Zjl ∈ RM×M such that ‖Zjl‖F ≤ 1 and

0 = − 1

λnη
Aold
jl + Zjl.

Thus,
‖Aold

jl ‖F = ‖λnη · Zjl‖F ≤ λnη,
so that Claim 1 holds.
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Combining Claim 1 with (A.3) and (A.5), for any j, l such that ‖Aold
jl ‖F > λnη, we have

0 =
1

λnη

(
∆new
jl −Aold

jl

)
+

∆new
jl

‖∆new
jl ‖F

,

which is solved by

∆new
jl =

‖Aold
jl ‖F − λnη
‖Aold

jl ‖F
Aold
jl . (A.6)

Claim 2 If ‖Aold
jl ‖F ≤ λnη, then ∆new

jl = 0.

Again, we verify the claim by proving the contrapositive. Suppose ∆new
jl 6= 0, then first order

optimality implies the updates in (A.6). However, taking the Frobenius norm of both sides of the
equation gives ‖∆new

jl ‖F = ‖Aold
jl ‖F − λnη which implies that ‖Aold

jl ‖F − λnη ≥ 0.

The updates in (2.11) immediately follow from combining Claim 2 and (A.6).
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B Proof of theoretical properties

We provide the proof of Theorem 3.1, which states that under certain conditions, our estimator
consistently recovers E∆. We follow the framework introduced in Negahban et al. (2012), but first
introduce some necessary notation.

We use ⊗ to denote the Kronecker product. For ∆ ∈ RpM×pM , let θ = vec(∆) ∈ Rp2M2

and
θ∗ = vec(∆M ), where ∆M is defined in Section 2.2. Let G = {Gt}t=1,...,NG be a set of indices,
where NG = p2 and Gt ⊂ {1, 2, · · · , p2M2} is the set of indices for θ which correspond to the t-th
M ×M submatrix of ∆M . Thus, if t = (j− 1)p+ l, then θGt

= vec (∆jl) ∈ RM2

where ∆jl is the
(j, l)-th M ×M submatrix of ∆. Denote the group indices of θ∗ that belong to blocks corresponding
to E∆ as SG ⊆ {1, 2, · · · , NG}. Note that we define SG using E∆ and not E∆M , so as stated in
Assumption 3.3, |SG | = s. We further define the subspaceM as

M := {θ ∈ Rp
2M2

|θGt
= 0 for all t /∈ SG}, (B.1)

and its orthogonal complement with respect to the usual Euclidean inner product is

M⊥ := {θ ∈ Rp
2M2

|θGt = 0 for all t ∈ SG}. (B.2)

For a vector θ, let θM and θM⊥ be the projection of θ on the subspacesM andM⊥, respectively.
Let 〈·, ·〉 represent the usual Euclidean inner product. Let

R(θ) :=

NG∑
t=1

|θGt
|2 , ‖θ‖1,2. (B.3)

For any v ∈ Rp2M2

, the dual norm ofR is given by

R∗(v) := sup
u∈Rp2M2\{0}

〈u, v〉
R(u)

= sup
R(u)≤1

〈u, v〉, (B.4)

and the subspace compatibility constant ofM with respect toR is defined as

Ψ(M) := sup
u∈M\{0}

R(u)

|u|2
. (B.5)

B.1 Proof of theoreom 3.1

Let σmax = max{|ΣX,M |∞, |ΣY,M |∞}. Suppose that

|SX,M − ΣX,M |∞ ≤ δ,
|SY,M − ΣY,M |∞ ≤ δ,

(B.6)

for some appropriate choice of δ. Then

|(SY,M ⊗ SX,M )− (ΣY,M ⊗ ΣX,M )|∞ ≤ δ2 + 2δσmax, (B.7)

and
| vec (SY,M − SX,M )− vec (ΣY,M − ΣX,M )|∞ ≤ 2δ. (B.8)

Because by assumption limM→∞ ν(M) = 0, there exists some M large enough so that
2ν(M) < τ , for τ defined in Assumption 3.2. In particular, we suppose for such M , that

δ < 1
4

√
λ∗min+16M2s(σmax)2

M2s − σmax. Later, we show using Lemma C.2 that this occurs with
high probability for large n.

