
Appendix A Lower Bound on the Sample Complexity

We first prove Lemma 1, for which we will apply a renewal argument. Using the strong Markov
property we can derive the following standard, see Durrett (2010), decomposition of a Markov chain
in IID blocks.
Fact 1. Let {Xn}n∈Z≥0

be an irreducible Markov chain with initial distribution q, and transition
matrix P . Define recursively the k-th return time to the initial state as{

τ0 = 0

τk = inf {n > τk−1 : Xn = X0}, for k ≥ 1,

and for k ≥ 1 let rk = τk − τk−1 be the residual time. Those random times partition the Markov
chain in a sequence {vk}k∈Z>0 of IID random blocks given by

vk = (rk, Xτk−1
, . . . , Xτk−1), for k ≥ 1.

LetN(x, n,m) be the number of visits to x that occurred from time n up to timem, andN(x, y, n,m)
to be the number of transitions from x to y that occurred from time n up to time m

N(x, n,m) =

m−1∑
s=n

1{Xs = x},

N(x, y, n,m) =

m−1∑
s=n

1{Xs = x,Xs+1 = y}.

It is well know, see Durrett (2010), that the stationary distribution π of the Markov chain is given by

π(x) =
E(q,P )N(x, 0, τ1)

E(q,P ) τ1
, for any x ∈ S. (10)

In the following lemma we establish a similar relation for the invariant distribution over pairs of the
Markov chain.
Lemma 4.

π(x)P (x, y) =
E(q,P )N(x, y, 0, τ1)

E(q,P ) τ1
, for any x, y ∈ S.

Proof. Using (10) it is enough to show that for any initial state x0,
E(x0,P )N(x, 0, τ1)P (x, y) = E(x0,P )N(x, y, 0, τ1),

or equivalently that,

E(x0,P )

τ1−1∑
n=0

1{Xn = x}P (x, y) = E(x0,P )

τ1−1∑
n=0

1{Xn = x,Xn+1 = y}.

Conditioning over the possible values of τ1, and using Fubini’s Theorem we obtain

E(x0,P )

τ1−1∑
n=0

1{Xn = x}P (x, y) =

∞∑
t=1

Px0
(τ1 = t)

t−1∑
n=0

P(x0,P )(Xn = x | τ1 = t)P (x, y)

=

∞∑
n=0

∞∑
t=n+1

P(x0,P )(Xn = x, τ1 = t)P (x, y)

=

∞∑
n=0

P(x0,P )(Xn = x, τ1 > n)P (x, y)

=

∞∑
n=0

P(x0,P )(Xn = x,Xn+1 = y)P(x0,P )(τ1 > n | Xn = x)

=

∞∑
n=0

P(x0,P )(Xn = x,Xn+1 = y, τ1 > n)

= E(x0,P )

τ1−1∑
n=0

1{Xn = x,Xn+1 = y},
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where the second to last equality holds true due to the reversed Markov property

P(x0,P )(τ1 > n | Xn = x,Xn+1 = y) = P(x0,P )(τ1 > n | Xn = x).

The following Lemma, which is a variant of Lemma 2.1 in Anantharam et al. (1987b), is the place
where we use the IID block structure of the Markov chain.

Lemma 5. Define the mean return time of the Markov chain with initial distribution q and irreducible
transition matrix P by

R = E(q,P )[inf {n > 0 : Xn = X0}] <∞.
Let Fn be the σ-field generated by X0, X1, . . . , Xn. Let τ be a stopping time with respect to
(Fn)n∈Z≥0

, with E(q,P ) τ <∞. Then

E(q,P )N(x, y, 0, τ) ≤ π(x)P (x, y)(E(q,P ) τ +R− 1), for all x, y ∈ S.

Proof. Using the k-th return times from Fact 1 we decompose N(x, y, 0, τk) in k IID summands

N(x, y, 0, τk) =

k−1∑
i=0

N(x, y, τi, τi+1).

Now let κ = inf {k > 0 : τk ≥ τ}, so that τκ is the first return time to the initial state after or at time
τ . By definition of τκ we have that

τκ − τ ≤ τκ − τκ−1 − 1.

Taking expectations we obtain

E(q,P )[τκ − τ ] ≤ E(q,P )[τκ − τκ−1]− 1 = E(q,P ) rκ − 1 = E(q,P ) r1 − 1 = R− 1,

which also gives that
E(q,P )[τκ] ≤ E(q,P )[τ ] +R− 1 <∞.

