
1 Supplementary Material1

1.1 Embedder Training Algorithm2

The algorithm for training the embedder is summarized in Algorithm 1.3

Algorithm 1 trainEmbedder
Input: f: CNF formula; I: Training images; m: Margin
Output: q: Embedder

1: q init()
2: repeat
3: for all Ii 2 I do
4: // Create intermediate formula
5: fi { }
6: objs all_instances_in(Ii)
7: for all ci 2 f do
8: if all_instances_in(ci) 2 objs then
9: fi fi [ci

10: end if
11: end for
12: fi append_constraints(fi)
13: ⌧T sat_assig_of(fi)
14: ⌧F unsat_assig_of(fi)
15: ⇥q argmin

⇥q

Lemb

16: q update_with(q,⇥q)
17: end for
18: until Convergence
19: return q

1.2 Embeddable-Demanding4

The significant performance improved due to usage of d-DNNF raises the question whether the5

language represented by d-DNNF has a smaller search space and therefore, potentially easier learning6

method. To this end, we introduce the concept of embeddable-demanding below7

The following theorems uses the standard complexity theoretic terms and we refer to the reader to the8

standard text [1] for detailed treatment of these concepts.9

Definition 1 (Embeddable-Demanding) Let L1, L2 be two compilation languages. L1 is at least10

as embeddable-demanding as L2 iff there exists a polynomial p such that for every sentence ↵ 211

L2, 9� 2 L1 such that (i) |�|  p(|↵|). Here |↵|, |�| are the sizes of ↵,� respectively, and � may12

include auxiliary variables. (ii) The transformation from ↵ to � is poly time. (iii) There exists a13

bijection between models of � and models of ↵.14

Theorem 1.1 CNF is at least as embeddable-demanding as d-DNNF but if d-DNNF is at least as15

embeddable-demanding as CNF then P = PP16

Proof 1.1 (1) Prove that CNF is at least as embeddable-demanding as d-DNNF, i.e. for every formula17

↵ in d-DNNF, there exists a polynomial size, and polynomial time computable CNF formula � such18

that there is an one to one polynomial time computable mapping between models of � to ↵.19

Observe that d-DNNF represents a circuit, which can be encoded into an equisatisfiable CNF formula20

of polynomial size due to NP-completeness of CNF. In particular, the usage of Tseytin encoding [2]21

ensures that the resulting CNF is of linear size. Furthermore, let d-DNNF G be defined over the set22

of variables denoted by X , then Tseytin encoding introduces a set of auxiliary variables, say Y , for23

the resulting formula F such that G(X) = 9Y F (X [Y). Therefore, the mapping from models of G24

to F is achieved just by projection of models of G on X .25

2

(2) Prove that if d-DNNF is at least as embeddable-demanding as CNF then P = PP . In other26

words, if for every formula � in CNF, there exists a polynomial size, and polynomial time computable27

d-DNNF ↵ such that there is bijection between models of ↵ and models of �, then P = PP . P = PP28

implies collapse of entire polynomial hierarchy, in particular P = NP .29

Assume for every formula � in CNF, there exists a polynomial size, and polynomial time computable30

d-DNNF ↵ such that there is a bijection between models of ↵ and models of �. Since d-DNNF allows31

counting in polynomial time and the existence of bijection implies that the number of models of ↵32

is equal to that of �, then we can compute the number of models of an arbitrary CNF formula in33

polynomial time; therefore P = PP . In this context, it is worth noting that the entire polynomial34

polynomial hierarchy is shown to contain PP , i.e., PH ✓ PP [3].35

1.3 Computing Infrastructure36

We trained our models using Pytorch 0.4.1 on one NVIDIA GTX 1080 Ti 12GB GPU.37

1.4 Hyper-parameters Selection38

Our hyper-parameters includes: the margin in triplet loss of the embedder m, the semantic regularizer39

weight �r and logic loss weight �. The ranges considered are [0.5, 5] for m; [0.05, 0.2] for �r and40

[0.05, 0.2] for �. We did grid search and set m = 1.0,�r = 0.1,� = 0.1 across all experiments.41

References42

[1] S. Arora and B. Barak, Computational complexity: a modern approach. Cambridge University43

Press, 2009.44

[2] G. S. Tseytin, On the Complexity of Derivation in Propositional Calculus, pp. 466–483. Berlin,45

Heidelberg: Springer Berlin Heidelberg, 1983.46

[3] S. Toda, “Pp is as hard as the polynomial-time hierarchy,” SIAM Journal on Computing, vol. 20,47

no. 5, pp. 865–877, 1991.48

3

	Supplementary Material
	Embedder Training Algorithm
	Embeddable-Demanding
	Computing Infrastructure
	Hyper-parameters Selection

