
A Proofs414

Proof of Claim 1. Recall that for streaming setting, sliding windows Xs can then be broken intro415

bricksBj “ xppj´1q¨k`1q:pj¨kq where ps´1q ¨q`1 ď j ď ps´1q ¨q`T {k. Now first layer of SRNN416

compute νp1qj for all j. Hence, for the next sliding window Xs`1 “ xs¨ω`1:s¨ω`T , we can reuse νp1qj417

from the previous window where s ¨ q ` 1 ď j ď ps ´ 1q ¨ q ` T {k. Note that the second layer418

would still need to be computed from scratch. Hence, for new window Xs`1, we need to compute419

Rp1q over ω “ q ¨ k new steps. Furthermore,Rp2q needs to be computed over T {k steps. So the total420

compute requirement is:
`

T
k ` q ¨ k

˘

¨ C1. Second part of Claim follows by setting k “
a

T {q.421

Proof of Claim 3. Define,422

ν
p1q
j “ vecprRph0, xt:t`k´1q;∇1

hRph0, xt:t`k´1q; . . . ;
1

M !
∇M´1

h Rph0, xt:t`k´1qsq, (1)

where t “ pj ´ 1q ¨ k ` 1 and j P rT {ks. Using Claim 5, νp1qj is a recurrent function of h0, xi’s, and423

can be computed by an RNNRp1q applied to xt:t`k´1 and h0.424

Similarly, define:425

ν
p2q
j “ Rph0, xt:t`k´1q `

M´1
ÿ

m“1

1

m!
∇m

h Rph0, xt:t`kq ¨ pν
p2q
j´1 ´ h0q

bm`

1

M !
∇M

h Rpζ, xt:t`kq ¨ pν
p2q
j´1 ´ h0q

bM , (2)

where νp2q0 “ h0. Note that there exists a simple bi-linear functionRp2q s.t. νp2qj “ Rp2qpνp2qj´1, ν
p1q
j q.426

Using the assumptions mentioned in the Claim, we will now show that νp2qj « ht for SRNN with427

Rp1q,Rp2q defined above and where t “ j ¨ k.428

Using Taylor’s theorem:429

Rph0, x1:t`k´1q “ Rph0, xt:t`k´1q `

M´1
ÿ

m“1

1

m!
∇m

h Rph0, xt:t`kq ¨ pht´1 ´ h0q
bm`

1

M !
∇M

h Rpζ, xt:t`kq ¨ pht´1 ´ h0q
bM , (3)

where ζ “ λh0 ` p1´ λqht´1 for some λ ą 0.430

Using triangular inequality:431

}Rph0, x1:t`k´1q ´ ν
p2q
j } ď }

1

M !
∇M

h Rpζ, xt:t`k´1q} ˆ }pht´1 ´ h0q
bM
}`

M´1
ÿ

m“1

1

m!
}∇m

h Rph0, xt:t`k´1q} ˆ }pht´1 ´ h0q
bM

´ pν
p2q
j´1 ´ h0q

bM
},

where t “ pj´1q¨k`1. Using the assumptions of claims along with standard algebraic manipulations,432

we get:433

}Rph0, x1:t`k´1q ´ ν
p2q
j } ď ε`OpMεq}ν

p2q
j´1 ´ ht´1}.

The claim now follows by applying the above result recursively for all j P T {k.434

Claim 5. If f is a recurrent function, i.e., fph0, xt:t`kq “ fpfpxt:t`k´1, h0q, xt`kq. Then, it’s435

higher-order derivatives are also recurrent.436

Proof of Claim 4. FastRNN updates hidden state as: ht “ α ¨ σpUht´1 `Wxt ` bq ` βht´1 where437

β « 1 ´ α, α “ Op1{T q and the activation function σ is ReLU. Using the updates, we have:438

}ht ´ ht´1} ď
}U}`1

T }ht´1}, i.e., }ht} ď expp}U} ` 1q for all t. Now by assumption }U} “ Op1q,439

we have: }ht} “ Op1q for all t. Similarly, }∇hRpht´1, xtq} ď p1 `
}U}`1

T q}∇hRpht´2, xt´1q}.440

Using similar arguments as above, we have }∇hRpht´1, xtq} ď Op1q for all t. Claim now follows441

by combining Claim 3 with the bounds on }ht}, }∇hRpht´1, xtq} and }∇2
hRpht´1, xtq}.442