This allows us to use Wald’s identity, followed by Lemma 4, followed by Wald’s identity again, in
order to get

E(q,P )N(x, y, 0, τκ) = E(q,P )

κ−1∑
i=0

N(x, y, τi, τi+1)

= E(q,P )[N(x, y, 0, τ1)]Eq[κ]

= p(x)P (x, y)E(q,P )[τ1]E(q,P )[κ]

= p(x)P (x, y)E(q,P )[τκ].

Therefore,

E(q,P )N(x, y, 0, τ) ≤ E(q,P )N(x, y, 0, τκ)

= π(x)P (x, y)E(q,P )[τκ]

≤ π(x)P (x, y)(E(q,P )[τ ] +R− 1).

Proof of Lemma 1.

Follows by taking EAδθθθ of the log-likelihood ratio, log

(
PAδ
θθθ
|Fτ

PAδ
λλλ
|Fτ

)
, given by (4), and applying Lemma 5

K times for the stopping times Na(τ) + 1, a = 1, . . . ,K.

The last part of Appendix A involves the proof of Theorem 1.
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Proof of Theorem 1.
Consider an alternative parametrization λλλ ∈ Alt(θθθ). The data processing inequality, see Cover and
Thomas (2006), gives us as a way to lower bound the Kullback-Leibler divergence between the two
probability measures PAδθθθ |Fτδ and PAδλλλ |Fτδ . In particular,

D2

(
PAδθθθ (E)

∥∥∥ PAδλλλ (E)
)
≤ D

(
PAδθθθ |Fτδ

∥∥∥ PAδλλλ |Fτδ
)
, for any E ∈ Fτδ ,

where for p, q ∈ [0, 1], D2 (p ‖ q) denotes the binary Kullback-Leibler divergence,

D2 (p ‖ q) = p log
p

q
+ (1− p) log

1− p
1− q

.

We apply this inequality with the event E = {âτδ 6= a∗(θθθ)} ∈ Fτδ . The fact that the strategy Aδ is
δ-PC implies that

Pθθθ(E) ≤ δ, and Pλλλ(E) ≥ 1− δ,
hence

D2 (δ ‖ 1− δ) ≤ D
(
PAδθθθ |Fτδ

∥∥∥ PAδλλλ |Fτδ
)
.

Combining this with Lemma 1 we get that

D2 (δ ‖ 1− δ) ≤
K∑
a=1

D (qθa ‖ qλa) +

K∑
a=1

(
EAδθθθ [Na(τδ)] +Ra

)
D (θa ‖ λa).

The fact that
∑K
a=1Na(τδ) ≤ τδ gives,

D2 (δ ‖ 1− δ)−
K∑
a=1

D (qθa ‖ qλa)

≤

(
EAδθθθ [τδ] +

K∑
a=1

Ra

)
K∑
a=1

EAδθθθ [Na(τδ)] +Ra∑K
b=1

(
EAδθθθ [Nb(τδ)] +Rb

)D (θa ‖ λa),

and now we follow the technique of Garivier and Kaufmann (2016) which combines multiple
alternative models λλλ,

D2 (δ ‖ 1− δ)−
K∑
a=1

D (qθa ‖ qλa)

≤

(
EAδθθθ [τδ] +

K∑
a=1

Ra

)
inf

λλλ∈Alt(θθθ)

K∑
a=1

EAδθθθ [Na(τδ)] +Ra∑K
b=1

(
EAδθθθ [Nb(τδ)] +Rb

)D (θa ‖ λa)

≤

(
EAδθθθ [τδ] +

K∑
a=1

Ra

)
sup

www∈M1([K])

inf
λλλ∈Alt(θθθ)

K∑
a=1

waD (θa ‖ λa).

The conclusion follows by letting δ go to 0, and using the fact that

lim
δ→0

D2 (δ ‖ 1− δ)
log 1

δ

= 1.

Appendix B Exponential Family of Stochastic Matrices

For a stochastic matrix P on S, and a probability distribution p ∈ M1 (S), we use the notation
p� P ∈M1 (S × S) to denote the bivariate distribution on S × S given by

(p� P )(x, y) = p(x)P (x, y).

We start by establishing parts (a), (b) and (c) of Lemma 2.
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Proof of Lemma 2.