Problem (2.7) can be written in following form:

θ̂λn ∈ arg min
θ∈Rp2M2

L(θ) + λnR(θ), (B.9)

where
L(θ) =

1

2
θT (SY,M ⊗ SX,M )θ − θT vec(SY,M − SX,M ). (B.10)
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The loss L(θ) is convex and differentiable with respect to θ, and it can be easily verified that R(·)
defines a vector norm. For h ∈ Rp2M2

, the error of the first-order Taylor series expansion of L is:

δL(h, θ∗) := L(θ∗ + h)− L(θ∗)− 〈∇L(θ∗), h〉

=
1

2
hT (SY,M ⊗ SX,M )h.

(B.11)

Using the form of (B.10), we see that ∇L(θ) = (SY,M ⊗ SX,M )θ − vec(SY,M − SX,M ), and by
Lemma C.1, we have

R∗(∇L(θ∗)) = max
t=1,2,··· ,NG

∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )
]
Gt

∣∣∣
2
. (B.12)

We now show an upper bound forR∗(∇L(θ∗)). First, note that

(ΣY,M ⊗ ΣX,M )θ∗ − vec(ΣY,M − ΣX,M ) = vec(ΣX,M∆MΣY,M − (ΣY,M − ΣX,M )) = 0.

Letting (·)jl denote the (j, l)-th submatrix, we have

∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )
]
Gt

∣∣∣
2

=
∣∣∣[(SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M )θ∗ − vec ((SY,M − ΣY,M )− (SX,M − ΣX,M ))

]
Gt

∣∣∣
2

≤ ‖(SX,M∆MSY,M − ΣX,M∆MΣY,M )jl − (SY,M − ΣY,M )jl − (SX,M − ΣX,M )jl‖F
≤ ‖(SX,M∆MSY,M − ΣX,M∆MΣY,M )jl‖F + ‖(SY,M − ΣY,M )jl‖F + ‖(SX,M − ΣX,M )jl‖F .

(B.13)
For any M ×M matrix A, ‖A‖F ≤M |A|∞, so∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )

]
Gt

∣∣∣
2

≤M
[∣∣(SX,M∆MSY,M − ΣX,M∆MΣY,M )jl

∣∣
∞ +

∣∣(SY,M − ΣY,M )jl
∣∣
∞

+
∣∣(SX,M − ΣX,M )jl

∣∣
∞

]
≤M

[∣∣SX,M∆MSY,M − ΣX,M∆MΣY,M
∣∣
∞ + |SY,M − ΣY,M |∞ + |SX,M − ΣX,M |∞

]
.

Now, note that for any A ∈ Rk×k and v ∈ Rk, we have |Av|∞ ≤ |A|∞|v|1, thus we further have

|SX,M∆MSY,M − ΣX,M∆MΣY,M |∞ = |[(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )] vec (∆M )|∞
≤ |(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞| vec (∆M )|1
= |(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞|∆M |1.

Combining the inequalities gives an upper bound uniform over G (i.e., for all Gt):∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )
]
Gt

∣∣∣
2

≤M
[
|(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞|∆M |1 + |SY,M − ΣY,M |∞

+|SX,M − ΣX,M |∞
]
,

which implies

R∗ (∇L(θ∗)) ≤M
[
|(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞|∆M |1 + |SY,M − ΣY,M |∞

+|SX,M − ΣX,M |∞
]
.

(B.14)

Assuming |SX,M − ΣX,M |∞ ≤ δ and |SY,M − ΣY,M |∞ ≤ δ implies

R∗ (∇L(θ∗)) ≤M [(δ2 + 2δσmax)|∆M |1 + 2δ], (B.15)
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where 0 < δ ≤ c1.

Setting
λn = 2M

[(
δ2 + 2δσmax

) ∣∣∆M
∣∣
1

+ 2δ
]
, (B.16)

then implies that λn ≥ 2R∗ (∇L(θ∗)). Thus, invoking Lemma 1 in Negahban et al. (2012),
h = θ̂λn

− θ∗ must satisfy

R(hM⊥) ≤ 3R(hM) + 4R(θ∗M⊥), (B.17)

whereM is defined in (B.1). Equivalently,

‖hM⊥‖1,2 ≤ 3‖hM‖1,2 + 4‖θ∗M⊥‖1,2. (B.18)

By the definition of ν in Assumption 3.2, we have

‖θ∗M⊥‖1,2 =
∑
t/∈SG

‖θ∗Gt
‖2 ≤ (p(p+ 1)/2− s) ν ≤ p2ν. (B.19)

Next, we show that δL(h, θ∗), as defined in (B.11), satisfies the Restricted Strong Convexity property
defined in definition 2 in Negahban et al. (2012). That is, we show an inequality of the form:
δL(h, θ∗) ≥ κL|h|22 − ω2

L (θ∗) whenever h satisfies (B.18).