11



B Additional Empirical Results443

Dataset #Steps (Baseline) Feat. Dim. #Train #Val #Test Source
Google-13 99 32 51088 6798 6835 URL1
HAR-6 128 9 6220 1132 2947 URL2
STCI-2 162 32 42788 5223 5224 Proprietary
DSA-19 129 45 4560 2280 2280 URL3
GesturePod-5 400 6 13432 2684 2552 URL4
TIMIT 784 39 4389 231 1680 URL5

Table 3: Dataset details: Source of dataset, the number of timesteps, feature dimension and the
number of data points in train, test and validation tests.

URL1 http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
URL2 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
URL3 https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
URL4 https://www.microsoft.com/en-us/research/publication/

gesturepod-programmable-gesture-recognition-augmenting-assistive-devices/
URL5 https://catalog.ldc.upenn.edu/LDC93S1

444

(a) (b)

Figure 3: Accuracy and inference cost vs brick size (k) on HAR-6 dataset for a model with hidden
dimension 32 at both the layers. Inference cost in terms of number of floating point operations (flops)
behaves as expected as show in in (a). The accuracy trend, shown in (b), is tricky at extreme values
of k. When k is very small, the lower layer is very shallow, while for high values of k, the higher
layer becomes shallow.

C Online LAS with SRNN445

Listen-Attend-Spell is a popular end-to-end architecture for transcribing speech with phonemes. The446

architecture consists of two parts— the listener and the speller. The listener is a pyramidal recurrent447

network which encodes the filter bank spectra input. The speller uses an attention-based recurrent448

network to decode the listener output and produces phonemes. Standard LAS transcribes audio449

input with 784 steps which corresponds to about 8secs worth of audio clip. While standard LAS450

architecture’s phoneme error-rate on the TIMIT dataset is 0.27 2, after a few enhancements like451

dropping a layer and thresholding out predictions with low confidence, we can achieve the baseline452

error rate of 0.251.453

Now, the LAS architecture is designed to transcribe static input, i.e., where a fixed-length audio clip454

(of ď 8sec or 784 steps) and does not readily generalize to the streaming setting where the audio455

data is flowing in continuously. One approach is to form non-overlapping windows of fixed size and456

2[4] did not report results on any publicly available dataset, but this error-rate matches the publicly reported
numbers [11]

12



apply LAS on each of them independently. Naturally such a technique would incur a large lag in457

phoneme predictions. Another approach is to form sliding windows, but in that case it is not clear458

how to reconcile predictions from the overlapping sliding windows.459

We focus on the streaming setting and propose an SRNN based approach for making the LAS460

architecture streaming, i.e., with predictions with small lag of say ď 1sec — this has been illustrated461

in Figure 4. Intuitively, as new batch of audio data arrives, the goal is to process the new batch of462

data and predict phonemes contained in the batch; note that batch-size should ideally be small so463

that there is a small lag in prediction. However, as phoneme prediction can be highly contextual, we464

cannot process every batch independently and would require context from past few batches of audio465

as well. But, standard LAS architecture is ill-suited for such task, furthermore, naively processing the466

past few batches would lead to significant computational overhead.467

Below we describe our SRNN-based architecture that can appropriately re-use computation to ensure468

accurate phoneme prediction with a small batch of audio thus ensuring prediction with small lag and469

low computational cost.470

C.1 Encoder471

We replace the bottom two layers of pyramidal encoder by a 3-layer SRNN where the first two472

layers partitions the input into “bricks" of size lf while the third layer recaptures the receptive473

field by processing bottom layer’s output via a bi-LSTM. The output of the third layer is the final474

code/embedding of the input-sequence. Similar to sliding-window streaming setting (Section 3), we475

can re-use computation from the bricks to process the new lf -sized brick of audio data efficiently.476