(a) Each entry of P̃θ is a real analytic function of θ, and for each θ0 the Perron-Frobenius
eigenvalue ρ(θ0) is simple with a unique corresponding left and right eigenvectors uθ0 , vθ0
and such that they are both positive,

∑
x uθ0(x) = 1 and

∑
x uθ0(x)vθ0(x) = 1. The

conclusion follows by standard implicit function theorem type of arguments. See for
example Theorem 7 and Theorem 8 in Chapter 9 from the book of Lax (2007).

(b) For any x, y ∈ S such that P (x, y) > 0 we have that

logPθ(x, y) = θf(y)−A(θ) + log vθ(y)− log vθ(x) + logP (x, y).

Differentiating with respect to θ, and taking expectation with respect to πθ � Pθ we obtain

E(X,Y )∼πθ�Pθ
d

dθ
logPθ(X,Y ) = πθ(f)− Ȧ(θ),

where the logarithms cancel out since πθ � Pθ has identical marginals. The conclusion
follows because

E(X,Y )∼πθ�Pθ
d

dθ
logPθ(X,Y ) =

∑
x

πθ(x)
d

dθ

(∑
y

Pθ(x, y)

)
= 0.

(c) For any x, y ∈ S such that P (x, y) > 0 we have that

d2

dθ2
logPθ(x, y) = −Ä(θ) +

d2

dθ2
log vθ(y)− d2

dθ2
log vθ(x).

Taking expectation with respect to πθ � Pθ we obtain

Ä(θ) = −E(X,Y )∼πθ�Pθ
d2

dθ
logPθ(X,Y )

= E(X,Y )∼πθ�Pθ

(
d

dθ
logPθ(X,Y )

)2

≥ 0.

This ensures that Ȧ(θ) is increasing.

Assume, towards contradiction, that Ä(θ) = 0 in a neighborhood of θ0. Then Pθ does not
depend on θ in a neighborhood of θ0. The SM component is irreducible so we can find
x1, . . . , xl+1 ∈ SM such that P (xi, xi+1) > 0 for i = 1, . . . , l and x1 = xl+1, and so

Pθ(x1, x2) . . . Pθ(xl, xl+1) =
P (x1, x2) . . . P (xl, xl+1)eθlM

ρ(θ)l
,

and the Sm component is irreducible as well so we can find y1, . . . , yk+1 ∈ Sm such that
P (yi, yi+1) > 0 for i = 1, . . . , k and y1 = yk+1, and so

Pθ(y1, y2) . . . Pθ(yl, yk+1) =
P (y1, y2) . . . P (yk, yk+1)eθkm

ρ(θ)k
.

This means that the ratio

(Pθ(x1, x2) · · ·Pθ(xl, xl+1))1/l

(Pθ(y1, y2) · · ·Pθ(yk, yk+1))1/k
=
P (x1, x2) · · ·P (xl, xl+1)

P (y1, y2) · · ·P (yk, yk+1)
eθ(M−m),

depends on θ. This contradicts the assumption that Pθ does not depend on θ on a neighbor-
hood of θ0.

Therefore, Ä(θ) does not vanish on any nonempty open interval of R, and so we conclude
that Ȧ(θ) is strictly increasing.

Showing part (d) of Lemma 2 requires the study of the limiting behavior of the family which we do
in the following two Lemmata. The first is a simple extension of the Perron-Frobenius theory.
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Lemma 6. LetW ∈ Rn×n≥0 be a non-negative matrix consisting of: a non-negative irreducible square

block A ∈ Rk×k≥0 , and a non-negative rectangular block B ∈ R(n−k)×k
≥0 such that none of the rows of

B is zero, for some k ∈ {1, . . . , n}, assembled together in the following way:

W =

[
A 0
B 0

]
,

Then, ρ(W ) = ρ(A) is a simple eigenvalue of W , which we call the Perron-Frobenius eigenvalue,
and is associated with unique left and right eigenvectors uW , vW such that uW has its first k
coordinates positive and its last n− k coordinates equal to zero, vW is positive,

∑n
x=1 uW (x) = 1,

and
∑n
x=1 uW (x)vW (x) = 1.