By using Lemma C.3, we have

θT (SY,M ⊗ SX,M )θ = θT (ΣY,M ⊗ ΣX,M )θ + θT (SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M )θ

≥ θT (ΣY,M ⊗ ΣX,M )θ − |θT (SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M )θ|
≥ λ∗min|θ|22 −M2|SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞‖θ‖21,2,

where the last inequality holds because Lemma C.3 and λ∗min = λmin(ΣX,M ) × λmin(ΣY,M ) =
λmin(ΣY,M ⊗ ΣX,M ) > 0. Thus,

δL(h, θ∗) =
1

2
hT (SY,M ⊗ SX,M )h

≥ 1

2
λ∗min|h|22 −

1

2
M2|SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞‖h‖21,2.

By Lemma C.4 and (B.18), we have

‖h‖21,2 = (‖hM‖1,2 + ‖hM⊥‖1,2)2

≤ 16(‖hM‖1,2 + ‖θ∗M⊥‖1,2)2

≤ 16(
√
s‖h‖2 + p2ν)2

≤ 32s‖h‖22 + 32p2ν.

Combining with the equation above, we get

δL(h, θ∗) ≥
[

1

2
λ∗min − 16M2s|SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞

]
|h|22

− 16M2p4ν2|SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞

≥
[

1

2
λ∗min − 8M2s

(
δ1δ2 + δ2σmax + δ1σ

Y
max

)]
|h|22

− 16M2p4ν2
(
δ1δ2 + δ2σmax + δ1σ

Y
max

)
.

(B.20)
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Thus, appealing to (B.7), the Restricted Strong Convexity property holds with

κL =
1

2
λ∗min − 8M2s

(
δ2 + 2δσmax

)
,

ωL = 4Mp2ν
√
δ2 + 2δσmax.

(B.21)

When δ < 1
4

√
λ∗min+16M2s(σmax)2

M2s − σmax then κL > 0. By Theorem 1 of Negahban et al. (2012)
and Lemma C.4, letting λn = 2M

[(
δ2 + 2δσmax

)
|∆M |1 + 2δ

]
, as in (B.16), ensures

‖∆̂M −∆M‖2F = ‖θ̂λn
− θ∗‖22

≤ 9
λ2
n

κ2
L

Ψ2(M) +
λn
κL

(
2ω2
L + 4R(θ∗M⊥)

)
=

9λ2
ns

κ2
L

+
2λn
κL

(ω2
L + 2p2ν)

:= Γ.

(B.22)

Note that Γ is function of δ through λn (defined in (B.16)), κL, and ωL. For fixed M , ν(M) and p,
k → 0 as δ → 0, so there exists a δ0 > 0 such that δ < δ0 implies

Γ < (1/2)τ − ν,

δ < min

{
1

4

√
λ∗min + 16M2s(σmax)2

M2s
− σmax, c1

}
,

(B.23)

for any c1 > 0. When these hold, there exists an

εn ∈ (Γ + ν, τ − (Γ + ν)) , (B.24)

and when thresholding with this εn we claim Ê∆M = E∆. We prove this claim below.

Note that we have ‖∆̂jl −∆M
jl ‖F ≤ ‖∆̂−∆M‖F ≤ Γ for any (j, l) ∈ V 2. Recall that

E∆ = {(j, l) ∈ V 2 : ‖C∆
jl ‖HS > 0, j 6= l}. (B.25)

We first prove that E∆ ⊆ Ê∆M . For any (j, l) ∈ E∆, by the definition of ν and τ in Assumption 3.2,
we have ‖C∆

jl ‖HS ≥ τ and ‖∆M
jl ‖F ≥ ‖C∆

jl ‖HS − ν. Thus, we have

‖∆̂jl‖F ≥ ‖∆M
jl ‖F − ‖∆̂jl −∆M

jl ‖F
≥ ‖C∆

jl ‖HS − ‖∆̂jl −∆M
jl ‖F − ν

≥ τ − Γ− ν
> εn.

The last inequality holds because we have assumed that εn ∈ (Γ + ν(M), τ − (Γ + ν(M))). Thus,
by definition of Ê∆M shown in (2.9), we have (j, l) ∈ Ê∆M which further implies that E∆ ⊆ Ê∆M .