ℎ ̃ 

2

Pyramidal Encoder

�1:��

Pyramidal Encoder

� +1:2�� ��

Pyramidal Encoder

�2 +1:3�� �� …

ℎ
+1

�
�

4

ℎ
+2

�
�

4

ℎ 2�
�

4

…

…

Inverse Pyramidal
Decoder

Inverse Pyramidal
Decoder

Inverse Pyramidal
Decoder

�
−1��

�1 �2 �4 �5 �6 �7 �8
�

−3��
�

��
…

�3

ℎ1 ℎ2 ℎ �
�

4

�
−2��

�0

�1

�1

Predictor

, , … ,� +1��
� +2��

�2��

�2

…

�1 �2 �3 �4 �5 �6 �7 �8

�1

ℎ ̃ 
2

ℎ ̃ 
�
�

4

ℎ ̃ 
1

�
−3��

�
−2��

�
−1��

�
��

ℎ ̃ 

+2
�
�

4

ℎ
+1

2�
�

4

ℎ
+2

2�
�

4

ℎ 3�
�

4

…

ℎ1 ℎ2 ℎ �
�

4

…

ℎ ̃ 

+1
�
�

4

ℎ ̃ 

2�
�

4

…

ℎ ̃ 

+2
2�

�

4

ℎ ̃ 

+1
2�

�

4

ℎ ̃ 

3�
�

4
…

Predictor

, , … ,�2 +1��
�2 +2��

�3��

�2

Predictor

, , … ,�1 �2 �
��

ℎ1
~

ℎ ̃ 

�
�

4
…

�1:��
� +1:2�� ��

�2 +1:3�� ��

SRNN Speller

SRNN Listener

Figure 4: SRNN based online LAS.

C.2 Decoder477

We replace the attention-based architecture in LAS with an inverted pyramidal decoder — the number478

of output states for each of the layer in the inverted pyramidal decoder is twice the number of input479

states. Thus, after two layers of the inverted pyramidal decode we obtain the same number of output480

states as the input to the encoder. Each of these output states are then processed by an Multilayer481

Perceptron (MLP) layer to compute the probability distribution over the space of all phonemes.482

Applying the above Decoder in the streaming setting will incur significant computation overhead. To483

alleviate this concern, we again use SRNN to enable re-use of the computation across the decoder484

layer as was done for the encoder layer. In particular, we use one recurrent network to compute485

13



the ‘summary’ of all the output states (denoted as Si in Figure 4) of a given fragment. Another486

recurrent network processes the past “summaries" Si´1, Si´2 and Si´3 to produce Hi which is the487

‘correction’ factor for each of the output states (uj in Figure 4) of the ith fragment. This correction488

term concatenated with each uj is the input to a two layer MLP with softmax output over the489

phonemes.490

Hence, the phoneme distribution is obtained for each new input frame/batch and the network is trained491

using the time aligned phoneme transcription available in the TIMIT dataset. The final prediction by492

the model is obtained by removing labels predicted with a low confidence (less than a threshold) and493

collapsing the repeating phonemes.494

C.3 Argument495

We first replace the encoder in LAS while retaining the decoder, we see an improvement in the496

phoneme error rate from 0.251 to 0.240 (lf “ 64) by doing this. Using the SRNN encoder, the497

streaming input can be transcribed every lf input frames, thus there is no need to wait for the498

entire speech input. Even though the lag for prediction is reduced, this still involves the attention499

computation across all the encoder states which is expensive especially when the input speech is500

long and runs into hours. To avoid this, we replace the decoder with an SRNN decoder where the501

need for attention is eliminated by predicting a phoneme for each input frame and not just the unique502

phonemes. With this substitution, we observe a further improvement in the phoneme error rate to503

0.238 (lf “ 64).504

Surprisingly, it turns out that our new architecture is able to better model the phoneme prediction505

problem. The error rate for the “offline" version of our model, i.e., where lf “ 784 is 0.220. This506

error-rate is significantly better than the rate of 0.251 that we could obtain using enhancements of the507

standard LAS model.508

As noted above, using our SRNN based architecture with lf “ 64, we could still achieve error rate509

of 0.238 which is marginally larger than the best error rate achieved by lf “ 784. However, lag in510

phoneme predictions in lf “ 64 case is 12x smaller than the lag incurred by our architecture with511

lf “ 784, i.e., in the offline case.512

14