Proof. Let uA, vA be the unique left and right eigenvectors of A corresponding to the Perron-
Frobenius eigenvalue ρ(A), such that both of them are positive,

∑k
x=1 uA(x) = 1 and∑k

x=1 uA(x)vA(x) = 1. Observe that the vectors

uW =

[
uA
0

]
, and vW =

[
vA

BvA/ρ(A)

]
,

are left and right eigenvectors of W with associated eigenvalue ρ(A), and satisfy all the conditions.
In addition, ρ(W ) being greater than ρ(A), or ρ(W ) not being a simple eigenvalue, or uW , vW not
being unique would contradict the Perron-Frobenius Theorem for the nonnegative irreducible matrix
A.

Now we define the matrix P∞ = limθ→∞ e−θM P̃θ, i.e. the matrix P where we keep the columns y ∈
SM intact, and we zero out all the other columns. After suitable permutation of the states Lemma 6
applies for P∞, and so ρ(P∞) is a simple eigenvalue of P∞, which is associated with unique
left and right eigenvectors u∞, v∞ such that u∞(x) > 0 for x ∈ SM and u∞(x) = 0 for x 6∈
SM , v∞ is positive,

∑
x u∞(x) = 1 and

∑
x u∞(x)v∞(x) = 1. Similarly, we define P−∞ :=

limθ→−∞ e−θmP̃θ, with Perron-Frobenius eigenvalue ρ(P−∞), which is associated with unique left
and right eigenvectors u−∞, v−∞ such that u−∞(x) > 0 for x ∈ Sm and u−∞(x) = 0 for x 6∈ Sm,
v−∞ is positive,

∑
x u−∞(x) = 1 and

∑
x u−∞(x)v−∞(x) = 1.

The following Lemma characterizes the limiting stochastic matrices P∞, P−∞ of the exponential
family, and proves part (d) of Lemma 2.
Lemma 7.

(a) θM −A(θ)→ − log ρ(P∞), uθ → u∞, vθ → v∞, as θ →∞, and so

lim
θ→∞

Pθ(x, y) =
P∞(x, y)v∞(y)

ρ(P∞)v∞(x)
=: P∞(x, y),

and πθ(f)→M as θ →∞.

(b) θm−A(θ)→ − log ρ(P−∞), uθ → u−∞, vθ → v−∞, as θ → −∞, and so

lim
θ→−∞

Pθ(x, y) =
P−∞(x, y)v−∞(y)

ρ(P−∞)v−∞(x)
=: P−∞(x, y),

and πθ(f)→ m as θ → −∞.

Proof. Both parts are a straightforward application of the continuity of the function P 7→
(ρ(P ), uP , vP ), at P∞ and P−∞. The continuity of eigenvalues and eigenvectors is due to
the fact that the Perron-Frobenius eigenvalue ρ(P ) is a simple eigenvalue and more details can be
found in Chapter 3 of the book Ortega (1990).

This lemma suggests that we can extend the domain of Ȧ(θ) by continuity over the set of extended
real numbers R = R ∪ {±∞}, by defining Ȧ(∞) = M and Ȧ(−∞) = m. This way we have a
one-to-one and onto correspondence of R with the closed interval [m,M ], with the limit stochastic
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matrices being P∞ and P−∞, which represent degenerate Markov chains where all the transitions
lead into states y ∈ SM when θ =∞, and into states y ∈ Sm when θ = −∞.

We proceed by deriving some alternative representations for the Kullback-Leibler divergence rate
between elements of the exponential family. The following lemma is needed in order to derive the
asymptotic Kullback-Leibler divergence rate.
Lemma 8.

(a) θȦ(θ)−A(θ)→ − log ρ(P∞), as θ →∞.

(b) θȦ(θ)−A(θ)→ − log ρ(P−∞), as θ → −∞.

Proof. Let M2 = maxx 6∈SM f(x). Fix x ∈ S and y 6∈ SM . Pick yM ∈ SM such that P (x, yM ) > 0.

Using Lemma 11 we see that there is a constant C = C(P, f) such that

Pθ(x, y) ≤ Ce−θ(M−f(y))Pθ(x, yM ) ≤ Ce−θ(M−M2).

Therefore the stationary probability of any such y is at most πθ(y) ≤ Ce−θ(M−M2), and so

πθ(f) ≥ (1− C|S|e−θ(M−M2))M + C|S|e−θ(M−M2)m.