We then show Ê∆M ⊆ E∆. Let Êc∆M and Ec∆ denote the complement set of Ê∆M and E∆. For any
(j, l) ∈ Ec∆, which also means that (l, j) ∈ Ec∆, by (B.25), we have ‖C∆

jl ‖HS = 0, thus

‖∆̂jl‖F ≤ ‖∆M
jl ‖F + ‖∆̂jl −∆M

jl ‖F
≤ ‖C∆

jl ‖HS + ‖∆̂jl −∆M
jl ‖F + ν

≤ Γ + ν

< εn.

Again, the last inequality holds because because we have assumed that εn satisfies (B.24). Thus,
by definition of Ê∆M , we have (j, l) /∈ Ê∆M or (j, l) ∈ Êc∆M . This implies that Ec∆ ⊆ Êc∆M , or
Ê∆M ⊆ E∆. Combing with previous conclusion that E∆ ⊆ Ê∆M , the proof is complete.
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We now show that for any δ, there exists some n large enough so that, (B.6), (B.7) and (B.8) occur
with high probability. In particular, let

δ =
1
√
c1
M1+βX

√
2 (log p+ logM + log n)

n
, (B.26)

where limn→∞ δ(n) = 0. Thus, there exists some n large enough such that δ0 = δ(n) satisfies
(B.23). Then, Lemma C.2 implies that there exists some c1, c2 such that (B.6), (B.7) and (B.8) holds
for δ < c1 with probability 1− 2c2/n

2.
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C Lemmas in the proof of theoretical properties

Lemma C.1. ForR(·) norm defined in (B.3), its dual normR∗(·), defined in (B.4), is

R∗(v) = max
t=1,...,NG

|vGt
|2. (C.1)

Proof. For any u : ‖u‖1,2 ≤ 1 and v ∈ Rp2M2

, we have

〈v, u〉 =

NG∑
t=1

〈vGt , uGt〉

≤
NG∑
t=1

|vGt
|2|uGt

|2

≤
(

max
t=1,2,··· ,NG

|vGt
|2
) NG∑
t=1

|uGt
|2

=

(
max

t=1,2,··· ,NG
|vGt |2

)
‖u‖1,2

≤ max
t=1,2,··· ,NG

|vGt |2.

To complete the proof, we to show that this upper bound can be obtained. Let t∗ =
arg maxt=1,2,··· ,NG |vGt |, and select u such that

uGt
= 0 ∀t 6= t∗,

uGt
=

vGt∗

|vGt∗ |2
t = t∗.

It follows that ‖u‖1,2 = 1 and 〈v, u〉 = |vGt∗ |2 = maxt=1,...,NG |vGt
|2.

Lemma C.2. Let

f (n, p,M, δ, β, c1, c2) = c2p
2M2 exp

{
−c1nM−(2+2β)δ2

}
, (C.2)

β = min{βX , βY } where βX and βY are as defined in Assumption 3.1, and σmax =
max{σXmax, σYmax} where σXmax and σYmax are as defined in Section 3.

There exists positive constants, c1 and c2, such that for 0 < δ < c1, with probability at least
1− 2f (min{nX , nY }, p,M, δ, β, c1, c2) the following statements hold simultaneously:

|SX,M − ΣX,M |∞ ≤ δ,
|SY,M − ΣY,M |∞ ≤ δ,

(C.3)

|(SY,M ⊗ SX,M )− (ΣY,M ⊗ ΣX,M )|∞ ≤ δ2 + 2δσmax, (C.4)

and
| vec (SY,M − SX,M )− vec (ΣY,M − ΣX,M )|∞ ≤ 2δ. (C.5)

Proof. Denote the (j, l)-th M ×M submatrix of SX,M by SX,Mjl and the (k,m)-th entry of SX,Mjl

by σ̂X,Mjl,km for j, l = 1, . . . , p and k,m = 1, . . . ,M . We use similar notation for ΣX,M , SY,M , and
ΣY,M .

The statement in (C.3) holds directly by applying Theorem 1 in Qiao et al. (2019) to SX,M and SY,M
and combining the statements with a union bound.
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To show (C.4), note that (C.3) then implies

|σ̂X,Mjl,kmσ̂
Y,M
j′l′,k′m′ − ΣX,Mjl,kmσ

Y,M
j′l′,k′m′ | ≤ |σ̂

X,M
jl,km − σ

X,M
jl,km||σ̂

Y,M
j′l′,k′m′ − σ

Y,M
j′l′,k′m′ |

+ |σ̂X,Mjl,km||σ̂
Y,M
j′l′,k′m′ − σ

Y,M
j′l′,k′m′ |

+ |σ̂Y,Mj′l′,k′m′ ||σ̂
X,M
jl,km − σ

X,M
jl,km|

≤ |SX,M − ΣX,M |∞|SY,M − ΣY,M |∞
+ σmax|SY,M − ΣY,M |∞ + σmax|SX,M − ΣX,M |
≤ δ2 + 2δσmax.