From this we obtain that
0 ≤ θ(M − πθ(f)) ≤ C|S|θe−θ(M−M2)(M −m), for any θ ≥ 0,

which yields that θ(Ȧ(θ)−M)→ 0, as θ →∞. Part (a) now follows, since Lemma 7 suggests that
θM −A(θ)→ − log ρ(P∞), as θ →∞. The second limit follows by the same argument.

Having this in our possession we state and prove alternative representations for the Kullback-Leibler
divergence rate.
Lemma 9.

(a) For all θ1, θ2 ∈ R,
D (θ1 ‖ θ2) = θ1Ȧ(θ1)−A(θ1)− (θ2Ȧ(θ1)−A(θ2));

D (∞ ‖ θ2) = − log ρ(P∞)− (θ2M −A(θ2));

D (−∞ ‖ θ2) = − log ρ(P−∞)− (θ2m−A(θ2)).

(b) For all µ1, µ2 ∈ (m,M),

D (µ1 ‖ µ2) = Ȧ−1(µ1)µ1 −A(Ȧ−1(µ1))− (Ȧ−1(µ2)µ1 −A(Ȧ−1(µ2)));

D (M ‖ µ2) = − log ρ(P∞)− (Ȧ−1(µ2)M −A(Ȧ−1(µ2)));

D (m ‖ µ2) = − log ρ(P−∞)− (Ȧ−1(µ2)m−A(Ȧ−1(µ2))).

Proof. For θ1, θ2 ∈ R we have that

D (θ1 ‖ θ2) = E(X,Y )∼πθ1�Pθ1 log
Pθ1(X,Y )

Pθ2(X,Y )

= A(θ2)−A(θ1)− (θ2 − θ1)Ȧ(θ1) + E(X,Y )∼πθ1�Pθ1

[
log

vθ1(Y )

vθ1(X)
− log

vθ2(Y )

vθ2(X)

]
= θ1Ȧ(θ1)−A(θ1)− (θ2Ȧ(θ1)−A(θ2)),

and the third equality follows due to the fact that πθ1 � Pθ1 has identical marginals and so the
expectation vanishes.

Now let θ2 ∈ R. Using the continuity of the Kullback-Leibler divergence rate, the formula that we
just established, and Lemma 8 we obtain

D (∞ ‖ θ) = lim
θ1→∞

D (θ1 ‖ θ2)

= lim
θ1→∞

(
θ1Ȧ(θ1)−A(θ1)

)
− lim
θ1→∞

(
θ2Ȧ(θ1)−A(θ2)

)
= − log ρ(P∞)− (θ2M −A(θ2)).

We argue in the same way for D (−∞ ‖ θ), and part (b) directly follows from part (a).
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As a direct consequence of these representation we obtain the following monotonicity properties of
the Kullback-Leibler divergence rate.

Corollary 1.

(a) For fixed θ2 ∈ R, the function θ1 7→ D (θ1 ‖ θ2) is strictly increasing in the interval [θ2,∞]
and strictly decreasing in the interval [−∞, θ2].

(b) For fixed µ2 ∈ (m,M), the function µ1 7→ D (µ1 ‖ µ2) is strictly increasing in the interval
[µ2,M ] and strictly decreasing in the interval [m,µ2].

We close this appendix by establishing that the Kullback-Leibler divergence rate is the convex
conjugate of the log-Perron-Frobenius eigenvalue.

Lemma 10.

D (µ ‖ µ(0)) = sup
θ∈R
{θµ−A(θ)} =


sup
θ≥0
{θµ−A(θ)}, if µ ∈ [µ(0),M ]

sup
θ≤0
{θµ−A(θ)}, if µ ∈ [m,µ(0)].

Proof. Fix µ ∈ (m,M). The function θ 7→ θµ−A(θ) is strictly concave and its derivative vanishes
at θ = Ȧ−1(µ), which belong in [0,∞) when µ ∈ [µ(0),M) and in (−∞, 0] when µ ∈ (m,µ(0)].
Therefore, using Lemma 9 we obtain

sup
θ∈R
{θµ−A(θ)} = Ȧ−1(µ)µ−A(Ȧ−1(µ)) = D (µ ‖ π(f)).

Similarly when µ = M or µ = m, the derivative only vanishes at∞ and −∞ respectively, and so
from a combination of Lemma 7 and Lemma 9 we obtain

sup
θ∈R
{θM −A(θ)} = lim

θ→∞
(θM −A(θ)) = D (M ‖ π(f)),

and
sup
θ∈R
{θm−A(θ)} = lim

θ→−∞
(θm−A(θ)) = D (m ‖ π(f)).

Appendix C Concentration for Markov Chains

We first use continuity in order to get a uniform bound on the ratio of the entries of the right
Perron-Frobenius eigenvector.

Lemma 11. Let P be an irreducible stochastic matrix on S, which combined with f : S → R
satisfies (6), (7), (8), and (9). There exists a constant C = C(P, φ) ≥ 1 such that

C−1 ≤ sup
θ∈R,x,y∈S

vθ(y)

vθ(x)
≤ C.

If in addition P is a positive stochastic matrix then we can take C = maxx,y,z
P (y,z)
P (x,z) .

Proof. For any x, y ∈ S, the ratio vθ(y)
vθ(x)

is a positive real number, and due to Lemma 2 a continuous

function of θ. In addition Lemma 6 and Lemma 7 suggest that its limit points v∞(y)
v∞(x) ,

v−∞(y)
v−∞(x) are

positive real numbers as well, hence we can take C = supθ∈R,x,y∈S
vθ(y)
vθ(x)

≥ 1, which is guaranteed
to be finite.

In the special case that P is a positive stochastic matrix, we use the fact that vθ is a right Perron-
Frobenius eigenvector of P̃θ in order to write

vθ(y)

vθ(x)
=

∑
w P̃θ(y, w)vθ(w)∑
w P̃θ(x,w)vθ(w)

, for all x, y ∈ S.
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Now using the simple inequality(
min
z

P̃θ(y, z)

P̃θ(x, z)

)
P̃θ(x,w) ≤ P̃θ(y, w) ≤

(
max
z

P̃θ(y, z)

P̃θ(x, z)

)
P̃θ(x,w), for all x, y, w ∈ S,

and observing that P̃θ(y,z)
P̃θ(x,z)

= P (y,z)
P (x,z) we obtain

min
z

P (y, z)

P (x, z)
≤ vθ(y)

vθ(x)
≤ max

z

P (y, z)

P (x, z)
.

Next we establish a Proposition which gives us an approximation of the log-Perron-Frobenius
eigenvalue using the log-moment-generating-function

An(θ) =
1

n
logE0 exp {θ(φ(X1) + . . .+ φ(Xn))}

Proposition 2. Let P be an irreducible stochastic matrix on S, which combined with f : S → R
satisfies (6), (7), (8), and (9). Then

|An(θ)−A(θ)| ≤ logC

n
, for all θ ∈ R,

where C = C(P, f) is the constant from Lemma 11.

Proof. We start with the following calculation

enAn(θ) =
∑

x0,x1,...,xn−1,xn

q(x0)P (x0, x1)eθφ(x1) · · ·P (xn−1, xn)eθφ(xn)

=
∑
x0,xn

q(x0)P̃nθ (x0, xn).

From this using the simple inequality

vθ(y)

maxx vθ(x)
≤ 1 ≤ vθ(y)

minx vθ(x)
, for all y ∈ S,

together with the fact that vθ is a right Perron-Frobenius eigenvector of P̃θ we obtain

min
x,y

vθ(y)

vθ(x)
enA(θ) ≤ enAn(θ) ≤ max

x,y

vθ(y)

vθ(x)
enA(θ).

The conclusion now follows by applying Lemma 11

One more ingredient that we need is a uniform bound of the constant C(Pθ, f) over θ ∈ R.

Lemma 12. For the constant from Lemma 11 we have that,

sup
θ∈R

C(Pθ, f) ≤ C(P, f)2.

Proof. Recall that

C(Pθ2 , f) = sup
θ1∈R,x,y∈S

v
(̃Pθ2)

θ1

(y)

v
(̃Pθ2)

θ1

(x)
.