For (C.5), note that

| vec (SY,M − SX,M )− vec (ΣY,M − ΣX,M )|∞ = |(SX,M − ΣX,M )− (SY,M − ΣY,M )|∞
≤ |SX,M − ΣX,M |∞ + |SY,M − ΣY,M |∞
≤ 2δ.

Lemma C.3. For a set of indices G = {Gt}t=1,...,NG , suppose ‖ · ‖1,2 is defined in (B.3). Then for
any matrix A ∈ Rp2M2×p2M2

and θ ∈ Rp2M2

|θTAθ| ≤M2|A|∞‖θ‖21,2. (C.6)

Proof.

|θTAθ| =

∣∣∣∣∣∣
∑
i

∑
j

Aijθiθj

∣∣∣∣∣∣
≤
∑
i

∑
j

|Aijθiθj |

≤ |A|∞

(∑
i

|θi|

)2

= |A|∞

(
NG∑
t=1

∑
k∈Gt

|θk|

)2

= |A|∞

(
NG∑
t=1

‖θGt
‖1

)2

≤ |A|∞

(
NG∑
t=1

M‖θGt
‖2

)2

= M2|A|∞‖θ‖21,2.

In the penultimate line, we use the property that for any vector v ∈ Rn, |v|1 ≤
√
n|v|2.

Lemma C.4. Suppose M is defined as in (B.1). For any θ ∈ M, we have ‖θ‖1,2 ≤
√
s|θ|2.

Furthermore, for Ψ(M) as defined in (B.5), we have Ψ(M) =
√
s.

Proof. By definition ofM and ‖ · ‖1,2, we have
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‖θ‖1,2 =
∑
t∈SG

|θGt |2 +
∑
t/∈SG

|θGt |2

=
∑
t∈SG

|θGt
|2

≤
√
s

∑
t∈SG

|θGt
|22

 1
2

=
√
s|θ|2.

In the penultimate line, we appeal to the Cauchy-Schwartz inequality. To show Ψ(M) =
√
s, it

suffices to show that the upper bound above can be achieved. Select θ ∈ Rp2M2

such that |θGt
|2 = c,

∀t ∈ SG , where c is some positive constant. This implies that ‖θ‖1,2 = sc and |θ|2 =
√
sc so that

‖θ‖1,2 =
√
s|θ|2. Thus, Ψ(M) =

√
s.
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D More simulation results

D.1 AUC table of simulations in section 4.1

Table 1: The mean area under the ROC curves. Standard errors are shown in parentheses.

FuDGE AIC BIC Multiple

p Model1

30 0.99 (0.01) 0.75 (0.17) 0.5 (0) 0.71 (0.11)
60 0.91 (0.06) 0.5 (0) 0.5 (0) 0.56 (0.1)
90 0.82 (0.1) 0.5(0) 0.5 (0) 0.55 (0.09)

120 0.64 (0.06) 0.5(0) 0.5 (0) 0.53 (0.04)

p Model2

30 0.9 (0.08) 0.59 (0.06) 0.5 (0) 0.53 (0.14)
60 0.9 (0.07) 0.5 (0) 0.5 (0) 0.48 (0.11)
90 0.88 (0.08) 0.5(0) 0.5 (0) 0.46 (0.08)

120 0.86 (0.07) 0.5(0) 0.5 (0) 0.46 (0.12)

p Model3

30 0.87 (0.06) 0.69 (0.06) 0.5 (0) 0.83 (0.08)
60 0.83 (0.09) 0.58 (0.07) 0.5 (0) 0.77 (0.09)
90 0.74 (0.1) 0.5(0) 0.5 (0) 0.57 (0.1)

120 0.74 (0.08) 0.5(0.02) 0.5 (0) 0.55 (0.05)

D.2 AUC table of simulations in section 4.2

Table 2: The mean area under the ROC curves of example that multiple network strategy works better.
Standard errors are shown in parentheses

p FuDGE Multiple

30 0.99 (0) 1 (0)
60 0.98 (0.01) 1 (0)
90 0.87 (0.09) 1 (0.01)

120 0.73 (0.12) 0.94 (0.09)
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