We claim that
v
(̃Pθ2)

θ1

(y)

v
(̃Pθ2)

θ1

(x)
=
vP̃θ1+θ2

(y)vP̃θ2
(x)

vP̃θ1+θ2
(x)vP̃θ2

(y)
.
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To see this we just need to verify that

vP̃θ2
(x)v

(̃Pθ2)
θ1

(x), x ∈ S,

is a right eigenvector of P̃θ1+θ2 , with associated eigenvalue ρ(P̃θ2)ρ
(

(̃Pθ2)θ1

)
, which from the

Perron-Frobenious theory has to be the Perron-Frobenious eigenvalue since the associated eigenvector
has positive entries. The verification is straight forward∑

y

P̃θ1+θ2(x, y)vP̃θ2
(y)v

(̃Pθ2)
θ1

(y) = ρ(P̃θ2)vP̃θ2
(x)
∑
y

(̃Pθ2)θ1(x, y)v
(̃Pθ2)

θ1

(y)

= ρ(P̃θ2)ρ
(

(̃Pθ2)θ1

)
vP̃θ2

(x)v
(̃Pθ2)

θ1

(x), for all x ∈ S.

From this we see that

sup
θ1,θ2∈R,x,y∈S

v
(̃Pθ2)

θ1

(y)

v
(̃Pθ2)

θ1

(x)
≤

(
sup

θ1,θ2∈R,x,y∈S

vP̃θ1+θ2
(y)

vP̃θ1+θ2
(x)

)(
sup

θ2∈R,x,y∈S

vP̃θ2
(x)

vP̃θ2
(y)

)
= C(P, f)2.

We are now ready to prove Theorem 2.

Proof of Theorem 2.
We first prove the bound for θ = 0. Fix µ ∈ [µ(0),M ], and η ≥ 0.

P0 (f(X1) + . . .+ f(Xn) ≥ nµ) ≤ P0

(
eη(f(X1)+...+f(Xn)) ≥ eηnµ

)
≤ e−n(ηµ−An(η))

≤ C(P, f)e−n(ηµ−A(η)),

where the second inequality is Markov’s inequality, and the third is the estimate from Proposition 2.
By optimizing over η ≥ 0 and applying Lemma 10, we obtain

P0 (f(X1) + . . .+ f(Xn) ≥ nµ) ≤ C(P, f)e−nD(µ ‖ µ(0)).

Applying this bound with Pθ in place of P , and using Lemma 12 we conclude that for µ ∈ [µ(θ),M ]

Pθ (f(X1) + . . .+ f(Xn) ≥ nµ) ≤ C(Pθ, f)e−nD(µ ‖ µ(θ)) ≤ C(P, f)2e−nD(µ ‖ µ(θ)).

Appendix D Upper Bound on the Sample Complexity: the
(α, δ)(α, δ)(α, δ)-Track-and-Stop Strategy

The proof of Lemma 3 uses the concentration bound Theorem 2, combined with the monotonicity of
the Kullback-Leibler divergence rate Corollary 1.

Proof of Lemma 3.
We first note the following inclusion of events

∞⋃
t=1

t⋃
n=1

{Na(t)D (µ̂a(Na(t)) ‖ µa) ≥ βα,δ(t)/2, Na(t) = n}

⊆
∞⋃
t=1

t⋃
n=1

{nD (µ̂a(n) ‖ µa) ≥ βα,δ(t)/2}

=

∞⋃
t=1

{tD (µ̂a(t) ‖ µa) ≥ βα,δ(t)/2} ,

9



where the last equality follows because, by the monotonicity of t 7→ βα,δ(t)/2 we have that for each
n ∈ Z>0 and for each t = n, n+ 1, . . .

{nD (µ̂a(n) ‖ µa) ≥ βα,δ(t)/2} ⊆ {nD (µ̂a(n) ‖ µa) ≥ βα,δ(n)/2} .

Combining this with a union bound we obtain

PAδθθθ (∃t ∈ Z>0 : Na(t)D (µ̂a(Na(t)) ‖ µa) ≥ βα,δ(t)/2)

≤ Pθa (∃t ∈ Z>0 : tD (µ̂a(t) ‖ µa) ≥ βα,δ(t)/2)

≤
∞∑
t=1

Pθa
(
D (µ̂a(t) ‖ µa) ≥ βα,δ(t)

2t

)
.

We focus on upper bounding

Pθa
(
D (µ̂a(t) ‖ µa) ≥ βα,δ(t)

2t
, µ̂a(t) ≥ µa

)
.

Let µa,t be the unique (due to Corollary 1) solution (if no solution exists then the probability is
already zero) of the equations

D (µa,t ‖ µa) =
βα,δ(t)

2t
, and µa ≤ µa,t ≤M.

Then the combination of Corollary 1 and Theorem 2 gives

Pθa
(
D (µ̂a(t) ‖ µa) ≥ βα,δ(t)

2t
, µ̂a(t) ≥ µa

)
= Pθa (µ̂a(t) ≥ µa,t) ≤

δ

D

1

tα
C2.

We further upper bound the constant c(Pµa) by c(P )2 using Lemma 12, in order to obtain a uniform
upper bound for any Markovian arm coming from the family.

A similar bound holds true for

Pθa
(
D (µ̂a(t) ‖ µa) ≥ βα,δ(t)

2t
, µ̂a(t) ≤ µa

)
.

The conclusion follows by summing up over all t and using the simple integral based estimate

∞∑
t=1

1

tα
≤ α

1− α
.

Embarking on the proof of the fact that the (α, δ)-Track-and-Stop strategy is δ-PC we first show that
the error probability is at most δ no matter the bandit model.

Proposition 3. Let θθθ ∈ ΘΘΘ, δ ∈ (0, 1), and α > 1. Let Aδ be a sampling strategy that uses an
arbitrary sampling rule, the (α, δ)-Chernoff’s stopping rule and the best sample mean decision rule.
Then,

PAδθθθ (τα,δ <∞, âτα,δ 6= a∗(µµµ)) ≤ δ.

Proof. The following lemma which is easy to check, and its proof is omitted, will be useful in our
proof of Proposition 3.

Lemma 13. The generalized Jensen-Shannon divergence

Ia(µ, λ) = aD (µ ‖ aµ+ (1− a)λ) + (1− a)D (λ ‖ aµ+ (1− a)λ), for a ∈ [0, 1]

satisfies the following variational characterization

Ia(µ, λ) = inf
µ′<λ′

{aD (µ ‖ µ′) + (1− a)D (λ ‖ λ′)} .
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If τα,δ <∞ and âτα,δ 6= a∗(µµµ), then there ∃t ∈ Z>0 and there ∃a 6= a∗(µµµ) such that Za,a∗(µµµ)(t) >
βα,δ(t). In this case we also have

βα,δ(t) < Za,a∗(µµµ)(t)

= Na(t)D
(
µ̂a(Na(t))

∥∥ µ̂a,a∗(µµµ)(Na(t), Na∗(µµµ)(t))
)
+

Na∗(µµµ)(t)D
(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µ̂a,a∗(µµµ)(Na(t), Na∗(µµµ)(t))
)

= (Na(t) +Na∗(µµµ)(t))I Na(t)
Na(t)+Na∗(µµµ)(t)

(µ̂a(Na(t)), µ̂a∗(µµµ)(Na∗(µµµ)(t)))

= inf
µ′a<µ

′′
a

{
Na(t)D (µ̂a(Na(t)) ‖ µ′a) +Na∗(µµµ)(t)D

(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µ′′a)}
≤ Na(t)D (µ̂a(Na(t)) ‖ µa) +Na∗(µµµ)(t)D

(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µa∗(µµµ)),
where the third equality follows from the variational formula for the generalized Jensen-Shannon
divergence given in Lemma 13, and the last inequality follows from the fact that µa < µa∗(µµµ).

This in turn implies that, βα,δ(t)/2 < Na(t)D (µ̂a(Na(t)) ‖ µa), or βα,δ(t)/2 <
Na∗(µµµ)(t)D

(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µa∗(µµµ)). Therefore by union bounding over the K arms we obtain

PAδθθθ (τδ <∞, âτδ 6= a∗(µµµ))

≤
K∑
a=1

PAδθθθ (∃t ∈ Z>0 : Na(t)D (µ̂a(Na(t)) ‖ µa) ≥ βα,δ(t)/2) .

The conclusion now follows by applying Lemma 3.

Proof of Proposition 1.
Following the proof of Proposition 13 in Garivier and Kaufmann (2016), and observing that in their
proof they show that τα,δ is essentially bounded we obtain that

EAδθθθ [τα,δ] <∞.

This combined with Proposition 3 establishes that the (α, δ)-Track-and-Stop strategy is δ-PC.

Proof of Theorem 3.
Finally for the proof the sample complexity of the (α, δ)-Track-and-Stop strategy in Theorem 3 we
follow the proof of Theorem 14 in Garivier and Kaufmann (2016), where we substitute the usage of
the law of large numbers with the law of large numbers for Markov chains, and in order to establish
their Lemma 19 we use our concentration bound in Theorem 2.
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